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RESUMO

Sejam M um monoide, C uma categoria com pullbacks e X um objeto de C . Nós
introduzimos os conceitos de ação parcial e ação parcial forte de M em X e estudamos a
questão de sua globalização. Se uma ação parcial possui uma reflexão na subcategoria de
ações globais, então nós reduzimos o problema à verificação de que um certo diagrama
é um pullback em C . Assim, nós damos uma construção de uma tal reflexão em termos
de um colimite de um certo funtor com valores em C . Nós especificamos esta construção
para o caso de categorias que admitem certos coprodutos e coequalizadores. Nós aplicamos
estes resultados nas categorias de conjuntos, espaços topológicos e álgebras.



RESUMO EXPANDIDO

Palavras Chave: ação parcial, monoide, categoria com pullbacks, globalização,
reflexão

INTRODUÇÃO
Uma ação parcial de grupo é uma forma mais fraca de uma ação (global) de grupo,

em que os elementos do grupo agem apenas em partes de um objeto. O conceito de ação
parcial de grupo foi introduzido por Exel no estudo de certas C∗-álgebras em [8], e desde
então foi explorado em diversos outros contextos.

Uma grande quantidade de exemplos de ações parciais de grupo provém de
restrições de ações globais a subconjuntos apropriados. Assim, um problema bastante
estudado é o de determinar sob que condições uma dada ação parcial é a restrição de uma
ação global, a qual, neste caso, é dita uma globalização da ação parcial. Esta questão foi
inicialmente abordada por Abadie em [1] no caso de ações parciais de um grupo topológico
em espaços topológicos e C∗-álgebras.

Ações parciais de monoides foram introduzidas por Megrelishvili e Schröder em
[17], onde verificam que as ações parciais de monoides em conjuntos e espaços topológicos
são globalizáveis. No artigo [11], Hollings introduz uma definição de ação parcial de
monoide que é mais fraca que a de [17], e mostra que as chamadas ações parciais fortes
(que correspondem às ações parciais de [17]) são exatamente as ações parciais que possuem
uma globalização.

Hu e Vercruysse em [12] definiram o conceito de uma (co)ação parcial de uma
(co)álgebra em uma categoria monoidal com pullbacks em um objeto da mesma, chamada
de “geometric partial (co)module”. A questão da globalização de tais ações parciais foi
posteriormente estudada por Saracco e Vercruysse em [18], em que obtiveram condições
necessárias e suficientes em termos de equalizadores e pushouts para que um “geometric
partial comodule” seja globalizável.

Apesar de os “geometric partial (co)comodules” abrangerem diversos conceitos
de ações parciais vistos na literatura, como ações parciais de monoides topológicos em
espaços topológicos, coações parciais de álgebras de Hopf em álgebras e (co)ações parciais
de álgebras de Hopf em espaços vetoriais, há certos conceitos de ação parcial que até
então não aparentam ser cobertos por esta teoria, como ações parciais de grupos em anéis,
álgebras, C∗-álgebras e semigrupos.



OBJETIVOS
O objetivo principal deste trabalho é introduzir uma forma unificada de se estudar

diversos tipos ações parciais de monoides e grupos vistos na literatura, por meio da
definição de ações parciais (fortes) de monoides em objetos de categorias com pullbacks.

Além disto, também objetivamos oferecer algumas respostas para a questão da
globalização de tais ações parciais, dando condições para que uma dada ação parcial
neste sentido possua uma globalização (universal), e exibir algumas aplicações para estes
resultados em certas categorias, observando também as relações com os resultados de
globalização já encontrados na literatura.

METODOLOGIA
Pesquisa bibliográfica por meio do estudo de artigos e outros tipos de trabalhos

acadêmicos relacionados ao tema, além de discussões frequentes sobre o trabalho com os
orientadores e outros pesquisadores.

RESULTADOS OBTIDOS
Inspirados pelo [12, Lema 1.7], verificamos a relação entre ações parciais (fortes)

de monoides em conjuntos e morfismos parciais na categoria de conjuntos por meio de
uma certa correspondência.

Com base nesta correspondência, para M um monoide, C uma categoria e X um
objeto de C , definimos dados de ação parcial, ações globais, ações parciais e ações parciais
fortes de M em X. Definimos uma noção de morfismo entre estes conceitos, bem como a
categoria formada pelos mesmos. Estudamos as propriedades de uma ação parcial forte no
caso em que o monoide é um grupo.

A partir de uma ação global β de M em um objeto Y de C e um monomorfismo
ι : X → Y , construímos uma ação parcial forte α de M em X, chamada a restrição de β a
X via o monomorfismo ι. Com isto, definimos os conceitos de globalização e globalização
universal de um dado de ação parcial. Para um dado de ação parcial α que possui uma
reflexão na categoria M−ActC , formada pelas ações globais de M em objetos de C , no
Teorema 5.2.5 obtivemos condições necessárias e suficientes em termos de pullbacks para
que α possua uma globalização (universal).

No Teorema 5.2.15 construímos uma reflexão de α em M−ActC em termos
de um colimite de um certo funtor com valores em C . Especificamos este resultado
no Corolário 5.2.19 para encontrar uma tal construção em termos de coprodutos e um
coequalizador em C . Se C possui tais coprodutos, no Teorema 5.2.26 exibimos condições



necessárias e suficientes para que α possua uma tal reflexão em termos de um coequalizador
em M−ActC .

Observamos que na categoria de conjuntos estes resultados recuperam os resultados
de globalização de [11]. Descrevemos as ações parciais globalizáveis na categoria de espaços
topológicos. Estudamos as ações parciais de grupos na categoria de álgebras e exploramos
as conexões das globalizações universal com as ações envolventes de [7].

CONSIDERAÇÕES FINAIS
Este trabalho proporciona uma forma unificada de se estudar diversos tipos ações

parciais de monoides e grupos vistos na literatura. Os principais resultados obtidos são
os que dão uma construção de uma reflexão de uma ação parcial na categoria de ações
globais, a qual nos permite discernir em termos de pullbacks quando a ação parcial em
questão possui uma globalização (universal) ou não. Assim, este trabalho contribui com
uma forma unificada de estudar globalizações de ações parciais em diversos contextos.



ABSTRACT

Let M be a monoid, C a category with pullbacks and X an object of C . We
introduce the notions of partial action and strong partial action of M on X and study the
question of their globalization. If a partial action admits a reflection in the subcategory of
global actions, then we reduce the problem to the verification that a certain diagram is a
pullback in C . We then give a construction of such a reflection in terms of a colimit of a
certain functor with values in C . We specify this construction to the case of categories
admitting certain coproducts and coequalizers. We apply these results to the categories of
sets, topological spaces and algebras.



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Categories, functors and natural transformations . . . . . . . . . . . 15
2.2 Limits and colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Pullbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Equalizers and coequalizers . . . . . . . . . . . . . . . . . . . . 31
2.2.3 Products and coproducts . . . . . . . . . . . . . . . . . . . . . 33

2.3 Inverse semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 SPANS AND PARTIAL MORPHISMS . . . . . . . . . . . . . . . . 43
3.1 Spans and partial morphisms . . . . . . . . . . . . . . . . . . . . . . 43
3.2 The categories of spans and of partial morphisms . . . . . . . . . . . 50
3.3 Pullback-preserving functors and spans . . . . . . . . . . . . . . . . . 58
3.4 Restriction categories . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 Inverse categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 PARTIAL ACTIONS ON OBJECTS IN CATEGORIES WITH PULL-
BACKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 Partial monoid actions on sets . . . . . . . . . . . . . . . . . . . . . 78
4.1.1 Partial group actions on sets . . . . . . . . . . . . . . . . . . . 82

4.2 Partial morphisms and partial action data . . . . . . . . . . . . . . . 85
4.3 Partial monoid actions on objects in categories with pullbacks . . . . 99
4.4 Datum morphisms and the category of partial action data . . . . . . 106
4.5 Partial group actions on objects in categories with pullbacks . . . . . 111

5 RESTRICTIONS AND GLOBALIZATIONS OF PARTIAL MONOID
ACTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.1 Restrictions of global actions . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Globalizations of partial actions . . . . . . . . . . . . . . . . . . . . 124

5.2.1 Reflection in terms of a colimit . . . . . . . . . . . . . . . . . 127
5.2.2 Reflection in terms of coproducts and a coequalizer . . . . . . . 133

6 RESULTS AND EXAMPLES IN CERTAIN CATEGORIES . . . . . 142
6.1 The category of sets . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.2 The category of topological spaces . . . . . . . . . . . . . . . . . . . 144



6.3 The categories of associative algebras . . . . . . . . . . . . . . . . . 149

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



12

1 INTRODUCTION

A partial group action is a generalization of a (global) group action that is
concerned with symmetries of parts of an object, rather than its whole. This concept was
introduced by Exel [8] in order to study certain C∗-algebras as crossed products by partial
actions, and were since explored in many other settings. We refer the reader to the survey
papers [6, 2] containing an extensive literature on the subject.

Plenty of examples of partial group actions arise from the restriction of a global
action to an appropriate subset, in which case the global action is called a globalization
or enveloping action of the partial action. The problem whether or not a partial group
action has a globalization was first addressed by Abadie in the study of partial actions of
a topological group on topological spaces and C∗-algebras in [1], where the author shows
that the former are always globalizable and finds conditions for the latter to be globalizable
in the commutative case.

In the setting of partial group actions on algebras, Dokuchaev and Exel showed
in [7] that if A is a unital (associative) algebra, then a partial group action on A has an
enveloping action if and only if each ideal associated to the partial action is unital. In this
paper, the authors also considered crossed products by partial actions on algebras, where,
unlike in the C∗-algebraic setting, the associativity of a crossed product is not automatic,
and used them to relate partial actions with partial representations.

Partial monoid actions were introduced by Megrelishvili and Schröder in [17].
They show that the partial monoid actions on sets and topological spaces are globalizable,
and that the latter globalization is well behaved when the partial action is confluent.
In [11], Hollings introduces a weaker definition of a partial monoid action on a set and
shows that the strong partial actions (which correspond to the partial actions of [17]) are
precisely the globalizable ones.

In [12], Hu and Vercruysse introduced the concept of a partial (co)action of a
(co)algebra in a monoidal category with pullbacks, called a geometric partial (co)module,
in order to describe partial actions of algebraic groups from a Hopf-algebraic point of view.
This allowed an unified approach to several kinds of partial actions, such as partial actions
of topological monoids on topological spaces, partial coactions of Hopf algebras on algebras
and partial (co)actions of Hopf algebras on vector spaces. The question of the globalization
of geometric partial comodules was afterwards tackled by Saracco and Vercruysse in [18],
where they obtain necessary and sufficient conditions in terms of equalizers and pushouts
for such comodules to be globalizable.

The general theory of [12], however, does not seem to encompass certain concepts
of partial actions that appear in the literature, such as partial group actions on rings,
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algebras, C∗-algebras and semigroups.
In this work we propose a parallel unified approach to partial actions that covers

these and many other kinds of partial actions of groups and monoids, by defining the
concept of a partial action of a monoid on an object in a category with pullbacks. Observe
that we do not assume any monoidal structure on the category under consideration, any
relation between the category and the monoid or any extra structure on the monoid.

We begin this thesis by briefly recalling in Chapter 2 basic notions and results,
and fixing some notations that will be used throughout this work. We recall the definitions
of categories, functors, natural transformations, (co)limits, pullbacks, (co)equalizers and
(co)products and also review the elementary theory of inverse semigroups.

In Chapter 3, we give a more detailed introduction of spans and partial morphisms
in a category C , along with their corresponding categories spanC and parC . We introduce
restriction and inverse categories and verify that parC has an interesting restriction
structure that makes it a restriction category.

In Chapter 4 we introduce partial and strong partial monoid actions on sets in
terms of partial action data, and describe their connection to partial morphisms through
a correspondence similar to [12, Lemma 1.7]. This serves as an inspiration to generalize
the notions of partial action data, as well as global, partial and strong partial actions, to
the context of a monoid acting on an object in a category with pullbacks. We also define
morphisms between such partial action data and the corresponding categories that come
with this notion. At the end of this chapter we give a description of the strong partial
actions in the case where the monoid is a group.

The question of the globalization of these partial actions is tackled in Chapter 5.
Given β a global action of a monoid M on an object Y in a category C and ι : X → Y a
monomorphism in C , we define the notion of a restriction α of β to X via ι and prove
that it is a strong partial action of M on X. In this situation, we say that (β, ι) is a
globalization of α. We further say that (β, ι) is a universal globalization of α if it satisfies a
certain universal property among the globalizations of α. Unlike [18], we do not require the
morphism ι : α → β to be a reflection of α in the category M−ActC of global actions of M
on objects of C (see Example 6.3.10 for an example of a partial action that has a universal
globalization whose ι is not a reflection), and we also observe that not every strong partial
action has a globalization (see Example 6.2.9). However, when such a reflection exists,
Theorem 5.2.5 gives necessary and sufficient conditions for α to have a (universal and
otherwise) globalization in terms of pullback diagrams in C that resemble (the dual of)
the pushout from [18, Theorem 3.5 (II)]. In the main results of this work, we describe a
construction of a reflection of α in M−ActC in terms of a colimit of a certain functor
with values in C (see Theorem 5.2.15) and in terms of certain coproducts and a certain
coequalizer (see Corollary 5.2.19). If C admits such coproducts, we show in Theorem 5.2.26
that the existence of a reflection of α in M−ActC is equivalent to the existence of a



Chapter 1. Introduction 14

coequalizer of a certain pair of morphisms in M−ActC , giving us a condition similar to
(the dual of) [18, Theorem 3.5 (I)]

We apply our general results to certain categories in Chapter 6. We illustrate
how one recovers Hollings’s results on the globalization of strong partial actions on sets
by applying our technique to C = Set. We study the partial actions on objects in the
category of topological spaces and classify the globalizable ones. Finally, we describe the
connection between the universal globalizations and the enveloping actions of [7], showing
in Proposition 6.3.9 that, in the unital case, the enveloping action of a partial group action
on an algebra is a universal globalization of the partial action on an object of a certain
subcategory of the category of K-algebras.
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2 PRELIMINARIES

In this chapter we introduce notations and recall basic notions of category theory,
including those of reflections, functors, natural transformations, (co)limits, pullbacks,
(co)equalizers and (co)products. In the last section of this chapter we also review the basic
theory of inverse semigroups.

2.1 CATEGORIES, FUNCTORS AND NATURAL TRANSFORMA-
TIONS

Definition 2.1.1. A category C consists of the following data.

(1) A class1 of objects denoted by Ob(C ) or simply by C if there is no confusion.

(2) For each X, Y ∈ C a class HomC (X, Y ) of morphisms from X to Y . We write f :
X → Y to mean f ∈ HomC (X, Y ). We require that HomC (X, Y )∩HomC (X ′, Y ′) = ∅
if (X, Y ) ̸= (X ′, Y ′).

(3) For each X, Y, Z ∈ C a map

◦XY Z : HomC (Y, Z) × HomC (X, Y ) → HomC (X,Z),

called a composition of C . We denote ◦XY Z(g, f) by g ◦ f .

This data is required to satisfy the following properties.

(i) For all X ∈ C there exists a morphism idX ∈ End(X), called the identity morphism
of X, such that

f ◦ idX = f = idY ◦ f

for all f : X → Y .

(ii) The composition of C is associative. That is, for all f : X → Y , g : Y → Z and
h : Z → W we have

(h ◦ g) ◦ f = h ◦ (g ◦ f).

In a category C , for each X ∈ C the set HomC (X,X) is a monoid under the
composition composition, called the monoid of endomorphisms of X, and we denote
it by EndC (X). Given f ∈ HomC (X, Y ), the domain of f is defined to be the object X
1 Many interesting collections of objects are too big to be sets, and are, rather, proper classes [13].



Chapter 2. Preliminaries 16

and is denoted by dom f = X, and the codomain of f is defined to be the object Y and
is denoted by cdm f = Y .

There are several examples of categories, such as

• Set, the category whose objects are the sets, the morphisms are the maps between
the sets and the composition is given by the usual composition of maps;

• Sem, the category whose objects are the semigroups, the morphisms are semi-
group homomorphisms between the semigroups and the composition is the usual
composition of maps;

• Mon, the category formed by monoids and monoid homomorphisms;

• Grp, the category formed by groups and group homomorphisms;

• Top, the category formed by topological spaces and continuous maps;

• Poset, the category formed by partial ordered sets and order-preserving maps;

• Ring, the category formed by rings and ring homomorphisms;

• VectK, the category formed by vector spaces over a field K and linear maps;

• AlgK, the category formed by (associative, not necessarily unital) algebras over a
field K and algebra homomorphisms;

• C*-Alg, the category formed by the C∗-algebras and ∗-homomorphisms;

• given (X,≤) a partially-ordered set, there is a category C whose objects are the
elements of X, where there is a (unique) morphism from x to y when x ≤ y and the
composition is given by the transitivity of ≤;

• given G a group, there is a category, also denoted by G, with a single object ∗, where
HomG(∗, ∗) = G and the composition h ◦ g is given by the product h · g in G.

Definition 2.1.2. A category C is said to be small if the class of objects of C is a set.

Definition 2.1.3. A category C is said to be locally small if the class of morphisms
between any two objects of C is a set.

Throughout this work, we will always assume a category C to be locally small,
unless stated otherwise.

Definition 2.1.4. Let C be a category. A subcategory of C is a category D whose class
of objects is contained in the class of objects of C and such that for all X, Y ∈ D we have
HomD(X, Y ) ⊆ HomC (X, Y ).

If HomD(X, Y ) = HomC (X, Y ) for all X, Y ∈ C , we say that D is a full subcate-
gory of C .
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Definition 2.1.5. Let C be a category, D a subcategory of C and X ∈ C . A reflection
of X in D (or a D-reflection of X) is a morphism r : X → Y in C with Y ∈ D such that
for any f ∈ HomC (X,Z) with Z ∈ D there is a unique f ′ ∈ HomD(Y, Z) such that the
following diagram commutes.

X Y

Z
f

r

f ′

In this situation, we say that X has a reflection in D .

Definition 2.1.6. Let C be a category.

