Universidade Federal de Santa Catarina Departamento de Matemática Programa de Pós-Graduação em Matemática Pura e Aplicada Exame de Qualificação em Análise Numérica-2019/01

1. Considere um problema de Cauchy

$$u'(t) = f(t, u), \quad t > 0,$$

 $u(0) = u_0.$

- Apresente o método linear de passo múltiplo de ordem *r* para o problema de Cauchy.
- Formule a condição de estabilidade absoluta do método de passo múltiplo.
- Encontre a região de estabilidade absoluta para método de trapézio

$$u^{n+1} = u^n + \frac{k}{2}(f^n + f^{n+1})$$

e método de ponto médio

$$u^{n+1} = u^{n-1} + 2kf^n.$$

- 2. Apresente a formulação do Método de Diferenças Finitas com estêncil de 5 pontos para equação de Poisson em um domínio retangular.
 - Prove o principio do máximo para problema discreto.
 - Qual é o erro de truncamento do método?
 - O que pode dizer sobre estabilidade do método?
 - Comente sobre o numero de condicionamento da matriz do método.
- 3. Sejam X, Y espaços de Hilbert, $T: X \to Y$ um operador linear limitado, e T^{\dagger} a inversa generalizada de T. Mostre que, se Rg(T) (a imagem de T) é fechada, então $Rg(T^{\dagger}) = Rg(T^{*}) = Rg(T^{\dagger}T)$.
- 4. Seja $A \in R^{n,n}$ uma matriz simetrica. Suponha que $Q^TAQ = diag(\lambda_1, \ldots, \lambda_n)$, onde $Q = [q_1, \ldots, q_n] \in R^{n,n}$ eh ortogonal $(q_i \in R^n)$ e $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$. Dado $q^{(0)} \in R^n$ unitário, sejam $(q^{(k)}, \lambda^{(k)}) \in R^n \times R$, $k = 1, 2, \ldots$ a sequência gerada pelo método de potência, e defina $\theta_k := \arccos |q_1^T q^{(k)}| \in [0, \pi/2]$, $k = 0, 1, \ldots$ Mostre que, se $\cos(\theta_0) \ne 0$, então

$$|\lambda^{(k)} - \lambda_1| \le |\lambda_1 - \lambda_n| \tan(\theta_0)^2 |\lambda_2/\lambda_1|^{2k}, k = 0, 1, \dots$$