• A morphism f ∈ HomC (X, Y ) is a monomorphism if for all g, h ∈ HomC (W,X)
we have

f ◦ g = f ◦ h =⇒ g = h

• A morphism f ∈ HomC (X, Y ) is an epimorphism if for all g, h ∈ HomC (Y, Z) we
have

g ◦ f = h ◦ f =⇒ g = h

• A morphism φ ∈ HomC (X, Y ) is an isomorphism if there exists a morphism
ψ ∈ HomC (Y,X) such that

ψ ◦ φ = idX and φ ◦ ψ = idY .

In this situation, we say that ψ is an inverse of φ.

Remark 2.1.7. The inverse of an isomorphism φ is unique, and is denoted by φ−1.

Example 2.1.8. In Set, the monomorphisms are precisely the injective maps, the epi-
morphisms the surjective maps and the isomorphisms the bijective maps.

Definition 2.1.9. Let C be a category and Z ∈ C . We say that two monomorphisms
f : X → Z and g : Y → Z are equivalent if there exists an isomorphism φ : X → Y such
that the following diagram commutes.

X Z

Y

f

φ
g

The equivalence classes formed by this relation on the class of monomorphisms
with codomain Z are said to be subobjects of Z.

Definition 2.1.10. Let C and D be categories. A (covariant) functor F from C to D ,
denoted by F : C → D , consists of the following data.
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(1) A map F from the class of objects of C to the class of objects of D .

(2) For X, Y ∈ C , a map F : HomC (X, Y ) → HomD(F (X), F (Y )).

This data is required to satisfy the following properties.

(i) For all X ∈ C ,
F (idX) = idF (X).

(ii) For all f ∈ HomC (X, Y ) and g ∈ HomC (Y, Z),

F (g ◦ f) = F (g) ◦ F (f).

Definition 2.1.11. A functor F : C → D is said to be faithful if for all X, Y ∈ C the
map F : HomC (X, Y ) → HomD(F (X), F (Y )) is injective.

There are also plenty of examples of functors between categories.

• Let C ∈ {Set,Sem,Mon,Grp,Top,Poset,Ring,VectK,AlgK,C*-Alg}. Then
there is a functor U : C → Set, called a forgetful functor, where U(X) is the
underlying set of X for all X ∈ C and U(f) = f for all f ∈ HomC (X, Y ).

• There are other kinds of forgetful functors that do not go to Set by forgetting less
structure. For example, there are forgetful functors from Grp to Mon, from Mon
to Sem, from Grp to Sem, from C*-Alg to AlgK, among many others.

• Let C be any category. There is a functor idC : C → C , called the identity functor
of C , where idC (X) = X for all X ∈ C and idC (f) = f for all f ∈ HomC (X, Y ).

• Let D be any category and C a subcategory of D . Then there is a functor F : C → D ,
called the inclusion functor, where F (X) = X for all X ∈ C and F (f) = f for all
f ∈ HomC (X, Y ).

• Let G be a group and α an action of G on a set X. Then α can be seen as a functor
α : G → Set, where α(∗) = X and α(g) is the map from X to X given by the action
of g on X, for all g ∈ G.

• There is a functor from Set to Grp that sends a set X to the free group F (X)
generated by X and a map f : X → Y to the unique map F (f) : F (X) → F (Y )
that restricts to f on the generators of F (X).

Definition 2.1.12. Let F,G : C → D be functors. A natural transformation η from F

to G, which we denote by η : F → G, is a family {F (X) G(X)ηX : X ∈ C } of morphisms
in D such that for all f ∈ HomC (X, Y ) the following diagram commutes.
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F (X) G(X)

F (Y ) G(Y )

F (f)

ηX

G(f)

ηY

2.2 LIMITS AND COLIMITS
Definition 2.2.1. Let C and D be categories, and X ∈ D . We define the functor
∆(X) : C → D , called a constant functor, that maps all objects in C to X and all
morphisms in C to idX .

Definition 2.2.2. Let I and C be categories (the former is called an index category), and
F : I → C a functor.

• A cone to F is a natural transformation η : ∆(X) → F for some X ∈ C .

• A cocone to F is a natural transformation η : F → ∆(X) for some X ∈ C .

• A limit of F is a cone η : ∆(X) → F such that for all cones ξ : ∆(Y ) → F there
exists a unique morphism ξ′ ∈ HomC (Y,X) such that the diagram

Y F (i)

X

ξi

ξ′
ηi

commutes for all i ∈ I.

• A colimit of F is a cocone η : F → ∆(X) such that for all cocones ξ : F → ∆(Y )
there exists a unique morphism ξ′ ∈ HomC (X, Y ) such that the diagram

F (i) Y

X

ξi

ηi

ξ′

commutes for all i ∈ I.

Definition 2.2.3. A category C is said to be (co)complete if every functor from a small
category to C has a (co)limit.

There are some interesting special cases of limits and colimits of functors that we
are going to illustrate now.
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2.2.1 PULLBACKS

Definition 2.2.4. Let C be a category, f ∈ HomC (X,Z) and g ∈ HomC (Y, Z). A
pullback of f and g is a pair of morphisms p1 : P → X and p2 : P → Y such that

(1) the diagram
P

X Y

Z

p1 p2⌟

f g

(2.1)

commutes;

(2) whenever q1 : Q → X and q2 : Q → Y are morphisms such that the diagram

Q

X Y

Z

q1 q2

f g

commutes, there exists a unique morphism φ : Q → P such that the following
diagram commutes.

Q

P

X Y

Z

q1 q2
φ

p1 p2⌟

f g

In this situation, we say that diagram (2.1) is a pullback diagram, a pullback
square or simply a pullback.

Remark 2.2.5. Let C be a category and f : X → Z and g : Y → Z morphisms in C .
Consider the category I whose class of objects is the set {1, 2, 3} and the only nontrivial
morphisms in I are φ13 : 1 → 3 and φ23 : 2 → 3. Then a pullback of f and g can be seen
as a limit of the functor F : I → C where F (φ13) = f and F (φ23) = g, and vice-versa.

Definition 2.2.6. Let C be a category. If every pair of morphisms in C has a pullback,
we will say that C is a category with pullbacks.



Chapter 2. Preliminaries 21

Example 2.2.7. Let f : X → Z and g : Y → Z be morphisms in Set. Then the maps
p1 : P → X and p2 : P → Y form a pullback of f and g, where

P = {(x, y) ∈ X × Y : f(x) = g(y)} (2.2)

and p1 and p2 are given by p1(x, y) = x and p2(x, y) = y, for all (x, y) ∈ P .
Let C ∈ {Set,Sem,Mon,Grp,Top,Poset,Ring,VectK,AlgK,C*-Alg}. If the

maps f and g are morphisms in C , then the set P , as defined in (2.2), naturally has
additional structure that makes it an object of C and the maps p1 and p2 morphisms in
C that form a pullback of f and g in C . Thus, C is a category with pullbacks.

Example 2.2.8. Let (X,≤) be a partially-ordered set and x, y, z ∈ X such that x, y ≤ z.
Let C be the category associated to (X,≤), f the unique morphism from x to z in C and
g the unique morphisms from y to z in C .

Consider the set A = {a ∈ X : a ≤ x and a ≤ y}. Observe that, given a ∈ X,
there exists a morphism ιxa from a to x and a morphism ιya from a to y if and only if a ∈ A.
In this situation, the morphisms ιxa and ιya are such that

f ◦ ιxa = g ◦ ιya,

since there is only one morphism in HomC (a, z).
Thus, a pullback of f and g is precisely a maximum element p of A along with

the morphisms ιxp : p → x and ιyp : p → y in C .
In particular, if (X,≤) is a meet-semilattice, C is a category with pullbacks.

Example 2.2.9. Let X, Y ∈ Set, f : X → Y a map and A ⊆ Y , with corresponding
inclusion map ι. Then the diagram

f−1(A)

X A

Y

ι̂ f̂⌟

f ι

is a pullback, where ι̂ is the inclusion of f−1(A) into X and f̂ is given by

f̂(x) = f(x)

for all x ∈ f−1(A).

For our purposes, requiring a category to have pullbacks is a condition that is
stronger than necessary, and excludes a category we are going to explore later. Hence, we
introduce the following definition, whose nomenclature is inspired by Example 2.2.9.
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Definition 2.2.10. Let C be a category. If every pair of morphisms in C that includes a
monomorphism has a pullback, we will say that C is a category with inverse images.

The following is the previously mentioned example of a category with inverse
images that doesn’t have all pullbacks.

Definition 2.2.11. Denote by AlgId
K the subcategory of AlgK whose morphisms are the

K-algebra homomorphisms f : A → B such that f(A) is an ideal of B.

Proposition 2.2.12. The category AlgId
K has inverse images.

Proof. Let f : A → C and g : B → C be morphisms in AlgId
K , where g is a monomorphism.

We will verify that the maps p1 : Z → A and p2 : Z → B form a pullback of f and g in
AlgId

K , where
Z = {(a, b) ∈ A×B : f(a) = g(b)}

as a subalgebra of A×B and p1 and p2 are given by p1(a, b) = a and p2(a, b) = b, for all
(a, b) ∈ Z.

Let us first verify that p1 and p2 are morphisms in AlgId
K . It is a simple verification

that p1 and p2 are algebra homomorphisms, so we will only check that p1(Z) ⊴ A and
p2(Z) ⊴ B.

Let (a, b) ∈ Z and a′ ∈ A. Then

f(aa′) = f(a)f(a′) = g(b)f(a′) = g(b′) (2.3)

for some b′ ∈ B, since g(B) is an ideal of C.
By (2.3) it follows that (aa′, b′) ∈ Z. Therefore,

p1(a, b)a′ = aa′ = p1(aa′, b′) ∈ p1(Z).

Similarly, a′p1(a, b) ∈ p1(Z). Hence, p1(Z) is an ideal of A. In a similar fashion, p2(Z) ⊴ B,
as desired.

Now let
W

A B

C

q1 q2

f g

(2.4)

be a commutative diagram in AlgId
K .
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Since the diagram
Z

A B

C

p1 p2⌟

f g

(2.5)

is a pullback in AlgK, there exists a unique algebra homomorphism φ : W → Z such that
the following diagram commutes.

W

Z

A B

C

q1 q2
φ

p1 p2⌟

f g

(2.6)

Observe that φ is given by φ(w) = (q1(w), q2(w)) for all w ∈ W .
We will verify that φ is a morphism in AlgId

K . For let w ∈ W and (a, b) ∈ Z. Since
q1 and q2 are morphisms in AlgId

K , there exist wA, wB ∈ W such that

q1(w)a = q1(wA) and q2(w)b = q2(wB).

Therefore, we have

φ(w)(a, b) = (q1(w), q2(w))(a, b) = (q1(w)a, q2(w)b) = (q1(wA), q2(wB)). (2.7)

Now, by the fact that (q1(wA), q2(wB)) ∈ Z and the commutativity of (2.4), we
have

g(q2(wA)) = f(q1(wA)) = g(q2(wB)).

Hence, since g is a monomorphism, and, thus, an injective map,

q2(wA) = q2(wB). (2.8)

Thus, by (2.7) we have

φ(w)(a, b) = (q1(wA), q2(wB)) = (q1(wA), q2(wA)) = φ(wA),

so φ(w)(a, b) ∈ φ(W ). Therefore, φ(W ) is an ideal of Z.
Hence, φ is a morphism in AlgId

K such that diagram (2.6) commutes. Since φ is
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the unique such morphism in AlgK, its uniqueness in AlgId
K also follows. Thus, (2.5) gives

a pullback of f and g in AlgId
K , and, hence, AlgId

K has inverse images, as desired.

To check that AlgId
K does not in general have pullbacks, we will first prove the

following lemma.

Lemma 2.2.13. Let f : A → C and g : B → C be morphisms in AlgId
K . Then a pullback

of f and g in AlgId
K is a pullback of f and g in AlgK.

Proof. Let
W

A B

C

q1 q2⌟

f g

(2.9)

be a pullback square in AlgId
K , and let p1 : Z → A and p2 : Z → B, where

Z = {(a, b) ∈ A×B : f(a) = g(b)}

as a subalgebra of A×B and p1 and p2 are given by p1(a, b) = a and p2(a, b) = b, for all
(a, b) ∈ Z, so

Z

A B

C

p1 p2⌟

f g

(2.10)

is a pullback square in AlgK, as seen in Example 2.2.7.
The same argument made in Proposition 2.2.12 shows that p1 and p2 are morphisms

in AlgId
K (observe that it was not required for f or g to be monomorphisms for this

argument).
Then since (2.9) is a pullback and (2.10) is a commmutative diagram in AlgId

K ,
there exists a unique morphism φ in AlgId

K such that the following diagram commutes.

Z

W

A B

C

p1 p2
φ

q1 q2⌟

f g



Chapter 2. Preliminaries 25

And since (2.10) is a pullback and (2.9) is a commutative diagram in AlgK, there
exists a unique morphism ψ in AlgK such that the following diagram commutes.

W

Z

A B

C

q1 q2
ψ

p1 p2⌟

f g

Since (2.10) is a pullback diagram, it is a simple verification that

ψ ◦ φ = idZ .

Hence, ψ(W ) ⊇ idZ(Z) = Z, so ψ is a morphism in AlgId
K . Since (2.9) is a

pullback, it is then also a simple verification that

φ ◦ ψ = idW .

Thus, φ is an isomorphism in AlgK, so it is a straightforward verification that (2.9)
is a pullback in AlgK.

One can promptly verify that if f and g have a pullback in AlgId
K , then a pullback

diagram in AlgK is also a pullback diagram in AlgId
K . Hence, we have the following example

of morphisms in AlgId
K that do not have a pullback.

Example 2.2.14. Consider f : K[x] → K and g : K[x] → K the evaluation homomor-
phisms given by

f(p) = p(0) and g(p) = p(1),

for all p ∈ K[x]. Observe that f and g are surjective, so they are morphisms in AlgId
K .

Assume by contradiction that f and g have a pullback in AlgId
K .

Then the diagram

Z

K[x] K[x]

K

z1 z2⌟

f g

(2.11)
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is a pullback in AlgId
K , where

Z = {(p, q) ∈ K[x] × K[x] : p(0) = q(1)}

and z1 and z2 are given by z1(p, q) = p and z2(p, q) = q, for all (p, q) ∈ Z.
Let W be the ideal of K[x] generated by x(x−1). Then the corresponding inclusion

ι : W → K[x] is such that
f ◦ ι = g ◦ ι.

Thus, since (2.11) is a pullback diagram, there exists a unique morphism φ in
AlgId

K such that the following diagram commutes.

W

Z

X Y

Z

ι ι
φ

z1 z2⌟

f g

It is a simple verification that φ must be given by φ(p) = (p, p) for all p ∈ W .
However, φ(W ) is not an ideal of Z. Indeed, by taking p = x, q = x− 1 and r = x(x− 1),
we have

φ(r)(p, q) = (r, r)(p, q) = (rp, rq) = (x2(x− 1), x(x− 1)2) ̸∈ φ(W ).

Hence, we have a contradiction.

Proposition 2.2.15. Let C be a category and consider the following diagram.

A B C

X Y Z

h

k l

gf

jiI II (2.12)

If the squares I and II in (2.12) are pullback, then the outermost diagram of (2.12)
is a pullback.

Proof. Assume that the squares I and II in (2.12) are pullback. Let P ∈ C and p1 : P → C
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and p2 : P → X be morphisms such that the following diagram commutes.

P

A B C

X Y Z

h

k l

gf

jiI II

p1

p2

Since the square II is a pullback and

j ◦ p1 = l ◦ k ◦ p2,

there exists a unique morphism φ : P → B such that the following diagram commutes.

P

A B C

X Y Z
k

p2

h

f

l

g

j

p1

III i

φ

(2.13)

Now, since the square I is a pullback and

i ◦ φ = k ◦ p2,

there exists a unique morphism ψ : P → A such that the following diagram commutes.

P

A B

X Y
k

p2

h

f

I i

φ
ψ

(2.14)

In particular, by the commutativity of (2.13) and (2.14) the diagram

P

A B C

X Y Z
k

p2

h

f

I i

ψ

l

II

g

j

p1

(2.15)

commutes. Let us verify that ψ is the unique morphism such that (2.15) is commutative.
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For let ψ′ be a morphism such that the diagram

P

A B C

X Y Z
k

p2

h

f

I i

ψ′

l

II

g

j

p1

commutes. Then since
i ◦ (f ◦ ψ′) = k ◦ p2

and
g ◦ (f ◦ ψ′) = p1,

by the uniqueness of φ in (2.13) it follows that

f ◦ ψ′ = φ.

Thus, since we also have that
h ◦ ψ′ = p2,

by the uniqueness of ψ in (2.14) it follows that ψ = ψ′, as desired.

Proposition 2.2.16. Let C be a category and f ∈ HomC (X, Y ). Then f is a monomor-
phism if and only if the following diagram is a pullback.

X

X X

Y

idX idX

f f

(2.16)

Proof. Assume that f is a monomorphism and let g, h : W → X be morphisms such that
the diagram

W

X X

Y

g h

f f

(2.17)

commutes. Then f ◦ g = f ◦ h, so, since f is a monomorphism, g = h. In this case, let
φ = g = h.
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Then the diagram
W

X

X X

Y

g h
φ

idX idX

f f

(2.18)

commutes. And φ is the unique such morphism, for if φ′ is such that idX ◦ φ′ = g and
idX ◦ φ = h, then φ′ = g = φ. Hence, (2.16) is a pullback.

Conversely, assume that (2.16) is a pullback and let g, h ∈ HomC (W,X) be
morphisms such that f ◦ g = f ◦h. Then (2.17) commutes. Since (2.16) is a pullback, there
exists a unique morphism φ such that (2.18) commutes.

By the commutativity of (2.18) we then have

h = idX ◦ φ = g,

so f is a monomorphism, as desired.

Proposition 2.2.17. Let C be a category, f ∈ HomC (X,Z) and g ∈ HomC (Y, Z). If f is
a monomorphism and

P

X Y

Z

p1 p2⌟

f g

(2.19)

is a pullback, then p2 is a monomorphism.

Proof. Let h, k : Q → P be morphisms such that

p2 ◦ h = p2 ◦ k. (2.20)

Then observe that, by the commutativity of (2.19) and by (2.20)

f ◦ p1 ◦ h = g ◦ p2 ◦ h = g ◦ p2 ◦ k = f ◦ p1 ◦ k.

Therefore, since f is a monomorphism,

p1 ◦ h = p1 ◦ k.
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Let

µ = p1 ◦ h = p1 ◦ k : Q → X and ν = p2 ◦ h = p2 ◦ k : Q → Y. (2.21)

Then the diagram
Q

P

X Y

Z

µ ν
φ

p1 p2⌟

f g

(2.22)

commutes for both φ = h and φ = k. Hence, since (2.19) is a pullback, by the uniqueness
of φ it follows that h = k, so p2 is a monomorphism, as desired.

Definition 2.2.18. Let F : C → D be a functor. We say that F preserves pullbacks if
whenever

P

X Y

Z

p1 p2⌟

f g

is a pullback diagram in C , then so is the following diagram in D .

F (P )

F (X) F (Y )

F (Z)

F (p1) F (p2)

F (f) F (g)

Proposition 2.2.19. Let F : C → D be a functor. If F preserves pullbacks, then whenever
f is a monomorphism in C , we have that F (f) is a monomorphism in D .

Proof. Let f ∈ HomC (X, Y ) be a monomorphism in C . By Proposition 2.2.16, the diagram

X

X X

Y

idX idX⌟

f f

(2.23)
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is a pullback in C .
Now, since F is a functor, F (idX) = idF (X). Therefore, since (2.23) is a pullback

and F preserves pullbacks, we have the the diagram

F (X)

F (X) F (X)

F (Y )

idF (X) idF (X)⌟

F (f) F (f)

is a pullback in D . Hence, by Proposition 2.2.16, F (f) is a monomorphism, as desired.

2.2.2 EQUALIZERS AND COEQUALIZERS

Definition 2.2.20. Let C be a category and f, g : X → Y morphisms in C .

• An equalizer of f and g is a morphism e : E → X such that

(1) f ◦ e = g ◦ e;

(2) whenever h : W → X is a morphism such that f ◦ h = g ◦ h, there exists a
unique morphism h′ : W → E such that the triangle in the following diagram
commutes.

E X Y

W

e
f

g

h
h′

• A coequalizer of f and g is a morphism c : Y → C such that

(1) c ◦ f = c ◦ g

(2) whenever h : Y → Z is a morphism such that h ◦ f = h ◦ g, there exists a
unique morphism h′ : W → E such that the triangle in the following diagram
commutes.

X Y C

Z

f

g

c

h
h′

Remark 2.2.21. Let C be a category and f, g : X → Y morphisms in C . Consider the
category I whose class of objects is the set {1, 2} and the only nontrivial morphisms in I

are φ12, φ
′
12 : 1 → 2, and the functor F : I → C where F (φ12) = f and F (φ′

12) = g. Then
an equalizer of f and g can be seen as a limit of F , and a coequalizer of f and g can be
seen as a colimit of F , and vice-versa.
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Example 2.2.22. Let f, g : X → Y be morphisms in Set. Consider the set E = {x ∈ X :
f(x) = g(x)} and e : E → X its corresponding inclusion map. Then e is an equalizer of f
and g.

Let ∼ be the smallest equivalence relation on Y such that f(x) ∼ g(x) for all
x ∈ X. Then the quotient map c : Y → Y/∼ is a coequalizer of f and g.

If X and Y are topological spaces and f and g are continuous maps, by imbuing
the subspace topology on E and the quotient topology on Y/∼, the maps e and c are,
respectively, an equalizer and a coequalizer of f and g in Top.

Example 2.2.23. Let f, g : X → Y be morphisms in AlgK. Then the set E = {x ∈ X :
f(x) = g(x)} is a subalgebra of X and its corresponding inclusion map e : E → X is an
equalizer of f and g.

Let I be the ideal of Y generated by the elements of the form g(x) − f(x) for each
x ∈ X. Then the quotient map c : Y → Y/I is a coequalizer of f and g.

Proposition 2.2.24. Let C be a category and f, g : X → Y morphisms in C .

• If e is an equalizer of f and g, then e is a monomorphism.

• If c is a coequalizer of f and g, then c is an epimorphism.

Proof. We will only verify the second item, as the first is analogous. Let c : Y → C be a
coequalizer of f and g and h, k : C → C ′ morphisms such that

h ◦ c = k ◦ c.

Let
ν = h ◦ c = k ◦ c. (2.24)

Then, since c is a coequalizer of f and g we have

ν ◦ f = h ◦ c ◦ f = h ◦ c ◦ g = ν ◦ g.

Therefore, since c is a coequalizer, there exists a unique morphism ν ′ : C → C ′ such that
the triangle in the following diagram commutes.

X Y C

C ′

f

g

c

ν ν′

Hence, by the uniqueness of ν ′ and by (2.24) it follows that

h = ν ′ = k,
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so c is an epimorphism, as desired.

Proposition 2.2.25. Let C be a category, f, g : X → Y morphisms in C and c : Y → C

a coequalizer of f and g. If ι is a monomorphism and

c = ι ◦ h (2.25)

for some morphism h, then ι is an isomorphism.

Proof. Since c is a coequalizer of f and g, by (2.25), we have

ι ◦ h ◦ f = c ◦ f = c ◦ g = ι ◦ h ◦ g.

Therefore, since ι is a monomorphism,

h ◦ f = h ◦ g.

Thus, since c is a coequalizer of f and g, there exists a unique morphism h′ such
that

h = h′ ◦ c. (2.26)

Let us verify that h′ is an inverse of ι. Indeed, observe that, by (2.25) and (2.26),

ι ◦ h′ ◦ c = ι ◦ h = c = idC ◦ c. (2.27)

Now, by Proposition 2.2.24, c is an epimorphism. Thus, by (2.27) we have

ι ◦ h′ = idC . (2.28)

On the other hand, observe that by (2.28) we have

ι ◦ h′ ◦ ι = idC ◦ ι = ι = ι ◦ iddom ι,

so, since ι is a monomorphism, we have

h′ ◦ ι = iddom ι.

Hence, h′ is an inverse of ι and, thus, ι is an isomorphism, as desired.

2.2.3 PRODUCTS AND COPRODUCTS

Definition 2.2.26. Let C be a category and {Xi}i∈I a family of objects in C .
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• A product of the family {Xi}i∈I is a pair (P, {pi : P → Xi}) formed by an object
P ∈ C and a family of morphisms {pi : P → Xi}, such that for all such pairs
(W, {fi : W → Xi}) there exists a unique morphism φ : W → P such that the
diagram

P Xi

W

pi

fi

φ (2.29)

commutes for all i ∈ I. We denote this unique morphism φ by ∏i∈I fi.

• A coproduct of the family {Xi}i∈I is a pair (C, {ui : Xi → C}) formed by an
object C ∈ C and a family of morphisms {ui : Xi → C}, such that for all such pairs
(Y, {fi : Xi → Y }) there exists a unique morphism φ : C → Y such that the diagram

Xi C

Y

ui

fi

φ (2.30)

commutes for all i ∈ I. We denote this unique morphism φ by ∐i∈I fi.

Remark 2.2.27. Let C be a category and {Xi}i∈I a family of objects in C . Consider the
set I as a category whose only morphisms are the identity morphisms and the functor
F : I → C where F (i) = Xi for all i ∈ I. Then a product of {Xi}i∈I can be seen as a limit
of F , and a coproduct {Xi}i∈I can be seen as a colimit of F , and vice-versa.

Example 2.2.28. Let {Xi}i∈I be a family of objects in Set. Then the cartesian product∏
i∈I Xi := {(xi)i∈I : xi ∈ Xi} along with the projections pj : ∏i∈I Xi → Xi given by

pj((xi)i∈I) = xj for each j ∈ I, form a product of {Xi}i∈I .
And the disjoint union ⊔i∈I Xi along with the inclusion maps ui : Xi → ⊔

i∈I Xi

form a coproduct of {Xi}i∈I .

Example 2.2.29. Let A,B ∈ AlgK. Then the direct product A × B along with the
projections pA : A×B → A and pB : A×B → B form a product of A and B.

The coproduct of A and B has a less straightforward construction. Consider the
vector space

T =
∞⊕
n=1

Tn,

where

T1 = A⊕B, T2 = (A⊗ A) ⊕ (A⊗B) ⊕ (B ⊗ A) ⊕ (B ⊗B), . . .
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Define a product in T as follows. Given two generators

x1 ⊗ · · · ⊗ xn for n ∈ N and xi ∈ A ∪B, ∀i ∈ {1, . . . , n},

and
y1 ⊗ · · · ⊗ ym for m ∈ N and yi ∈ A ∪B, ∀i ∈ {1, . . . ,m},

we define

(x1 ⊗ · · · ⊗ xn) · (y1 ⊗ · · · ⊗ ym) := x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ ym.

With this operation, T is an algebra.
Let I be the ideal of T generated by elements of the form

a⊗ a′ − aa′ and b⊗ b′ − bb′

for a, a′ ∈ A and b, b′ ∈ B.
Then T/I along with the maps uA : A → T/I and uB : B → T/I given by

uA(a) = a+ I, a ∈ A and uB(b) = b+ I, b ∈ B

form a coproduct of A and B.

2.3 INVERSE SEMIGROUPS
Recall that a semigroup S is a set with an associative operation. We will denote

the product of elements of most semigroups in this work simply by juxtaposition.
Also recall that a semigroup is said to be a monoid if it has an identity element.

Definition 2.3.1. Let S be a semigroup. We say that S is an inverse semigroup (cf.
[16]) if for each element s ∈ S there exists a unique element s∗ ∈ S, called the inverse of
s, satisfying

ss∗s = s and s∗ss∗ = s∗.

If S is a monoid, we say that S is an inverse monoid.

Example 2.3.2. Let X be a set and I(X) the set of partial bijections of X, that is, the
set of bijective maps between subsets of X. For each f, g ∈ I(X), let gf be the partial
bijection of X where

dom (gf) = f−1(cdm f ∩ dom g), cdm (gf) = g(cdm f ∩ dom g),
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and
(gf)(x) = g(f(x)),

for all x ∈ dom (gf). With this operation, I(X) is an inverse monoid, where the inverse of
a partial bijection of X is its usual functional inverse.

Example 2.3.3. Let G be a group. Then it is an inverse monoid, where the inverse of an
element g ∈ G is its usual inverse g−1 in the group.

Example 2.3.4. Let S be a semilattice. Then it is an inverse semigroup, where the inverse
of e ∈ S is e itself.

Proposition 2.3.5. Let S be an inverse semigroup. Then for each element s ∈ S we have
s = (s∗)∗.

Proof. Since s∗ satisfies
ss∗s = s

and
s∗ss∗ = s∗,

by the uniqueness of the inverse of s∗ it follows that s = (s∗)∗, as desired.

Idempotent elements form a very important class of elements in an inverse semi-
group.

Definition 2.3.6. Let S be a semigroup. An element e ∈ S is said to be an idempotent
in S if

ee = e.

We denote by E(S) the set of idempotent elements of S.

Observe that inverse semigroups that are not groups have many idempotent
elements.

Proposition 2.3.7. Let S be an inverse semigroup and s ∈ S. Then s∗s ∈ E(S).

Proof. Since ss∗s = s, we have

(ss∗)(ss∗) = (ss∗s)s∗ = ss∗,

as desired.

Lemma 2.3.8. Let S be an inverse semigroup and e ∈ E(S). Then

e∗ = e.
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Proof. Since e is an idempotent, we have

eee = ee = e,

so e∗ = e follows by the uniqueness of e∗.

Lemma 2.3.9. Let S be an inverse semigroup and e, f ∈ E(S). Then ef ∈ E(S).

Proof. Consider the element u = f(ef)∗e ∈ S. Since e, f ∈ E(S),

(ef)u(ef) = (ef)(f(ef)∗e)(ef) = e(ff)(ef)∗(ee)f = (ef)(ef)∗(ef) = ef

and

u(ef)u = (f(ef)∗e)(ef)(f(ef)∗e) = f(ef)∗(ee)(ff)(ef)∗e

= f((ef)∗(ef)(ef)∗)e = f(ef)∗e = u,

so, by the uniqueness of the inverse in an inverse semigroup, u = (ef)∗.
Observe that

uu = (f(ef)∗e)(f(ef)∗e) = f((ef)∗(ef)(ef)∗)e = f(ef)∗e = u,

so u ∈ E(S).
By Lemma 2.3.8, since u is an idempotent, u∗ = u. Thus, since u = (ef)∗, by

Proposition 3.5.3 we have
u = u∗ = ((ef)∗)∗ = ef.

In particular, it follows that ef is an idempotent, as desired.

Proposition 2.3.10. Let S be a semigroup. Then S is an inverse semigroup if and only
if it satisfies the following.

(1) For each s ∈ S there exists a (not necessarily unique) element t ∈ S satisfying

sts = s (2.31)

(2) The idempotents of S commute.

Proof. Suppose S is an inverse semigroup. Clearly, S satisfies (1). Let us verify (2).
Let e, f ∈ E(S). By Lemma 2.3.9, ef is an idempotent, so

(ef)(fe)(ef) = e(ff)(ee)f = (ef)(ef) = ef

and
(fe)(ef)(fe) = f(ee)(ff)e = (fe)(fe) = fe.



Chapter 2. Preliminaries 38

Thus, since S is an inverse semigroup, fe = (ef)∗. By Lemma 2.3.8, we then have

fe = (ef)∗ = ef,

as desired.
Now assume S satisfies (1) and (2). Observe that, given s ∈ S, if t ∈ S is an

element such that sts = s, then u = tst satisfies

sus = s(tst)s = (sts)ts = sts = s

and
usu = (tst)s(tst) = t(sts)tst = tstst = t(sts)t = tst = u.

Thus, by (1), for each s ∈ S there exists an element t ∈ S such that

sts = s and tst = t. (2.32)

So, to verify that S is an inverse semigroup, it suffices to verify that, given s ∈ S,
the element t ∈ S satisfying (2.32) is the unique such element.

For let t′ ∈ S such that

st′s = s and t′st′ = t′. (2.33)

Observe that ts and t′s are both idempotents. Indeed, by (2.32) and (2.33) we
have

(ts)(ts) = (tst)s = ts

and
(t′s)(t′s) = (t′st′)s = t′s.

By (2.32) and (2.33), we have

t = tst = t(st′s)t = (ts)(t′s)t. (2.34)

Thus, by (2) and (2.32)–(2.34), and since ts and t′s are idempotents,

t = (ts)(t′s)t = (t′s)(ts)t = t′s(tst) = t′st = (t′st′)st = t′(st′)(st). (2.35)

Similarly to ts and t′s, we can check that st and st′ are also idempotents in S. So,
by (2.32), (2.33) and (2.35) and (1) we have

t = t′(st′)(st) = t′(st)(st′) = t′(sts)t′ = t′st′ = t′.
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Therefore, the uniqueness of t follows, and S is an inverse semigroup, as desired.

Proposition 2.3.11. Let S be an inverse semigroup and s, t ∈ S. Then

(st)∗ = t∗s∗.

Proof. By Proposition 2.3.7 and Proposition 2.3.10 (2),

(st)(t∗s∗)(st) = s(tt∗)(s∗s)t = s(s∗s)(tt∗)t = (ss∗s)(tt∗t) = st

and
(t∗s∗)(st)(t∗s∗) = t∗(s∗s)(tt∗)s∗ = t∗(tt∗)(s∗s)s∗ = (t∗tt∗)(s∗ss∗) = t∗s∗.

Thus, by the uniqueness of the inverse we have (st)∗ = t∗s∗, as desired.

To each group, one associates a very important inverse semigroup, its Exel’s
semigroup. To introduce this semigroup, let us revise some concepts from the theory of
semigroups.

Definition 2.3.12. Let X be a set. The free semigroup on X is the semigroup W (S),
whose elements are non-empty words x1x2 . . . xn where xi ∈ X for all i = 1, . . . , n, and the
product of two words x = x1x2 . . . xn and y = y1y2 . . . ym is given by juxtaposition:

x · y = x1x2 . . . xny1y2 . . . ym.

A free semigroup satisfies the following universal property.

Proposition 2.3.13. Let X be a set, S a semigroup and f : X → S a map. Then there
exists a unique semigroup homomorphism f : W (X) → S such that

f(x) = f(x)

for all x ∈ X.

Proof. Let f : W (X) → S be given by

f(x1x2 . . . xn) = f(x1)f(x2) . . . f(xn).

Then it is a simple verification that f is a semigroup homomorphism and

f(x) = f(x)

for all x ∈ X.
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It is unique as such. Indeed, if h : W (X) → S is a semigroup homomorphism that
satisfies

h(x) = f(x)

for all x ∈ X, then

h(x1x2 . . . xn) = h(x1)h(x2) . . . h(xn) = f(x1)f(x2) . . . f(xn) = f(x1x2 . . . xn).

Definition 2.3.14. Let G be a group with identity e. The Exel’s semigroup [9] of G is
the inverse semigroup S(G) given by the quotient of the free semigroup on {[g] : g ∈ G}
by the relations

[g−1][g][h] = [g−1][gh],

[g][h][h−1] = [gh][h−1],

[g][e] = [g],

and
[e][g] = [g],

for each g, h ∈ G.

Exel proved in [9] that S(G) is indeed an inverse semigroup, where the inverse of
(the congruence class of) a generator [g] ∈ S(G) is (the congruence class of) the element
[g−1].

Observe that S(G) is further an inverse monoid, with identity [e].
The semigroup S(G) satisfies the following universal property.

Proposition 2.3.15. Let G be a group with identity e, S a semigroup and f : G → S a
map satisfying

(1) f(g)f(h)f(h−1) = f(gh)f(h−1), for all g, h ∈ G;

(2) f(g−1)f(g)f(h) = f(g−1)f(gh), for all g, h ∈ G;

(3) f(g)f(e) = f(g), for all g ∈ G;

(4) f(e)f(g) = f(g), for all g ∈ G.

Then there exists a unique semigroup homomorphism f : S(G) → S such that

f([g]) = f(g),

for all g ∈ G.

Proof. A map f : G → S extends uniquely to a semigroup homomorphism f̃ : W (G) → S.
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Now, since f satisfies (1)–(4), f̃ respects the relations that determine S(G). Thus,
by the universal property of the quotient, there exists a unique semigroup homomorphism
f : S(G) → S such that

f̃ = f ◦ q,

where q : W (G) → S(G) is the appropriate quotient map.
It is then simple to verify that f is the unique semigroup homomorphism satisfying

f([g]) = f(g)

for all g ∈ G.

Proposition 2.3.16. Let G be a group with identity e, M a monoid and f : G → M a
map satisfying

(1) f(g)f(h)f(h−1) = f(gh)f(h−1), for all g, h ∈ G;

(2) f(g−1)f(g)f(h) = f(g−1)f(gh), for all g, h ∈ G;

(3) f(e) is the identity of M .

Then there exists a unique monoid homomorphism f : S(G) → M such that

f([g]) = f(g)

for all g ∈ G.

Proof. Since f satisfies (3), it satisfies Proposition 2.3.15 (3) and (4). Thus, by Proposi-
tion 2.3.15 (1)–(4), there exists a unique semigroup homomorphism f : S(G) → M such
that f([g]) = f(g) for all g ∈ G.

Since f([e]) = f(e) is the identity of M , f preserves the identity of S(G). Thus, f
is a monoid homomorphism. It is a simple verification that it is unique as such, concluding
the proof.

Lemma 2.3.17. Let G be a group with identity e, M an inverse monoid and f : G → M

a map satisfying

(1) f(g)f(h)f(h−1) = f(gh)f(h−1), for all g, h ∈ G;

(2) f(e) is the identity of M .

Then f satisfies

f(g−1)f(g)f(h) = f(g−1)f(gh),

for all g, h ∈ G.
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Proof. First observe that, given g ∈ G, by (1) and (2)

f(g)f(g−1)f(g) = f(gg−1)f(g) = f(e)f(g) = f(g)

and
f(g−1)f(g)f(g−1) = f(g−1g)f(g−1) = f(e)f(g−1) = f(g−1).

Thus, f(g−1) = f(g)∗ in the inverse monoid M .
Now let g, h ∈ G. Then, by Proposition 2.3.11 and (1),

f(g−1)f(g)f(h) = (f(h)∗f(g)∗f(g−1)∗)∗ = (f(h−1)f(g−1)f(g))∗ = (f(h−1g−1)f(g))∗

= f(g)∗f(h−1g−1)∗ = f(g−1)f(gh),

as desired.

Proposition 2.3.18. Let G be a group with identity e, M an inverse monoid and f :
G → M a map satisfying

(1) f(g)f(h)f(h−1) = f(gh)f(h−1), for all g, h ∈ G;

(2) f(e) is the identity of M .

Then there exists a unique monoid homomorphism f : S(G) → M such that

f([g]) = f(g)

for all g ∈ G.

Proof. The result follows by Proposition 2.3.16 and Lemma 2.3.17.
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3 SPANS AND PARTIAL MORPHISMS

This chapter gives a more detailed introduction on spans and partial morphisms
in a category C , along with their corresponding categories spanC and parC , as well as
some results on the functors from parC to parD that are induced by a functor from C to
D .

In the final sections of this chapter it is also introduced the theory of restriction
and inverse categories, where we also show how an inverse category can be obtained from
any restriction category. There we verify that parC has an interesting restriction structure
that makes it a restriction category, and study the inverse category isoC that comes from
it.

3.1 SPANS AND PARTIAL MORPHISMS
We will now work towards introducing partial actions from a categorical perspective.

To this end, we define the concept of a span in a category.

Definition 3.1.1. Let C be a category and X, Y ∈ C . A span [3] from X to Y is a triple
(A, f, g) where A ∈ C and f : A → X and g : A → Y are morphisms, as illustrated.

A

X Y

f g

In particular, we are interested in the concept of a partial morphism:

Definition 3.1.2. Let C be a category and X, Y ∈ C . A partial morphism from X to
Y is a span (A, f, g) from X to Y where f is a monomorphism.

Partial morphisms from an object X to an object Y in a category C — or more
precisely, their isomorphism classes, which we shall introduce later — in a way describe
morphisms from a subobject of X to Y . Indeed, for example, the partial maps between
sets are partial morphisms in Set.

Definition 3.1.3. Let X and Y be sets. A partial map from X to Y is a map f :
dom f → Y where dom f ⊆ X.

Example 3.1.4. Let C = Set, X and Y sets and f a partial map from X to Y . Then
(dom f, ι, f) is a partial morphism from X to Y , where ι is the inclusion of dom f into X.

Morphisms in any category can also be described in terms of partial morphisms.
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Example 3.1.5. Let C be a category and f : X → Y a morphism in C . Then (X, idX , f)
is a partial morphism from X to Y .

Definition 3.1.6. Let C be a category, X, Y ∈ C and (A, f, g) and (B, h, k) spans from
X to Y . A morphism of spans from (A, f, g) to (B, h, k) is a morphism φ : A → B in
C such that the following diagram commutes.

A

B

X Y

f g

φ

h k

Lemma 3.1.7. Let C be a category, X, Y ∈ C , (A, f, g), (B, h, k) and (C,m, n) spans
from X to Y and φ : (A, f, g) → (B, h, k) and ψ : (B, h, k) → (C,m, n) morphisms of
spans. Then ψ ◦ φ is a morphism of spans from (A, f, g) to (B, h, k).

Proof. Consider the following diagram.

A

B

C

X Y

f g

φ

ψ

h k

m n

(3.1)

Since φ is a span morphism, the two triangles on the top of (3.1) are commutative,
and since ψ is a span morphism, the two triangles at the bottom of (3.1) are commutative.
Thus, (3.1) commutes, so the following diagram commutes.

A

C

X Y

ψ◦φ
f g

m n

Therefore, it follows that ψ ◦ φ is a morphism of spans from (A, f, g) to (B, h, k),
as desired.

Thus, we can define the following categories.
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Definition 3.1.8. Let C be a category andX, Y ∈ C . We define the category SpanC (X, Y )
of spans from X to Y , whose objects are spans from X to Y and whose morphisms are
span morphisms between those spans, with the usual composition of C .

Definition 3.1.9. Let C be a category and X, Y ∈ C . We define the category ParC (X, Y )
of partial morphisms from X to Y as the full subcategory of SpanC (X, Y ) whose
objects are the partial morphisms from X to Y .

The identity morphism of a span (or a partial morphism) (A, f, g) in SpanC (X, Y )
(or ParC (X, Y )) is the morphism idA.

Example 3.1.10. Let X and Y be objects in a category C , and X × Y a product of X
with Y , with associated projections p1 : X × Y → X and p2 : X × Y → Y . Then, given a
span (A, f, g) from X to Y , the universal property of X × Y tells us that there exists a
unique morphism φ : A → X × Y such that the following diagram commutes.

A

X × Y

X Y

f g

α

π1 π2

.

Thus, there exists a unique span morphism from (A, f, g) to (X × Y, π1, π2), so
(X × Y, π1, π2) is a terminal object in SpanC (X, Y ).

One can also easily verify that any terminal object in SpanC (X, Y ) is a triple
that determines a product of X and Y , so products of X and Y correspond to terminal
objects in SpanC (X, Y ).

This work deals primarily with isomorphism classes of spans in SpanC (X, Y ), so
the following proposition gives us a more straightforward way to determine when two
spans are isomorphic in this category.

Proposition 3.1.11. Let C be a category and X, Y ∈ C . A morphism in SpanC (X, Y )
is an isomorphism if and only if it is an isomorphism in C .

Proof. Let φ : (A, f, g) → (B, h, k) be a morphism in SpanC (X, Y ).
On the one hand, assume that φ is an isomorphism in SpanC (X, Y ) and let

ψ : (B, h, k) → (A, f, g) be its inverse. Then ψ ◦ φ = idA and φ ◦ ψ = idB, so ψ is an
inverse of φ in C , and it follows that φ is an isomorphism in C .

On the other hand, assume that φ is an isomorphism in C and let ψ : B → A

be its inverse. To check that φ is an isomorphism in SpanC (X, Y ), it suffices to verify
that ψ is a span morphism from (B, h, k) to (A, f, g), so it will clearly be its inverse in
SpanC (X, Y ).
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Indeed, since φ is a span morphism, we have h ◦ φ = f and k ◦ φ = g, so

f ◦ ψ = h ◦ φ ◦ ψ = h ◦ idB = h

and
g ◦ ψ = k ◦ φ ◦ ψ = k ◦ idB = k,

and, thus, the diagram

B

A

X Y

h k

ψ

f g

commutes.

The following proposition shows that ParC (X, Y ) is a strictly full subcategory of
SpanC (X, Y ).

Proposition 3.1.12. Let C be a category, X, Y ∈ C , (A, ι, f) a partial morphism from
X to Y and (B, h, k) a span from X to Y . If (A, ι, f) and (B, h, k) are isomorphic in
SpanC (X, Y ), then (B, h, k) is a partial morphism.

Proof. Let φ : (A, ι, f) → (B, h, k) be an isomorphism in SpanC (X, Y ). Then, in particular,
h ◦ φ = ι. Thus, since φ is an isomorphism and ι is a monomorphism (because (A, ι, f) is
a partial morphism), it follows that h is a monomorphism, and, thus, (B, h, k) is a partial
morphism.

What follows is one of the fundamental notions in this work.

Definition 3.1.13. Let C be a category, X, Y ∈ C and (A, f, g) ∈ SpanC (X, Y ). The
isomorphism class represented by (A, f, g) is the class {P ∈ SpanC (X, Y ) : P ∼=
(A, f, g)}, denoted by [(A, f, g)] or simply by [A, f, g].

We denote the class formed by the isomorphism classes represented by spans from
X to Y by spanC (X, Y ). That is,

spanC (X, Y ) = {[A, f, g] : (A, f, g) ∈ SpanC (X, Y )}.

Clearly, by Proposition 3.1.12, if (A, f, g) is a partial morphism, every representa-
tive of [A, f, g] is a partial morphism. Thus, we define
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Definition 3.1.14. We denote the class formed by the isomorphism classes represented
by partial morphisms from X to Y by parC (X, Y ). That is,

parC (X, Y ) = {[A, f, g] : (A, f, g) ∈ ParC (X, Y )}.

Proposition 3.1.15. Let C be a category and (A, ι, f), (A, ι, g) ∈ ParC (X, Y ) partial
morphisms such that

(A, ι, f) ∼= (A, ι, g).

Then f = g.

Proof. Let φ : (A, ι, g) → (A, ι, f) be an isomorphism, so the diagram

A

A

X Y

φ

ι g

ι f

(3.2)

commutes. By the commutativity of (3.2) we have

ι ◦ φ = ι = ι ◦ idA,

so, since ι is a monomorphism, φ = idA.
It then also follows by the commutativity of (3.2) that

f = f ◦ idA = f ◦ φ = g,

as desired.

In Set we have the following.

Proposition 3.1.16. Let X and Y be sets and (A, f, g) ∈ ParSet(X, Y ). There exists
a unique partial map h from X to Y such that (A, f, g) is isomorphic to (dom h, ιh, h),
where ιh is the inclusion of dom h into X.

Proof. Let dom h := f(A) ⊆ X, ιh the inclusion of dom h into X and h : dom h → Y

given by h(x) = g(a) if x = f(a). Since f is a monomorphism in Set, it is an injective
map, so for each x ∈ f(A) there exists a unique a ∈ A such that x = f(a) and, thus, h is
a well defined map.

Let φ : A → dom h be the corestriction of f to dom h. Then for all a ∈ A we have

h(φ(a)) = h(f(a)) = g(a)
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by definition of h and φ, so
h ◦ φ = g.

Similarly, we have
ιh ◦ φ = f.

Therefore, the diagram

A

dom h

X Y

f g

φ

ιh h

commutes, so φ is a span morphism from (A, f, g) to (dom h, ιh, h). Further, φ is a bijection,
since f is injective, so it is an isomorphism in Set. Because of that, by Proposition 3.1.11
it is an isomorphism from (A, f, g) to (dom h, ιh, h), and so the two partial morphisms are
isomorphic.

We shall now verify its uniqueness. Let k be a partial map from X to Y (with
ιk : dom k → X the corresponding inclusion map) such that (A, f, g) is isomorphic to
(dom k, ιk, k). Then the latter is also isomorphic to (dom h, ιh, h), so there exists a bijection
φ : dom h → dom k such that the diagram

dom h

dom k

X Y

φ

ιh h

ιk k

(3.3)

commutes.
By the commutativity of (3.3) we have ιk ◦φ = ιh, so since ιk and ιh are inclusion

maps it follows that
φ(x) = ιk(φ(x)) = ιh(x) = x

for all x ∈ dom h. Hence, dom h ⊆ dom k and φ is the inclusion map. Since φ is a bijection,
it follows that dom h = dom k, φ is the identity map and, so, ιh = ιk.

Thus, since (dom h, ιh, h) ∼= (dom k, ιk, k) and ιh = ιk, by Proposition 3.1.15 we
have that h = k, and the uniqueness of the partial map follows.

Thus, every isomorphic class represented by a partial morphism from X to Y has
a unique representative that comes from a partial map from X to Y .

Hence, if A ⊆ X and ιA is the corresponding inclusion map, we may denote an
isomorphism class [A, ιA, f ] ∈ parSet(X, Y ) by simply f , its associated partial map.



Chapter 3. Spans and partial morphisms 49

More generally,

Proposition 3.1.17. Let C be a category, X, Y ∈ C and I the class of subobjects of X.
Let {ιi}i∈I be a family where ιi : Xi → X is a representative of the subobject i for each
i ∈ I. Then for any partial morphism (A, ι, f) from X to Y there exist unique i ∈ I and
g : Xi → Y such that

(A, ι, f) ∼= (Xi, ιi, g). (3.4)

Proof. Let (A, ι, f) be a partial morphism from X to Y . Let i be the subobject represented
by the monomorphism ι. Since ι and ιi represent the same subobject i, there exists an
isomorphism φ : Xi → A such that

ιi = ι ◦ φ. (3.5)

So, let
g = f ◦ φ. (3.6)

Then the diagram

Xi

A

X Y

φ

ιi g

ι f

commutes by (3.5) and (3.6), so φ is a span morphism from (Xi, ιi, g) to (A, ι, f). Since φ
is an isomorphism in C , by Proposition 3.1.11 it is an isomorphism between the partial
morphisms, and, thus, we have (3.4).

It remains only to verify the uniqueness of i and g. Indeed, suppose we have j ∈ I

and g′ : Xj → Y such that
(A, ι, f) ∼= (Xj, ιj, g

′).

Then we have
(Xi, ιi, g) ∼= (Xj, ιj, g

′), (3.7)

so let ψ : (Xj, ιj, g
′) → (Xi, ιi, g) be an isomorphism. Then the diagram

Xj

Xi

X Y

ψ

ιj g′

ιi g

commutes. In particular, since ψ is an isomorphism and

ιi ◦ ψ = ιj,
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ιi and ιj represent the same subobject of X, so i = j.
Since there is exactly one representative of the subobject i in {ιi}i∈I , it follows that

ιi = ιj . By Proposition 3.1.15 and (3.7) we then have that g = g′. Thus, the uniqueness of
i and g follows, as desired.

Remark 3.1.18. Let C be a category, X ∈ C and fix {ιi : Xi → X}i∈I a family of
representatives of the distinct subobjects of X. Then, by Proposition 3.1.17, parC (X, Y )
is in bijection with the class of partial morphisms from X to Y of the form (Xi, ιi, g) for
some i ∈ I and g : Xi → Y . Thus, an element of parC (X, Y ) is nothing more than a
morphism g : Xi → Y for some i ∈ I, just like in the category Set (see Proposition 3.1.16).
Hence, instead of [Xi, ιi, g] ∈ parC (X, Y ) we may simply write g, if there is no confusion.
For the sake of convenience, we assume that ιi = idX whenever ιi is an isomorphism.

3.2 THE CATEGORIES OF SPANS AND OF PARTIAL MOR-
PHISMS

Definition 3.2.1. Let C be a category and X, Y, Z ∈ C . Let (A, f, g) be a span from
X to Y and (B, h, k) a span from Y to Z. If g and h have a pullback in C , we say that
the ordered pair of spans ((B, h, k), (A, f, g)) is composable and (P, f ◦ p, k ◦ q) is a span
composition of (B, h, k) with (A, f, g), as in the following diagram, whose square is a
pullback.

P

A B

X Y Z

p q⌟

gf h k

(3.8)

Remark 3.2.2. Since any two pullbacks of g and h are isomorphic, any two compositions
of (B, h, k) with (A, f, g) are also isomorphic as spans, through the isomorphism between
the pullbacks.

Notice that any composable pair of spans may have many distinct (albeit isomor-
phic) compositions, as two morphisms may have plenty of pullbacks. Thus, in order to
have a notation for a composition of two spans in a category, we must beforehand fix
a choice of composition for each ordered pair of composable spans in the category. So,
whenever we compose two spans (B, h, k) and (A, f, g) in a category, unless the choice
is specified we will assume that such a choice was made beforehand, and we denote the
composition of those spans by (B, h, k) • (A, f, g) or simply (B, h, k)(A, f, g).
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Remark 3.2.3. If C is a category with pullbacks, whenever (A, f, g) is a span from X to
Y and (B, h, k) is a span from Y to Z in C , there exists a composition of (B, h, k) with
(A, f, g).

If (B, h, k) is a partial morphism, for a composition of (B, h, k) with (A, f, g) to
exist, it suffices for C to have inverse images. Indeed, in this situation, the morphisms g
and h have a pullback in C because h is a monomorphism.

Remark 3.2.4. Once we fix a choice of compositions of spans in a category with pullbacks,
this choice may not give an associative (partial) operation, and the span (X, idX , idX) may
not act as an identity. As a result, it is not possible to properly define a category whose
morphisms are spans with this composition. Later on, we will explore two ways to address
this issue.

Partial morphisms behave well with this composition, as the following proposition
shows.

Proposition 3.2.5. Let C be a category. A composition of any composable pair of partial
morphisms in C is a partial morphism.

Proof. Let ((B, h, k), (A, f, g)) be a composable pair of spans in C , as in Definition 3.2.1,
and assume that (A, f, g) and (B, h, k) are partial morphisms, so f and h are monomor-
phisms. Let (B, h, k) • (A, f, g) be the outer span in the diagram (3.8), whose square is a
pullback.

Since h is a monomorphism, by Proposition 2.2.17 we have that p is a monomor-
phism. Thus, since f is a monomorphism, f ◦ p is also a monomorphism. So,

(B, h, k) • (A, f, g) = (P, f ◦ p, k ◦ q)

is a partial morphism, as desired.

It is interesting to observe the composition of partial maps, seen as partial
morphisms between objects in Set.

Example 3.2.6. Let X, Y and Z be sets, f a partial map from X to Y , g a partial map
from Y to Z, and (dom f, ιf , f) and (dom g, ιg, g) their associated partial morphisms.

Then the diagram

f−1(dom g)

dom f dom g

Y

ι̂g f̂⌟

f ιg
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is a pullback in Set, where ι̂g is the inclusion of f−1(dom g) into dom f and f̂ = f |dom g
f−1(dom g).

Thus, a composition of (dom g, ιg, g) with (dom f, ιf , f) is given by the external span in
the following diagram.

f−1(dom g)

dom f dom g

X Y Z

ι̂g f̂⌟

fιf ιg g

That is,
(f−1(dom g), ιf ◦ ι̂g, g ◦ f̂)

is a composition of (dom g, ιg, g) with (dom f, ιf , f).
Notice that this is precisely the partial morphism associated to the partial mor-

phism g ◦ f |dom g
f−1(dom g) from X to Z. In other words, a span composition of g with f , seen

as partial morphisms, may be viewed as the usual composition of maps g ◦ f on the largest
subset of the domain of f where this composition makes sense.

As we have mentioned, one may not define a category formed by spans and their
compositions. However, as we will verify, the isomorphism classes of spans behave well
with this composition and, along with it, form a category.

Proposition 3.2.7. Let C be a category with pullbacks, X, Y, Z ∈ C , (A, f, g), (A′, f ′, g′) ∈
SpanC (X, Y ) and (B, h, k), (B′, h′, k′) ∈ SpanC (Y, Z). If

(A, f, g) ∼= (A′, f ′, g′) and (B, h, k) ∼= (B′, h′, k′),

then
(B, h, k) • (A, f, g) ∼= (B′, h′, k′) • (A′, f ′, g′).

Proof. Consider the diagrams

P

A B

X Y Z

p q⌟

gf h k

(3.9)
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and
P ′

A′ B′

X Y Z

p′ q′⌟

g′f ′
h′ k′

, (3.10)

whose squares are pullback squares, so that

(P, f ◦ p, k ◦ q) = (B, h, k) • (A, f, g)

and
(P ′, f ′ ◦ p′, k′ ◦ q′) = (B′, h′, k′) • (A′, f ′, g′).

Since (A, f, g) ∼= (A′, f ′, g′), there exists an isomorphism φA : A → A′ such that

f ′ ◦ φA = f and g′ ◦ φA = g. (3.11)

And since (B, h, k) ∼= (B′, h′, k′), there exists an isomorphism φB : B → B′ such that

h′ ◦ φB = h and k′ ◦ φB = k. (3.12)

Since the square in (3.9) is commutative, g ◦ p = h ◦ q. Then by (3.11) we have

g′ ◦ (φA ◦ p) = (g′ ◦ φA) ◦ p = g ◦ p = h ◦ q = (h′ ◦ φB) ◦ q = h′ ◦ (φB ◦ q).

Thus, by the universal property of the pullback square in (3.10) there exists a unique
morphism φP : P → P ′ such that the diagram

P

P ′

A′ B′

φB◦qφA◦p
φP

p′ q′

commutes. This morphism is, even more, an isomorphism, because one can readily see
that φA ◦ p and φB ◦ q form a pullback of g′ and h′.

The morphism φP is, in fact, a span morphism from (P, f ◦ p, k ◦ q) to (P ′, f ′ ◦
p′, k′ ◦ q′), since

(f ′ ◦ p′) ◦ φP = f ′ ◦ (p′ ◦ φP ) = f ′ ◦ (φA ◦ p) = (f ′ ◦ φA) ◦ p = f ◦ p
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and
(k′ ◦ q′) ◦ φP = k′ ◦ (q′ ◦ φP ) = k′ ◦ (φB ◦ q) = (k′ ◦ φB) ◦ q = k ◦ q.

Thus, by Proposition 3.1.11, since φP is a span morphism that is an isomorphism
in C , φP is an isomorphism from (B, h, k) • (A, f, g) to (B′, h′, k′) • (A′, f ′, g′), and, so,
the two spans are isomorphic, as desired.

Thus, whenever [A, f, g] = [A′, f ′, g′] and [B, h, k] = [B′, h′, k′] we have that
(B, h, k) • (A, f, g) and (B′, h′, k′) • (A′, f ′, g′) represent the same isomorphism class. So,
the following is well defined.

Definition 3.2.8. Let C be a category with pullbacks,X, Y, Z ∈ C , [A, f, g] ∈ spanC (X, Y )
and [B, h, k] ∈ spanC (Y, Z). We define the composition of [B, h, k] with [A, f, g] to be

[B, h, k] • [A, f, g] := [(B, h, k) • (A, f, g)]. (3.13)

The composition of [B, h, k] with [A, f, g] as in Definition 3.2.8 does not depend
on the choice of composition of (B, h, k) with (A, f, g), since any two such compositions
are isomorphic, by Remark 3.2.2.

We will sometimes denote [B, h, k] • [A, f, g] by simply [B, h, k][A, f, g].
Definition 3.2.8 gives an associative composition, as the following proposition

shows.

Proposition 3.2.9. Let C be a category with pullbacks, X, Y, Z,W ∈ C , [A, f, g] ∈
spanC (X, Y ), [B, h, k] ∈ spanC (Y, Z) and [C,m, n] ∈ spanC (Z,W ). Then

([C,m, n] • [B, h, k]) • [A, f, g] = [C,m, n] • ([B, h, k] • [A, f, g]).

Proof. Consider the diagram

O

P Q

A B C

X Y Z W

II

⌟

I

⌟

III

⌟

gf h k m n

(3.14)

whose squares I, II and III are pullback squares.
The largest span with vertex Q in (3.14) is a composition of (C,m, n) with (B, h, k),

since square III is a pullback square. Thus, it is a representative of [C,m, n] • [B, h, k] =
[(C,m, n) • (B, h, k)].
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Since squares I and II are pullbacks, by Proposition 2.2.15, the rectangle they
form together is also a pullback. Thus, the outermost span in (3.14) is a composition
of (C,m, n) • (B, h, k) with (A, f, g), and, therefore, is a representative of ([C,m, n] •
[B, h, k]) • [A, f, g].

On the other hand, the largest span with vertex P in (3.14) is a representative of
[B, h, k] • [A, f, g], since I is a pullback diagram.

So, since the rectangle formed by the squares II and III is a pullback, because the
two squares are pullbacks, it follows that the outermost span in (3.14) is a representative
of [C,m, n] • ([B, h, k] • [A, f, g])

Thus, as [C,m, n]•([B, h, k]• [A, f, g]) and ([C,m, n]• [B, h, k])• [A, f, g]) have the
same representative, it follows that the two isomorphism classes are equal, as desired.

We can then define the following category.

Definition 3.2.10. Let C be a category with pullbacks. We define the category spanC

as the category whose objects are the objects of C , HomspanC
(X, Y ) = spanC (X, Y ) for

all X, Y ∈ C , and the composition is given by (3.13).

Observe that the identity morphism of X ∈ C is the class represented by
(X, idX , idX).

Definition 3.2.11. Let C be a category with pullbacks. We define the category parC as the
subcategory of spanC containing the same class of objects, and such that HomparC

(X, Y ) =
parC (X, Y ) for all X, Y ∈ C .

Proposition 3.2.5 assures us that the composition of morphisms in parC yields a
morphism in parC .

Remark 3.2.12. The category parC in Definition 3.2.11 can be defined regardless of
spanC , and this definition only requires C to be a category with inverse images (see
Remark 3.2.3). Throughout this work, all the results regarding parC that we prove for a
category with pullbacks C can be adapted to this case.

Remark 3.2.13. While the isomorphism classes of spans in C form a category, the
spans in C form a bicategory [3], whose objects are the objects in C and whose category
of morphisms from an object X to an object Y is SpanC (X, Y ), where the horizontal
composition is given by the composition of spans. Similarly, the partial morphisms in C

form a bicategory ParC .
We choose not to give an exact definition of a bicategory here, as it is quite

technical and will not be used throughout the work. The interested reader may consult,
for instance [3], for more details.

With the following, one can see a category with pullbacks C as a subcategory of
parC .
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Lemma 3.2.14. Let C be a category with pullbacks and f : X → Y and g : Y → Z

morphisms in C . Then

[Y, idY , g] • [X, idX , f ] = [X, idX , g ◦ f ].

Proof. The square in

X

X Y

X Y Z

idX f⌟

fidX idY g

is a pullback, so

[Y, idY , g] • [X, idX , f ] = [X, idX ◦ idX , g ◦ f ] = [X, idX , g ◦ f ].

Proposition 3.2.15. Let C be a category with pullbacks. There is a faithful functor
F : C → parC that is given on the objects by F (X) = X and on the morphisms by
F (f) = [dom f, iddom f , f ].

Proof. Observe that idX is a monomorphism for all X ∈ C , so [X, idX , f ] is indeed a
morphism from X to Y in parC for all f : X → Y in C .

Let us first verify that F is functorial. Indeed, for all X ∈ C ,

F (idX) = [X, idX , idX ]

is the identity of F (X) = X in parC .
And F preserves the composition. Indeed, if f : X → Y and g : Y → Z are

morphisms in C , then by Lemma 3.2.14 we have

F (g) • F (f) = [Y, idY , g] • [X, idX , f ] = [X, idX , g ◦ f ] = F (g ◦ f).

The faithfulness of F follows by Proposition 3.1.15.

We give the following definition to name the morphisms in parC that come from
C .

Definition 3.2.16. Let C be a category with pullbacks. A morphism in parC of the form
[X, idX , f ] is said to be global.

By Remark 3.1.18, when there is no risk of confusion, we may use both of the no-
tations [X, idX , f ] and f interchangeably. In this situation, observe that, by Lemma 3.2.14,
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the composition g • f of global morphisms g and f in parC is the global morphism g ◦ f .

Proposition 3.2.17. Let X and Y be sets and [A, ι, f ] ∈ parSet(X, Y ), where A ⊆ X

and ι is the corresponding inclusion map. Then [A, ι, f ] is a global morphism if and only if
A = X and ι = idX .

Proof. Clearly if A = X and ι = idX we have that [A, ι, f ] is a global morphism.
Now assume [A, ι, f ] is a global morphism. Then [A, ι, f ] = [X, idX , g] for some

g : X → Y . Since both ι : A → X and idX : X → X are inclusion maps, and (A, ι, f) and
(X, idX , g) both represent the same isomorphism class, by Proposition 3.1.16 it follows
that

(A, ι, f) = (X, idX , g),

so A = X and ι = idX , as desired.

Proposition 3.2.18. Let C be a category with pullbacks, X, Y, Z ∈ C , [A, ι, f ] ∈
parC (X, Y ) and g ∈ HomC (Y, Z). Then

g • [A, ι, f ] = [A, ι, g ◦ f ].

Proof. The square in

A

A Y

X Y Z

idA f⌟

ι f gidY

is a pullback, so
g • [A, ι, f ] = [A, ι ◦ idA, g ◦ f ] = [A, ι, g ◦ f ].

It should be mentioned that spanC and parC may not be locally small even when
C is locally small (see Proposition 3.2.20 below). We will show a necessary and sufficient
condition for parC to be locally small.

Definition 3.2.19. A category C is said to have few subobjects if the class of subobjects
of every object of C is a set.

Proposition 3.2.20. Let C be a (locally small) category with pullbacks. Then parC is
locally small if and only if C has few subobjects.

Proof. The “if” part. Assume C has few subobjects and let X and Y be objects in C . We
will prove that parC (X, Y ) is a set.
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Let I be the set of subobjects of X and fix a representative ιi : Xi → X for each
subobject i ∈ I. By Proposition 3.1.17, each partial morphism from X to Y is isomorphic
to a unique partial morphism of the form (Xi, ιi, g) for some i ∈ I and g ∈ HomC (X, Y ).

Every element of parC (X, Y ) is, then, of the form [Xi, ιi, g] for some i ∈ I and
g ∈ HomC (X, Y ). Thus, parC (X, Y ) is in bijection with the set ∐i∈I HomC (X, Y ), and,
so, parC (X, Y ) is a set.

Since HomparC
(X, Y ) is a set for all X, Y ∈ C , it follows that parC is locally

small, as desired.
The “only if” part. Assume that parC is locally small and let X ∈ C . Let I be

the class of subobjects of X. For each i ∈ I let ιi be a representative of i.
Define the following map from I to parC (X,X). For each i ∈ I, let Ψ(i) =

[Xi, ιi, ιi] ∈ parC (X,X).
Clearly, Ψ is a well-defined map. We will verify that Ψ is an injection. Let i, j ∈ I

such that Ψ(i) = Ψ(j). Then

[Xi, ιi, ιi] = [Xj, ιj, ιj],

so there is an isomorphism φ : (Xi, ιi, ιi) → (Xj, ιj, ιj).
Since φ is a span morphism, in particular we have that

ιi = ιj ◦ φ,

and since φ is an isomorphism, it follows that ιi and ιj represent the same subobject. Thus,
i = j.

By hypothesis, parC is locally small, so parC (X,X) is a set. Since Ψ is an injection
from I to parC (X,X), we have that I is also a set. Thus, C has few subobjects.

To avoid set-theoretic complications, from this point onward we will always assume
a category C to have few subobjects. We emphasize that every category we are dealing
with in this work has few subobjects.

3.3 PULLBACK-PRESERVING FUNCTORS AND SPANS
Proposition 3.3.1. Let C and D be categories with pullbacks and F : C → D a
functor. Then the association that maps an isomorphism class [A, f, g] ∈ spanC (X, Y )
to the isomorphism class F ([A, f, g]) := [F (A), F (f), F (g)] ∈ spanD(F (X), F (Y )) is
well-defined.

Proof. Let (B, h, k) be a span from X to Y such that [B, h, k] = [A, f, g]. We must verify
that [F (A), F (f), F (g)] = [F (B), F (h), F (k)].
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Since [B, h, k] = [A, f, g], there exists an isomorphism φ : A → B in C such that
the following diagram commutes.

A

B

X Y

f g

φ

h k

(3.15)

Since F is a functor, by the commutativity of (3.15) the diagram

F (A)

F (B)

F (X) F (Y )

F (f) F (g)
F (φ)

F (h) F (k)

commutes. By the functoriality of F , since φ is an isomorphism, so is F (φ). Thus, it
follows that

[F (A), F (f), F (g)] = [F (B), F (h), F (k)],

as desired.

Proposition 3.3.2. Let C and D be categories with pullbacks and F : C → D a functor
that preserves pullbacks. Then F induces a functor F : spanC → spanD that is the same
on the objects and maps an isomorphism class [A, f, g] ∈ spanC (X, Y ) to the isomorphism
class F ([A, f, g]) := [F (A), F (f), F (g)] ∈ spanD(F (X), F (Y ))

Proof. Observe that this functor is well-defined by Proposition 3.3.1.
Since F is a functor, for all X ∈ C ,

F ([X, idX , idX ]) = [F (X), F (idX), F (idX)] = [F (X), idF (X), idF (X)],

so it preserves identities.
We will now verify that F preserves the composition. Let [A, f, g] ∈ spanC (X, Y )

and [B, h, k] ∈ spanC (Y, Z). Consider the following diagram, whose square is a pullback,
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so its outermost span is a representative of [B, h, k] • [A, f, g].

P

A B

X Y Z

p q⌟

gf h k

(3.16)

Thus, the outermost span of the following diagram is a representative of F ([B, h, k]•
[A, f, g]).

F (P )

F (A) F (B)

F (X) F (Y ) F (Z)

F (p) F (q)⌟

F (g)F (f) F (h) F (k)

(3.17)

On the other hand, since F is a functor that preserves pullbacks, the square
in (3.17) is a pullback, so its outermost span is a representative of [F (B), F (h), F (k)] •
[F (A), F (f), F (g)] = F ([B, h, k]) • F ([A, f, g]). Thus, we have

F ([B, h, k]) • F ([A, f, g]) = F ([B, h, k] • [A, f, g]),

so the composition is preserved, as desired.

Corollary 3.3.3. Let C and D be categories with pullbacks and F : C → D a functor
that preserves pullbacks. Then F induces a functor F : parC → parD that is the same
on the objects and maps an isomorphism class [A, f, g] ∈ parC (X, Y ) to the isomorphism
class F ([A, f, g]) := [F (A), F (f), F (g)] ∈ parD(F (X), F (Y ))

Proof. By Proposition 3.3.2 it suffices to verify that the induced functor from spanC to
spanD sends morphisms in parC to morphisms in parD .

Indeed, let [A, f, g] ∈ parC (X, Y ). Since f is a monomorphism and F preserves
pullbacks, by Proposition 2.2.19 it follows that F (f) is a monomorphism. Thus,

F ([A, f, g]) = [F (A), F (f), F (g)] ∈ parD(F (X), F (Y )),

as desired.

Proposition 3.3.4. Let C and D be categories with pullbacks and F : C → D a faithful
functor that preserves pullbacks and satisfies the following property: for all monomorphisms
g ∈ HomD(X, Y ) and f ∈ HomD(Y, Z), if g = F (g′) and g◦f = F (h) for some morphisms
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g′, h in C , then f = F (f ′) for some morphism f ′ in C such that h = g′ ◦ f ′. Under those
assumptions, the induced functor F : parC → parD is faithful.

Proof. Let [A, f, g], [B, h, k] ∈ parC (X, Y ) such that

F ([A, f, g]) = F ([B, h, k]).

Then
[F (A), F (f), F (g)] = [F (B), F (h), F (k)],

so there exists an isomorphism φ : F (A) → F (B) such that the following diagram
commutes.

F (A)

F (B)

F (X) F (Y )

F (g)F (f)
φ

F (h) F (k)

(3.18)

Since φ and F (h) are monomorphisms and F (h) ◦ φ = F (f), by hypothesis it
follows that φ = F (φ′) for some φ′ : A → B such that

h ◦ φ′ = f. (3.19)

Similarly, since ψ := φ−1 and F (f) are monomorphisms and F (f) ◦ ψ = F (h), we
have that ψ = F (ψ′) for some ψ′ : B → A such that

f ◦ ψ′ = h. (3.20)

Observe that by (3.19) and (3.20) we have

f ◦ ψ′ ◦ φ′ = h ◦ φ′ = f

and
h ◦ φ′ ◦ ψ′ = f ◦ ψ′ = h,

so, since f and h are monomorphisms, it follows that ψ′ ◦ φ′ = idA and φ′ ◦ ψ′ = idB, and,
therefore, φ′ is an isomorphism.

Now, observe that by the commutativity of (3.18) we have

F (k ◦ φ′) = F (k) ◦ F (φ′) = F (k) ◦ φ = F (g),
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so since F is faithful it follows that

k ◦ φ′ = g. (3.21)

Thus, by (3.19) and (3.21) the diagram

A

B

X Y

f g

φ′

h k

commutes, so since φ′ is an isomorphism it follows that [A, f, g] = [B, h, k]. Therefore, the
induced functor is faithful, as desired.

3.4 RESTRICTION CATEGORIES
In this section we will define restriction categories, see some of their properties

and show that parC has a natural restriction structure for any category with pullbacks C .

Definition 3.4.1. A (right) restriction monoid is a monoid M together with a unary
operation m 7→ m, satisfying the following conditions: for all m,n ∈ M ,

(R1) mm = m,

(R2) mn = nm,

(R3) nm = nm,

(R4) nm = mnm.

For more details on restriction monoids, see [5] and [10].
A restriction category is a categorical analogue of a restriction monoid (similarly

as categories being generalizations of monoids).

Definition 3.4.2. A restriction structure on a category C is an association of a
morphism f : X → X to any morphism f : X → Y in C , satisfying the following
conditions. For all f : X → Y , g : X → Z and h : Y → Z morphisms in C ,

(R1) f ◦ f = f ,

(R2) f ◦ g = g ◦ f ,

(R3) g ◦ f = g ◦ f ,
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(R4) h ◦ f = f ◦ h ◦ f .

A restriction category [4] is a category C together with a restriction structure.

Remark 3.4.3. In a locally small restriction category C , for all X ∈ C the set EndC (X)
is a (right) restriction monoid [5].

Example 3.4.4. Any category can be trivially seen as a restriction category with the
restriction structure that associates to any morphism f : X → Y the identity morphism
idX .

Example 3.4.5. A basic nontrivial example of a restriction category is that of sets and
partial maps. Here, given f : dom f ⊆ X → Y a partial map, f : dom f ⊆ X → X is the
inclusion map of dom f into X.

The above mentioned example is a particular case of the natural restriction
structure on parC that we are going to introduce below.

Proposition 3.4.6. Let C be a category with pullbacks. Then parC is a restriction category,
with restriction structure that associates to any [A, f, g] ∈ parC (X, Y ) the isomorphism
class [A, f, g] = [A, f, f ] ∈ parC (X,X).

Proof. First, we must verify that such an association is well-defined. Indeed, assume
[A, f, g], [B, h, k] ∈ parC (X, Y ) are such that

[A, f, g] = [B, h, k].

Then there exists an isomorphism φ : A → B such that the following diagram commutes.

A

B

X Y

f g

φ

h k

In particular, since h ◦ φ = f , the following diagram is commutative.

A

B

X X

f f

φ

h h
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Then, since φ is an isomorphism, it follows that (A, f, f) ∼= (B, h, h), and, so,
[A, f, f ] = [B, h, h]. Thus,

[A, f, g] = [A, f, f ] = [B, h, h] = [B, h, k].

Now let us verify the axioms of a restriction category.
(R1). Let [A, f, g] ∈ parC (X, Y ). Since f is a monomorphism in C , the square

in the following diagram is a pullback, and, thus, its outermost span is a representative of
[A, f, g] • [A, f, f ].

A

A A

X X Y

idA idA⌟

ff f g

Thus, we have

[A, f, g] • [A, f, g] = [A, f, g] • [A, f, f ] = [A, f ◦ idA, g ◦ idA] = [A, f, g].

(R2). Let [A, f, g] ∈ parC (X, Y ) and [B, h, k] ∈ parC (X,Z). Consider the
following diagram, whose square is a pullback.

P

A B

X X X

f̂ĥ ⌟

ff h h

(3.22)

Then the outermost span of (3.22) represents the composition of [A, f, f ] with
[B, h, h]. Thus,

[A, f, g] • [B, h, k] = [A, f, f ] • [B, h, h] = [P, f ◦ ĥ, h ◦ f̂ ]. (3.23)

Similarly, since

P

B A

X X X

ĥf̂ ⌟

hh f f
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is a diagram whose square is a pullback, we have that

[B, h, k] • [A, f, g] = [B, h, h] • [A, f, f ] = [P, h ◦ f̂ , f ◦ ĥ]. (3.24)

Since the square in (3.22) commutes, we have that h ◦ f̂ = f ◦ ĥ. Thus, by (3.23)
and (3.24) it follows that

[A, f, g] • [B, h, k] = [B, h, k] • [A, f, g].

(R3). Let [A, f, g] ∈ parC (X, Y ) and [B, h, k] ∈ parC (X,Z). Consider the
following diagram, whose square is a pullback.

P

A B

X X Z

f̂ĥ ⌟

ff h k

(3.25)

The outermost span of (3.25) is a representative of

[B, h, k] • [A, f, g] = [B, h, k] • [A, f, f ].

Thus,
[B, h, k] • [A, f, g] = [P, f ◦ ĥ, f ◦ ĥ]. (3.26)

On the other hand, by (3.24) and since the square in (3.25) is commutative, we
have

[B, h, k] • [A, f, g] = [P, h ◦ f̂ , f ◦ ĥ] = [P, f ◦ ĥ, f ◦ ĥ]. (3.27)

Thus,
[B, h, k] • [A, f, g] = [B, h, k] • [A, f, g].

(R4). Let [A, f, g] ∈ parC (X, Y ) and [B, h, k] ∈ parC (Y, Z). Consider the follow-
ing diagram, whose square is a pullback.

P

A B

X Y Z

ĝĥ ⌟

gf h k

(3.28)
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The outermost span of (3.25) is a representative of [B, h, k] • [A, f, g], so

[B, h, k] • [A, f, g] = [P, f ◦ ĥ, f ◦ ĥ]. (3.29)

Now, the square in

P

P A

X X Y

ĥidP ⌟

f◦ĥf◦ĥ f g

is a pullback, since f is a monomorphism. Thus,

[A, f, g] • [P, f ◦ ĥ, f ◦ ĥ] = [P, f ◦ ĥ, g ◦ ĥ],

so, by (3.29),
[A, f, g] • [B, h, k] • [A, f, g] = [P, f ◦ ĥ, g ◦ ĥ]. (3.30)

On the other hand, since the square in

P

A B

X Y Y

ĝĥ ⌟

gf h h

(3.31)

is a pullback, we have

[B, h, k] • [A, f, g] = [B, h, h] • [A, f, g] = [P, f ◦ ĥ, h ◦ ĝ] = [P, f ◦ ĥ, g ◦ ĥ],

where the last equality is due to the commutativity of the square in (3.31).
Thus, by (3.30),

[B, h, k] • [A, f, g] = [A, f, g] • [B, h, k] • [A, f, g].

Proposition 3.4.7. Let C be a restriction category and X ∈ C . Then idX = idX .

Proof. By (R1),
idX ◦ idX = idX .

Thus, idX = idX .

In a restriction category C , for all X, Y ∈ C there is a natural partial order on
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HomC (X, Y ) that comes from the restriction structure.

Definition 3.4.8. Let C be a restriction category and X, Y ∈ C . We define the relation
≤ on HomC (X, Y ) by

f ≤ g ⇐⇒ f = g ◦ f.

Proposition 3.4.9. The relation in Definition 3.4.8 is a partial order.

Proof. By (R1), for all f ∈ HomC (X, Y ) we have that f = f ◦ f , so

f ≤ f,

and, thus, ≤ is a reflexive relation.
For the antisymmetry, let f, g ∈ HomC (X, Y ) such that f ≤ g and g ≤ f . Then

f = g ◦ f and g = f ◦ g,

so, by (R2),
f = g ◦ f = f ◦ g ◦ f = f ◦ f ◦ g = f ◦ g = g.

Finally, for the transitivity, let f, g, h ∈ HomC (X, Y ) such that f ≤ g and g ≤ h.
Then

f = g ◦ f and g = h ◦ g,

so, by (R3),
f = g ◦ f = h ◦ g ◦ f = h ◦ g ◦ f = h ◦ f,

whence f ≤ h.

Proposition 3.4.10. Let C be a restriction category and W,X, Y, Z ∈ C . If f ≤ g ∈
HomC (X, Y ), h ∈ HomC (Y, Z) and k ∈ HomC (W,X) then

h ◦ f ≤ h ◦ g (3.32)

and
f ◦ k ≤ g ◦ k. (3.33)

Proof. Since f ≤ g, we have
f = g ◦ f. (3.34)

Then

h ◦ g ◦ h ◦ f (3.34)= h ◦ g ◦ h ◦ g ◦ f (R3)= h ◦ g ◦ h ◦ g ◦ f (R1)= h ◦ g ◦ f (3.34)= h ◦ f,

and thus (3.32) follows.
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And

g ◦ k ◦ f ◦ k = g ◦ (k ◦ f ◦ k) (R4)= g ◦ (f ◦ k) = (g ◦ f) ◦ k (3.34)= f ◦ k,

so (3.33) follows.

Corollary 3.4.11. Let C be a restriction category and X, Y, Z ∈ C . If f ∈ HomC (X, Y ),
g ∈ HomC (Y, Z), h ∈ HomC (X,Z) and g ◦ f ≤ h, then

g ◦ f ≤ h ◦ f. (3.35)

Proof. By Proposition 3.4.10, since g ◦ f ≤ h we have

g ◦ f ◦ f ≤ h ◦ f,

so (3.35) follows by (R1).

Proposition 3.4.12. Let C be a restriction category and X, Y ∈ C . Then for all f ∈
HomC (X, Y ) and any morphism g with dom g = X we have

f ◦ g ≤ f. (3.36)

Proof. By (R3) we have
f ◦ f ◦ g = f ◦ f ◦ g = f ◦ g,

so (3.36) follows.

Proposition 3.4.13. Let C be a category with pullbacks and [A, f, g], [B, h, k] ∈ parC (X, Y ).
Then [A, f, g] ≤ [B, h, k] if and only if there exists a span morphism from (A, f, g) to
(B, h, k).

Proof. The “only if” part. Assume [A, f, g] ≤ [B, h, k]. Then

[A, f, g] = [B, h, k] • [A, f, g] = [B, h, k] • [A, f, f ]. (3.37)

Consider the following diagram

P

A B

X X Z

f̂ĥ ⌟

ff h k

(3.38)
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whose square is a pullback, so

[B, h, k] • [A, f, f ] = [P, f ◦ ĥ, k ◦ f̂ ]. (3.39)

Since the square in (3.38) is commutative, by (3.37) and (3.39) it follows that

[A, f, g] = [B, h, k] • [A, f, f ] = [P, f ◦ ĥ, k ◦ f̂ ] = [P, h ◦ f̂ , k ◦ f̂ ],

and, thus
(A, f, g) ∼= (P, h ◦ f̂ , k ◦ f̂).

So, there exists an isomorphism φ : A → P such that the following diagram commutes.

A

P

X X

f g

φ

k◦f̂h◦f̂

It follows, then, that ψ := f̂ ◦ φ is a span morphism from (A, f, g) to (B, h, k),
since the diagram

A

B

X X

f g

ψ

kh

commutes.
The “if” part. Assume there is a span morphism ψ from (A, f, g) to (B, h, k).

Than is, ψ is such that the diagram

A

B

X X

f g

ψ

kh

commutes, and, in particular,
f = h ◦ ψ (3.40)

and
g = k ◦ ψ. (3.41)
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Since h is a monomorphism and we have (3.40), the square in the following diagram
is a pullback.

A

A B

X X Y

idA ψ⌟

ff h k

Thus,

[B, h, k] • [A, f, g] = [B, h, k] • [A, f, f ] = [A, f ◦ idA, k ◦ ψ],

and so, by (3.41),
[B, h, k] • [A, f, g] = [A, f, g].

Therefore,
[A, f, g] ≤ [B, h, k].

Definition 3.4.14. Let C be a restriction category. A morphism f : X → Y in C is said
to be a total morphism if f = idX .

Proposition 3.4.15. Let C be a category with pullbacks. The total morphisms of parC

are the global morphisms.

Proof. Clearly, if [X, idX , f ] is a global morphism in parC then

[X, idX , f ] = [X, idX , idX ],

so it is a total morphism.
On the other hand, let [A, f, g] : X → Y be a total morphism in parC . Then

[A, f, f ] = [A, f, g] = [X, idX , idX ].

Thus, (X, idX , idX) ∼= (A, f, f), so there exists an isomorphism φ : X → A such
that the following diagram commutes.

X

A

X X

idX idX

φ

f f
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Hence, φ is an isomorphism such that the diagram

X

A

X Y

idX g◦φ

φ

f g

commutes, and so (A, f, g) ∼= (X, idX , g ◦ φ), and, therefore

[A, f, g] = [X, idX , g ◦ φ],

so [A, f, g] is a global morphism.

Definition 3.4.16. Let C and D be restriction categories. A restriction functor from
C to D is a functor F : C → D satisfying

F (f) = F (f)

for all morphisms f in C .

Proposition 3.4.17. Let F : C → D be a restriction functor. If f ≤ g in HomC (X, Y ),
then

F (f) ≤ F (g)

is HomD(F (X), F (Y )).

Proof. Since f ≤ g, we have f = g ◦ f ; Therefore, since F is a restriction functor it follows
that

F (f) = F (g ◦ f) = F (g) ◦ F (f) = F (g) ◦ F (f),

and so we have F (f) ≤ F (g), as desired.

Proposition 3.4.18. Let C and D be categories with pullbacks and F : C → D a functor
that preserves pullbacks. Then the induced functor F : parC → parD is a restriction
functor.

Proof. Let [A, f, g] ∈ parC (X, Y ). Then

F ([A, f, g]) = F ([A, f, f ]) = [F (A), F (f), F (f)] = [F (A), F (f), F (g)] = F ([A, f, g]),

so F preserves the restriction structure, as desired.
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3.5 INVERSE CATEGORIES
Definition 3.5.1. Let C be a category. We say C is an inverse category [19]1 if for each
morphism f ∈ HomC (X, Y ) there exists a unique morphism f ∗ ∈ HomC (Y,X), called the
inverse2 of f , satisfying

f ◦ f ∗ ◦ f = f

and
f ∗ ◦ f ◦ f ∗ = f ∗.

Remark 3.5.2. The monoid of endomorphisms of an object X in a locally small inverse
category C is an inverse monoid, where the inverse of f ∈ EndC (X) is its inverse f ∗ in C .

Proposition 3.5.3. Let C be an inverse category. Then for each morphism f in C we
have f = (f ∗)∗.

Proof. The proof is analogous to the proof of Proposition 2.3.5.

Just like idempotents are important elements in an inverse monoid (recall Defini-
tion 2.3.6), they also manifest great importance in inverse categories.

Definition 3.5.4. Let C be a category and X ∈ C . We denote by E(X) the set
E(EndC (X)), formed by the idempotent elements of the monoid EndC (X). A morphism f

in C is an idempotent morphism if f ∈ E(X) for some X ∈ C .

The following proposition could be proved in a similar way to Proposition 2.3.10,
but we opted for another proof using

Proposition 3.5.5. Let C be a category. Then C is an inverse category if and only if it
satisfies the following.

(1) For each f ∈ HomC (X, Y ) there exists a (not necessarily unique) morphism g ∈
HomC (Y,X) satisfying

f ◦ g ◦ f = f. (3.42)

(2) For each X ∈ C the elements of E(X) commute in EndC (X).

Proof. The proof is analogous to the proof of Proposition 2.3.10.

Definition 3.5.6. Let C be a restriction category. We define inv(C ) to be the subclass
of the class of morphisms of C formed by the morphisms f : X → Y in C such that there
1 Most articles that deal with inverse categories reference [14]. However, we could not find a way to

access this article.
2 This is not the standard inverse of the morphism in the category. However, it is worth noting that

when f is an isomorphism we have f∗ = f−1.
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exists a morphism g : Y → X in C satisfying

f = g ◦ f and g = f ◦ g.

Remark 3.5.7. Observe that the morphism g in Definition 3.5.6 belongs to inv(C ) by
symmetry.

Proposition 3.5.8. Let C be a restriction category. Then inv(C ) is a subcategory of C .

Proof. The identity morphism of each object in C is a morphism in inv(C ) by Proposi-
tion 3.4.7. We must then verify that the composition of morphisms in inv(C ) is still a
morphism in inv(C ).

Indeed, let f : X → Y and f ′ : Y → Z be morphisms in inv(C ). Let g : Y → X

and g′ : Z → Y be morphisms in C (and, thus, in inv(C ), by Remark 3.5.7) such that

f = g ◦ f, g = f ◦ g, f ′ = g′ ◦ f ′ and g′ = f ′ ◦ g′. (3.43)

Then observe that, by (R1)–(R4) and (3.43),

g ◦ g′ ◦ f ′ ◦ f = g ◦ f ′ ◦ f = g ◦ f ◦ f ′ ◦ f = f ◦ f ′ ◦ f = f ′ ◦ f ◦ f = f ′ ◦ f ◦ f = f ′ ◦ f

and

f ′ ◦ f ◦ g ◦ g′ = f ′ ◦ g ◦ g′ = f ′ ◦ g′ ◦ g ◦ g′ = g′ ◦ g ◦ g′ = g ◦ g′ ◦ g′ = g ◦ g′ ◦ g = g ◦ g′.

Thus, f ′ ◦f is a morphism in inv(C ), and, thus, inv(C ) is a subcategory of C .

Definition 3.5.9. Let C be a category. The core groupoid of C is the subcategory of
C whose objects are the objects of C and whose morphisms are the isomorphisms in C .

Example 3.5.10. If C is a category with the trivial restriction structure, then inv(C ) is
the core groupoid of C .

We will verify that inv(C ) is an inverse category by using Proposition 3.5.5. To
do so, we have the following lemma.

Lemma 3.5.11. Let C be a restriction category and e an idempotent morphism of C . If
e ∈ inv(C ), then e = e.

Proof. Let e ∈ EndC (X) be an idempotent morphism of C in inv(C ), and let f ∈ EndC (X)
be a morphism such that

e = f ◦ e (3.44)

and
f = e ◦ f. (3.45)
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By (R1) and (R4) and the fact that e is an idempotent morphism, observe that

e ◦ e = e ◦ e ◦ e = e ◦ e = e. (3.46)

And by (R1) and (3.44) and (3.45), observe that

f ◦ e = e ◦ f ◦ e = e ◦ e = e. (3.47)

Then, by (R1) and (R2) and (3.44), (3.45) and (3.47),

e = e ◦ e = e ◦ e ◦ f ◦ e = e ◦ f ◦ e ◦ e = e ◦ e ◦ f ◦ f ◦ e ◦ e = e ◦ f ◦ f ◦ e

= f ◦ e = e ◦ f = f ◦ e ◦ e ◦ f = f ◦ e ◦ f = f ◦ f = f.

Thus, by (3.44),
e = f ◦ e = e ◦ e = e,

as desired.

Proposition 3.5.12. Let C be a restriction category. Then inv(C ) is an inverse category,
where the inverse of a morphism f in inv(C ) is the morphism g in C satisfying

f = g ◦ f and g = f ◦ g.

Proof. We will verify items (1) and (2) of Proposition 3.5.5.
To this end, let f : X → Y be a morphism in inv(C ). Then there exists a

morphism g : Y → X in C (and in inv(C ), by Remark 3.5.7) such that

f = g ◦ f and g = f ◦ g. (3.48)

Now, by (3.48) and (R1), g satisfies

f ◦ g ◦ f = f ◦ f = f and g ◦ f ◦ g = g ◦ g = g, (3.49)

so Proposition 3.5.5 (1) follows.
To verify Proposition 3.5.5 (2), let e, f ∈ Hominv(C )(X,X) be idempotent mor-

phisms. By Lemma 3.5.11, e = e and f = f . So, by (R2),

e ◦ f = e ◦ f = f ◦ e = f ◦ e.

Thus, idempotent morphisms commute in inv(C ).
Therefore, by Proposition 3.5.5, inv(C ) is an inverse category.

Definition 3.5.13. Let C be a category with pullbacks. We define isoC as the inverse
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category inv(parC ).

Proposition 3.5.14. Let C be a category with pullbacks. The morphisms in isoC are
precisely the isomorphism classes [A, f, g] in parC such that g is a monomorphism in C .

The inverse of a morphism [A, f, g] in isoC is the isomorphism class

[A, f, g]∗ = [A, g, f ].

Proof. Let [A, f, g] be an isomorphism class in parC (X, Y ) such that g is a monomorphism.
Observe that since g is a monomorphism, the diagram

A

A A

Y

idA idA⌟

g g

is a pullback, so [A, g, f ] • [A, f, g] is the isomorphism class represented by the outermost
partial morphism in the following diagram.

A

A A

X Y X

idA idA⌟

gf g f

Thus, we have

[A, g, f ] • [A, f, g] = [A, f, f ] = [A, f, g].

Similarly, we have

[A, f, g] • [A, g, f ] = [A, g, g] = [A, g, f ],

so, by Definition 3.5.6, [A, f, g] ∈ isoC .
Now let [A, f, g] ∈ isoC (X, Y ). By Definition 3.5.6, there exists an isomorphism

class [B, h, k] ∈ par C (Y,X) such that

[A, f, g] = [B, h, k] • [A, f, g] (3.50)

and
[B, h, k] = [A, f, g] • [B, h, k]. (3.51)
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By (3.50), there exists an isomorphism φ such that the following diagram, whose
square is a pullback, is commutative.

A

P

A B

X Y X

f f

φ

ĥ ĝ⌟

gf h k

(3.52)

And by (3.51) there exists an isomorphism ψ such that the following diagram,
whose square is a pullback, is commutative.

B

Q

B A

Y X Y

h h

ψ

f̂ k̂⌟

kh f g

(3.53)

By the commutativity of (3.52), we have

f ◦ ĥ ◦ φ = f,

so, since f is a monomorphism, ĥ ◦ φ = idA. Thus, also by the commutativity of (3.52),
we get

h ◦ ĝ ◦ φ = g ◦ ĥ ◦ φ = g ◦ idA = g. (3.54)

Since (3.53) commutes, we have

g ◦ k̂ ◦ ψ = h. (3.55)

By (3.54) and (3.55), it follows that

h = h ◦ ĝ ◦ φ ◦ k̂ ◦ ψ,

so, since h is a monomorphism,

ĝ ◦ φ ◦ k̂ ◦ ψ = idB. (3.56)
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A similar analysis yields

k̂ ◦ ψ ◦ ĝ ◦ φ = idA. (3.57)

Thus, by (3.56) and (3.57), ĝ ◦ φ is an isomorphism in C . Since φ is an isomorphism, it
then follows that so is ĝ. Therefore, by (3.54), since ĝ and φ are isomorphisms and h is a
monomorphism, g is a monomorphism, as desired.
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4 PARTIAL ACTIONS ON OBJECTS IN
CATEGORIES WITH PULLBACKS

We begin the discussion of partial actions in this chapter. Section 4.1 is a review
of partial actions of monoids (and groups) on sets, while Section 4.2 relates such partial
actions with partial morphisms in the category of sets.

Inspired by this relationship between partial actions and partial morphisms, we
introduce in Section 4.3 the partial actions of monoids on objects in categories with
pullbacks, as well as the corresponding strong partial actions and global actions. There we
show that many notions of partial action seen in the literature are covered by this concept.
In Section 4.4 we give the appropriate definition of a morphism between these concepts,
along with the corresponding categories that come with it.

Finally, in Section 4.5 we study the case in which the monoid is a group, showing
equivalent descriptions of a strong partial action in this situation.

For the remainder of this chapter, if not stated otherwise, M will be a monoid
with multiplication µ : M ×M → M and identity e.

4.1 PARTIAL MONOID ACTIONS ON SETS
Throughout this and the following section, X and Y will be sets, if not otherwise

stated.
Recall that a transformation of X is a map from X to X, and the set TX of all

transformations of X is a monoid under the composition of maps.

Definition 4.1.1. An action of M on X is a monoid homomorphism from M to TX .

Whenever α is an action of M on X, we will usually denote the map α(m) : X → X

by simply αm.
Taking an approach similar to that of [12], we will define partial actions of a

monoid in terms of partial action data.

Definition 4.1.2. A partial action datum of M on X is a family of maps {αm : domαm →
X}m∈M where domαm ⊆ X, for all m ∈ M .

Before defining a partial action, observe that the actions of a monoid can be seen
as partial action data in the following way.

Proposition 4.1.3. There is a one-to-one correspondence between the actions of M on
X and the partial action data {αm}m∈M of M on X satisfying
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(GA1) αe = idX ,

(GA2) domαm = X for all m ∈ M and

αm ◦ αn = αnm, (4.1)

for all m,n ∈ M .

Proof. To each action α : M → TX we associate the partial action datum {α(m)}m∈M . Ob-
serve that {α(m)}m∈M satisfies (GA1) because α preserves the identity and satisfies (GA2)
because it is a map with values in TX and it preserves the product of M .

And to each partial action datum {αm}m∈M satisfying (GA1) and (GA2) we
associate the map α : M → TX where α(m) = αm for each m ∈ M .

Observe that each αm is indeed a transformation in TX because domαm = X,
by (GA2). Then (GA1) states that α preserves the identity and (GA2) that α preserves
the composition. Hence, α is a monoid homomorphism, and, thus, an action.

It is then a straightforward verification that the two associations are inverse to
one another, and so we have a one-to-one correspondence, as desired.

We will then interchange the definition of a monoid action with that of a partial
action datum satisfying (GA1) and (GA2).

A partial action of a monoid is, in a way, a generalization of the concept of an
action of a monoid, where the elements of M do not have to interact with every element
of X.

Definition 4.1.4. A partial action of M on X is a partial action datum {αm}m∈M of M
on X, such that:

(PA1) domαe = X and αe = idX ;

(PA2) α−1
m (domαn) ⊆ domαnm, for all m,n ∈ M ;

(PA3) αn ◦ αm = αnm on α−1
m (domαn), for all m,n ∈ M .

Observe that axiom (PA3) makes sense because of axioms (PA2).

Remark 4.1.5. Axiom (PA1) is equivalent to [11, Definition 2.2 (PA1)] and axioms (PA2)
and (PA3) together are equivalent to [11, Definition 2.2 (PA2’)].

To distinguish an action of a monoid from a partial action, we may also call the
former a global action.

Definition 4.1.6. A partial action {αm}m∈M of M on a set X is said to be strong if
instead of (PA2) we have the following stronger condition:
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(PA2’) α−1
m (domαn) = domαnm ∩ domαm, for all m,n ∈ M .

Remark 4.1.7. The concept of a strong partial monoid action from Definition 4.1.6 is
equivalent to that of [11, Definition 2.4] and [17, Definition 2.3] (although in the latter
definition it is called just a partial action).

Example 4.1.8. Let M = (N,+) and X = N. Then the partial action datum {αn}n∈N is
a partial action of M on X, where for each n ∈ N,

domαn = {z ∈ N : z ≤ n} and αn(z) = z + n,

for all z ∈ domαn. Moreover, {αn}n∈N is not a strong partial action.

Example 4.1.9. Let M = (N,+) and X = Z−. Then the partial action datum {αn}n∈N

is a strong partial action of M on X, where for each n ∈ N,

domαn = {z ∈ Z− : z + n ≤ 0} and αn(z) = z + n,

for all z ∈ domαn.

Proposition 4.1.10. Let α be a global action of M on X. Then the partial action datum
{αm}m∈M of M on X is a strong partial action.

Proof. Since α is a monoid homomorphism, it preserves the identity of M , and so {αm}m∈M

satisfies (PA1).
Because αm = α(m) is a transformation of X, domαm = X for all m ∈ M ,

so (PA2’) follows trivially.
Finally, {αm}m∈M satisfies (PA3) because α preserves the operation of M .

We may, in fact, construct many strong partial actions from global actions, by
restricting them to subsets.

Definition 4.1.11. Let β be a global action of M on a set Y and X ⊆ Y . The restriction
of β to X is the partial action datum α of M on X, where

α = {αm : domαm = X ∩ β−1
m (X) → X}m∈M , αm(x) = βm(x),∀x ∈ domαm.

Proposition 4.1.12. Let β be a global action of M on a set Y and X ⊆ Y . The restriction
α of β to X is a strong partial action.

Proof. Since β is a global action, βe = idY , so

domαe = X ∩ β−1
e (X) = X ∩X = X

and αe(x) = βe(x) = x for all x ∈ X, so α satisfies (PA1).
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To verify (PA2’), let m,n ∈ M . Let x ∈ α−1
m (domαn). Clearly, x ∈ domαm.

Furthermore, we have

βnm(x) = βn ◦ βm(x) = βn(βm(x)) = βn(αm(x)),

so, since αm(x) ∈ domαn, βn(αm(x)) = αn(αm(x)). In particular, it follows that βnm(x) ∈
X, so x ∈ β−1

nm(X). Thus, x ∈ X ∩ β−1
nm(X) = domαnm. Therefore, α−1

m (domαn) ⊆
domαnm ∩ domαm.

Now let x ∈ domαnm ∩ domαm. Observe that

βn(αm(x)) = βn(βm(x)) = βn ◦ βm(x) = βnm(x) ∈ X,

since x ∈ domαnm. Thus, αm(x) ∈ X ∩ β−1
n (X) = domαn. Therefore, it follows that

x ∈ α−1
m (domαn), so domαnm ∩ domαm ⊆ α−1

m (domαn).
Hence, α−1

m (domαn) = domαnm ∩ domαm, and, thus, α satisfies (PA2’).
Finally, let x ∈ α−1

m (domαn). Then

αn(αm(x)) = βn(βm(x)) = βn ◦ βm(x) = βnm(x) = αnm(x),

so α satisfies (PA3), as desired.

Example 4.1.9 is an example of a strong partial action that comes from the
restriction of a global action. Indeed, let β be the global action of N on Z given by
βn(z) = z + n for all n ∈ N and z ∈ Z. Then the partial action α in Example 4.1.9 is the
restriction of β to Z−.

Megrelishvili and Schröder [17], and, later on, Hollings [11], proved a converse
of Proposition 4.1.12. That is, every strong partial action of a monoid on a set can be
obtained as a restriction of some global action. In fact, they showed, even more, that, in a
way, each strong partial action has a minimal global action that restricts to it.

In Proposition 6.1.3 we will also prove this fact, by using the machinery we develop
in Chapter 5.

The natural concept of a morphism between partial action data is the following.

Definition 4.1.13. Let M be a monoid and X and Y sets. Let α = {αm}m∈M and
β = {βm}m∈M be partial action data of M on X and Y , respectively. A datum morphism
from α to β is a map f : X → Y such that

(DM1) f(domαm) ⊆ dom βm, for all m ∈ M ;

(DM2) βm ◦ f = f ◦ αm on domαm for all m ∈ M .
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4.1.1 PARTIAL GROUP ACTIONS ON SETS

Throughout this section, let G be a group with identity e. A partial action of a
group on a set is defined in [12] in terms of partial action data as follows.

Definition 4.1.14. A partial action of G on X is a partial action datum {αg}g∈G of G
on X, such that:

(PGA1) domαe = X and αe = idX ;

(PGA2) αg(domαg ∩ domαh−1) ⊆ domαg−1 ∩ domα(gh)−1 , for all g, h ∈ G;

(PGA3) αh ◦ αg = αhg on domαg ∩ domαhg, for all g, h ∈ G.

Observe that axiom (PGA3) makes sense because of (PGA2). Indeed, by (PGA2),
for each g, h ∈ G we have

αg(domαg ∩ domαhg) = αg(domαg ∩ domα(g−1h−1)−1) ⊆ domαg−1 ∩ domα(gg−1h−1)−1

= domαg−1 ∩ domαh ⊆ domαh.

Remark 4.1.15. Definition 4.1.14 is equivalent to the classical definition of a partial
action of a group on a set, such as the definition found in [7, Definition 1.1].

Proposition 4.1.16. Let {αg}g∈G be a partial action of G on X. Then

αg(domαg) ⊆ domαg−1 (4.2)

and αg−1 ◦ αg = idX on domαg for all g ∈ G.

Proof. Let g ∈ G. By taking h = e on (PGA2) we obtain

αg(domαg) = αg(domαg ∩ domαe−1) ⊆ domαg−1 ∩ domα(ge)−1 = domαg−1 ,

so (4.2) follows.
Then the fact that αg−1 ◦αg = idX on domαg follows by (PGA1) and (PGA3).

Corollary 4.1.17. Let {αg}g∈G be a partial action of G on X. Then αg is an injective
map for all g ∈ G.

Proof. Let g ∈ G and x, y ∈ domαg such that αg(x) = αg(y). Then by Proposition 4.1.16

x = idX(x) = αg−1 ◦ αg(x) = αg−1 ◦ αg(y) = idY (y) = y,

so the injectivity of αg follows.
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The following results will relate a partial action of a group, in the sense of
Definition 4.1.14, with a (strong) partial action of the group seen as a monoid, in the sense
of Definitions 4.1.4 and 4.1.6.

Lemma 4.1.18. Let {αg}g∈G be a partial action of G on X. Then we have

αg(domαg ∩ domαh−1) = domαg−1 ∩ domα(gh)−1 ,

for all g, h ∈ G.

Proof. Let g, h ∈ G. The inclusion αg(domαg∩domαh−1) ⊆ domαg−1 ∩domα(gh)−1 follows
from (PGA2), so it suffices to verify that

domαg−1 ∩ domα(gh)−1 ⊆ αg(domαg ∩ domαh−1).

Now, by (PGA2),

αg−1(domαg−1 ∩ domα(gh)−1) ⊆ domαg ∩ domα(g−1gh)−1 = domαg ◦ domαh−1 .

Therefore, by Proposition 4.1.16,

domαg−1 ∩ domα(gh)−1 = idX(domαg−1 ∩ domα(gh)−1) = αg ◦ αg−1(domαg−1 ∩ domα(gh)−1)
⊆ αg(domαg ◦ domαh−1),

as desired.

Proposition 4.1.19. Let {αg}g∈G be a partial action datum of G on X. Then the following
are equivalent.

(1) {αg}g∈G is a partial action of G on X;

(2) {αg}g∈G is a partial action of G seen as a monoid on X and

αg(domαg) ⊆ domαg−1 (4.3)

for all g ∈ G;

(3) {αg}g∈G is a strong partial action of G seen as a monoid on X.

Proof. Let α = {αg}g∈G.
(1) ⇒ (2). Suppose α is a partial action of G on X. Then (4.3) follows by

Proposition 4.1.16. Let us verify that α satisfies (PA1)–(PA3).
Clearly, (PGA1) implies (PA1).
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Now, to verify (PA2), let g, h ∈ G. Then by Lemma 4.1.18 and (4.3) we have

αg(α−1
g (domαh)) ⊆ domαg−1 ∩ domαh = domαg−1 ∩ domα(h−1)−1

= domαg−1 ∩ domα(gg−1h−1)−1 = domαg−1 ∩ domα(g(hg)−1)−1

= αg(domαg ∩ domα((hg)−1)−1) = αg(domαg ∩ domαhg).

By Corollary 4.1.17, αg is an injective map. Therefore we have

α−1
g (domαh) ⊆ domαg ∩ domαhg ⊆ domαhg.

Hence, α satisfies (PA2).
Axiom (PA3) then follows by (PGA3) because of (PA2).
(2) ⇒ (3). Suppose α is a partial action of the monoid G on X. Since α

satisfies (PA1) and (PA3), all that remains is to verify (PA2’).
Let g, h ∈ G. Clearly, α−1

g (domαh) ⊆ domαg, so

α−1
g (domαh) ⊆ domαhg ∩ domαg

by (PA2).
On the other hand, let x ∈ domαhg ∩ domαg. By (4.3), since x ∈ domαg,

x ∈ α−1
g (domαg−1). Therefore, by (PA1) and (PA3) we have

αg−1(αg(x)) = αe(x) = x. (4.4)

Since x ∈ domαhg, by (4.4) and (PA2) we have

αg(x) ∈ α−1
g−1(domαhg) ⊆ domαhgg−1 = domαh.

Thus, x ∈ α−1
g (domαh). Hence,

domαhg ∩ domαhg ∩ domαg ⊆ α−1
g (domαh).

Therefore, (PA2’) follows, and α is a strong partial action, as desired.
(3) ⇒ (1). Suppose α is a strong partial action of the monoidG onX. Then (PGA1)

follows by (PA1).
For (PGA2), let g, h ∈ G. Then let x ∈ domαg ∩ domαh−1 . By (PA2’),

x ∈ domαg∩domαh−1 = domαg∩domαh−1g−1g = domαg∩domα(gh)−1g = α−1
g (domα(gh)−1).
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Thus, αg(x) ∈ domα(gh)−1 , so

αg(domαg ∩ domαh−1) ⊆ domα(gh)−1 . (4.5)

Also, by (PA2’) and (PA1) we have

αg(domαg) = αg(domαg ∩ domαe) = αg(domαg ∩ domαg−1g)
= αg(α−1

g (domαg−1)) ⊆ domαg−1 ,

so
αg(domαg ∩ domαh−1) ⊆ αg(domαg) ⊆ domαg−1 . (4.6)

Therefore, (PGA2) follows by (4.5) and (4.6).
Then (PGA3) follows by (PA3), because of (PA2’). Hence, α is a partial action in

the sense of Definition 4.1.14, as desired.

4.2 PARTIAL MORPHISMS AND PARTIAL ACTION DATA
Proposition 4.2.1. There exists a bijection between

(1) the set of partial action data of M on X;

(2) parSet(M ×X,X);

(3) the set of maps from M to parSet(X,X).

Proof. (1) ↔ (2). Given {αm}m∈M a partial action datum of M on X, let

M •X := {(m,x) ∈ M ×X : x ∈ domαm}.

Let α : M • X → X be given by α(m,x) = αm(x) and ι be the inclusion of M • X into
M ×X.

We associate to {αm}m∈M the isomorphism class [M •X, ι, α] ∈ parSet(M×X,X),
whose representative is illustrated as follows.

M •X

M ×X X

ι α

Given [A, f, g] ∈ parSet(M ×X,X), let (M •X, ι, α) be the unique representative
of [A, f, g] where M • X ⊆ M × X and ι is the corresponding inclusion map, given by
Proposition 3.1.16.
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For each m ∈ M , let

domαm := {x ∈ X : (m,x) ∈ M •X}

and αm : domαm → X be given by αm(x) = α(m,x). We associate to [A, f, g] the partial
action datum {αm}m∈M of M on X.

It is a straightforward verification that the two associations are inverse to one
another, and, thus, induce bijections between (1) and (2).

(1) ↔ (3). Given a partial action datum {αm}m∈M of M on X, let ιm be the
inclusion of domαm into X.

We associate to {αm}m∈M the map α : M → parSet(X,X) given by α(m) =
[domαm, ιm, αm]. The representative for α(m) is illustrated as follows.

domαm

X X

ιm αm

Given α : M → parSet(X,X), for each m ∈ M let (domαm, ιm, αm) be a repre-
sentative of the isomorphism class α(m) where domαm ⊆ X and ιm is the corresponding
inclusion map, given by Proposition 3.1.16.

We associate to α the partial action datum {αm}m∈M of M on X.
It is also a simple verification that these associations are inverse to each other and

induce a bijection between (1) and (3).

Proposition 4.2.2. Let {αm}m∈M be a partial action datum of M on X. The following
are equivalent.

(1) {αm}m∈M satisfies (PA1);

(2) The associated isomorphism class [M •X, ι, α] from Proposition 4.2.1 is such that

[X, η, idX ] ≤ [M •X, ι, α],

where η : X → M ×X is given by

η(x) = (e, x);

(3) The associated map α : M → parSet(X,X) from Proposition 4.2.1 is such that

α(e) = [X, idX , idX ].

Proof. (1) ⇒ (2). Assume {αm}m∈M satisfies (PA1). Then domαe = X and αe = idX .
Then the map φ : X → M •X given by φ(x) = (e, x) is well defined and the diagram
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X

M •X

M ×X X

η idX

φ

ι α

commutes, because
ι(φ(x)) = ι(e, x) = (e, x) = η(x)

and
α(φ(x)) = α(e, x) = αe(x) = x = idX(x),

for all x ∈ X.
Thus, φ is a span morphism from (X, η, idX) to (M • X, ι, α), so (2) follows by

Proposition 3.4.13.
(2) ⇒ (1). Assume that

[X, η, idX ] ≤ [M •X, ι, α].

By Proposition 3.4.13, there exists a span morphism φ from (X, η, idX) to (M •
X, ι, α). That is, a morphism from X to M •X such that the following diagram commutes.

X

M •X

M ×X X

η idX

φ

ι α

(4.7)

By the commutativity of the left triangle of (4.7), for all x ∈ X we have

φ(x) = ι(φ(x)) = η(x) = (e, x). (4.8)

In particular, it follows that (e, x) ∈ M •X = {(m,x) ∈ M ×X : x ∈ domαm}
for all x ∈ X, so domαe = X.

By (4.8) and by the commutativity of the right triangle of (4.7) it follows that

αe(x) = α(e, x) = α(φ(x)) = idX(x)

for all x ∈ X, so αe = idX .
Thus, (1) follows.
(1) ⇒ (3). Suppose {αm}m∈M satisfies (PA1), so domαe = X and αe = idX .

Since the associated map α : M → parSet(X,X) is such that, for all g ∈ G,
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α(g) = [domαg, ιg, αg], where ιg is the corresponding inclusion map of domαg into X, it
follows that

α(e) = [domαe, ιe, αe] = [X, idX , idX ],

and so we have (3).
(3) ⇒ (1). Assume (3). Since by definition of α we have

α(e) = [domαe, ιe, αe]

and by hypothesis we have
α(e) = [X, idX , idX ],

it follows that
(domαe, ιe, αe) ∼= (X, idX , idX).

Thus, there exists an isomorphism φ from (domαe, ιe, αe) to (X, idX , idX). Since
φ is a span morphism, the following diagram commutes.

domαe

X

X X

ιe αe

φ

idX idX

In particular, we have
ιe = φ = αe. (4.9)

By (4.9), since φ is an isomorphism, so is ιe. Thus, since ιe is an inclusion of a
subset of X on X, it follows that domαe = X and ιe = idX . It then also follows by (4.9)
that αe = idX . Therefore, we have (1).

Remark 4.2.3. Let {αm}m∈M a partial action datum of M on X and [M • X, ι, α] its
associated isomorphism class from Proposition 4.2.1. In the following propositions, we will
at times denote [M •X, ι, α] simply by α (recall Remark 3.1.18), and by idM ×α we mean
the isomorphism class represented by the partial morphism

M × (M •X)

M ×M ×X M ×X,

idM ×ι idM ×α

and by µ× idX we mean the isomorphism class represented by the partial morphism
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M ×M ×X

M ×M ×X M ×X.

idM×M×X µ×idX

Proposition 4.2.4. Let {αm}m∈M be a partial action datum of M on X. The following
are equivalent.

(1) {αm}m∈M satisfies (GA2);

(2) The associated isomorphism class [M • X, ι, α] from Proposition 4.2.1 is a global
morphism such that

α • (idM × α) = α • (µ× idX) (4.10)

in parSet(M ×M ×X,X);

(3) The associated map α : M → parSet(X,X) from Proposition 4.2.1 is such that α(m)
is a global morphism for all m ∈ M and

α(n) • α(m) = α(nm), (4.11)

for all m,n ∈ M .

Proof. (1) ⇔ (2). First we will verify that domαm = X for all m ∈ M if and only if
[M •X, ι, α] is a global morphism.

Indeed, if domαm = X for all m ∈ M , we have

M •X = {(m,x) ∈ M ×X : x ∈ domαm} = {(m,x) ∈ M ×X : x ∈ X} = M ×X

and ι = idM×X , so
[M •X, ι, α] = [M ×X, idM×X , α]

is a global morphism.
And if [M • X, ι, α] is a global morphism, by Proposition 3.2.17 it follows that

M •X = M ×X and ι = idM×X . Thus, given m ∈ M and x ∈ X we have (m,x) ∈ M •X,
so x ∈ domαm, so it follows that domαm = X.

In this case, since M •X = M ×X, we have M × (M •X) = M ×M ×X. Thus,
α• (idM ×α) and α• (µ×X) are α◦ (idM ×α) and α◦ (µ× idX), seen as global morphisms.
So (4.10) is equivalent to the commutativity of the following diagram.

M ×M ×X M ×X

M ×X X

µ×idX

idM ×α

α

α

(4.12)
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Now, for all m,n ∈ M and x ∈ X we have

α ◦ (idM × α)(n,m, x) = α(n, αm(x)) = αn(αm(x)) (4.13)

and
α ◦ (µ× idX)(n,m, x) = α(nm, x) = αnm(x), (4.14)

so (4.10) holds if and only if αn ◦ αm = αnm for all m,n ∈ M , and we have what was
desired.

(1) ⇔ (3). Let m ∈ M . Since ιm is the inclusion of domαm into X, by Proposi-
tion 3.2.17 we have that domαm = X if and only if α(m) = [domαm, ιm, αm] is a global
morphism. In this case, α(m) can be identified with αm.

Thus, for all m,n ∈ M , α(n) • α(m) is just αn ◦ αm. Hence, (4.11) is equivalent
to (4.1), and we have what was desired.

Proposition 4.2.5. Let {αm}m∈M be a partial action datum of M on X. The following
are equivalent.

(1) {αm}m∈M satisfies (PA2) and (PA3);

(2) The associated isomorphism class [M •X, ι, α] from Proposition 4.2.1 is such that

α • (idM × α) ≤ α • (µ× idX)

in parSet(M ×M ×X,X);

(3) The associated map α : M → parSet(X,X) from Proposition 4.2.1 is such that

α(n) • α(m) ≤ α(nm),

for all m,n ∈ M .

Proof. (1) ⇔ (2). Denote (idM × α)−1(M •X) by M • (M •X), i.e.,

M • (M •X) := {(n,m, x) ∈ M ×M ×X : x ∈ α−1
m (domαn)}. (4.15)

Then the square in the diagram

M • (M •X)

M × (M •X) M •X

M ×M ×X M ×X X

ιM•(M•X) idM •α⌟

idM ×ι idM ×α ι α

(4.16)
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is a pullback, where ιM•(M•X) is the inclusion of M • (M • X) into M × (M • X) and
idM • α is given by

(idM • α)(n,m, x) = (n, αm(x)). (4.17)

Observe that if (n,m, x) ∈ M • (M •X) then x ∈ α−1
m (domαn), so αm(x) ∈ domαn and

(n, αm(x)) is an element of M •X.
Thus, we have

α • (idM × α) = [M • (M •X), (idM × ι) ◦ ιM•(M•X), α ◦ (idM • α)]. (4.18)

Now denote (µ× idX)−1(M •X) by (M ×M) •X, i.e.,

(M ×M) •X := {(n,m, x) ∈ M ×M ×X : x ∈ domαnm}. (4.19)

Then the square in the diagram

(M ×M) •X

M ×M ×X M •X

M ×M ×X M ×X X

ι(M×M)•X µ•idX⌟

idM×M×X µ×idX ι α

(4.20)

is a pullback, where ι(M×M)•X is the inclusion of (M × M) • X into M × M × X and
µ • idX is given by

(µ • idX)(n,m, x) = (nm, x). (4.21)

Observe that if (n,m, x) ∈ (M ×M) •X, then x ∈ domαnm, so (nm, x) ∈ M •X.
Thus,

α • (µ× idX) = [(M ×M) •X, ι(M×M)•X , α ◦ (µ • idX)]. (4.22)

Notice that {αm}m∈M satisfies (PA2) if and only if M • (M •X) ⊆ (M ×M) •X
(recall (4.15) and (4.19)). In this case, {αm}m∈M satisfies (PA3) if and only if

α ◦ (idM • α) = α ◦ (µ • idX) on M • (M •X). (4.23)

Indeed, observe that for all (n,m, x) ∈ M • (M •X), by (4.17),

α ◦ (idM • α)(n,m, x) = α(n, αm(x)) = αn(αm(x)),

and, by (4.21),
α ◦ (µ • idX) = α(nm, x) = αnm(x),
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so (4.23) if and only if
αn ◦ αm(x) = αnm(x)

for all n,m ∈ M and x ∈ α−1
m (domαn), which is precisely (PA3).

Conversely, observe that by (4.18) and (4.22) and Proposition 3.4.13 we have that

α • (idM × α) ≤ α • (µ× idX).

if and only if there is a span morphism from the outermost span of (4.16) to the outermost
span of (4.20).

Thus, to check the equivalence (1) ⇔ (2) it suffices to show that there is a span
morphism from the outermost span of (4.16) to the outermost span of (4.20) if and only if
we have M • (M •X) ⊆ M × (M •X) and (4.23).

Assume that there is a span morphism φ from the outermost span of (4.16) to
the outermost span of (4.20). That is, φ is a morphism such that the following commutes.

M • (M •X)

(M ×M) •X

M ×M ×X X

α◦(idM •α)(idM ×ι)◦ιM•(M•X)

φ

ι(M×M)•X α◦(µ•idX)

(4.24)

Since the morphisms ι(M×M)•X and (idM × ι) ◦ ιM•(M•X) are inclusions, it follows
from the commutativity of the left triangle of (4.24) that M • (M •X) ⊆ (M ×M) •X
and φ is the corresponding inclusion map. In this case, the commutativity of the right
triangle of (4.24) gives us (4.23).

And by assuming that we have M • (M •X) ⊆ M × (M •X) and (4.23), let φ be
the inclusion map of M • (M •X) into M × (M •X). It is then straightforward to check
that φ is such that the diagram (4.24) commutes, completing the proof.

(1) ⇔ (3). Observe that, for each m,n ∈ M , the square in the diagram

α−1
m (domαn)

domαm domαn

X X X

ι̂n α̂m⌟

ιm αm ιn αn

(4.25)

is a pullback, where ι̂n is the inclusion map of α−1
m (domαn) into domαm and α̂m is given

by
α̂m(x) = αm(x),
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for all x ∈ α−1
m (domαn). Thus, the outermost span of (4.25) is a representative of

α(n) • α(m). That is,

α(n) • α(m) = [α−1
m (domαn), ιm ◦ ι̂n, αn ◦ α̂m]. (4.26)

Then, by Proposition 3.4.13, we have that α(n) • α(m) ≤ α(nm) if and only if
there exists a span morphism from (α−1

m (domαn), ιm ◦ ι̂m, αn ◦ α̂m) to (domαm, ιm, αm),
which is to say that there exists a map φ : α−1

m (domαn) → domαnm such that the following
diagram commutes.

α−1
m (domαn)

domαnm

X X

ιm◦ι̂n αn◦α̂m

φ

ιnm αnm

(4.27)

So, for the “only if” part assume (1) and let m,n ∈ M . By (PA2), α−1
m (domαn) ⊆

domαnm, so let φ be the associated inclusion map. It is then immediate that φ is such
that the left triangle of (4.27) commutes, and the commutativity of the right triangle
of (4.27) follows easily from (PA3).

And for the “if” part, assume (3), so for each m,n ∈ M there exists a map φ such
that (4.27) commutes. Then it is easy to see that for each m,n ∈ M the commutativity
of the left triangle of (4.27) implies that α−1

m (domαn) ⊆ domαnm with φ being the
corresponding inclusion map, and that the commutativity of the right triangle of (4.27)
implies that αn ◦ αm = αnm on α−1

m (domαn), so both (PA2) and (PA3) follow.

Proposition 4.2.6. Let {αm}m∈M be a partial action datum of M on X. The following
are equivalent.

(1) {αm}m∈M satisfies (PA2’) and (PA3);

(2) The associated isomorphism class [M •X, ι, α] from Proposition 4.2.1 is such that

α • (idM × α) = α • (µ× idX) • (idM × α) (4.28)

in parSet(M ×M ×X,X);

(3) The associated map α : M → parSet(X,X) from Proposition 4.2.1 is such that

α(n) • α(m) = α(nm) • α(m),

for all m,n ∈ M .
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Proof. (1) ⇔ (2). Denote (M × (M •X)) ∩ ((M ×M) •X) by (M •M) •X, i.e.,

(M •M) •X = {(n,m, x) ∈ M ×M ×X : x ∈ domαnm ∩ domαm}. (4.29)

Then the square in the diagram

(M •M) •X

M × (M •X) (M ×M) •X

M ×X ×X M ×M ×X X

ι̂ ιM•M •idX⌟

idM ×ι idM ×ι ι(M×M)•X α◦(µ•idX)

(4.30)
is a pullback, where ι̂ and ιM•M • idX are inclusion maps. Thus, by (4.22), the outermost
span of (4.30) is a representative of α • (µ× idX) • (idM × α). That is,

α • (µ× idX) • (idM × α) = [(M •M) •X, (idM × ι) ◦ ι̂, α ◦ (µ • idX) ◦ (ιM•M • idX)] (4.31)

Assume (1). In particular we have Proposition 4.2.5 (1), so Proposition 4.2.5 gives
us that

α • (idM × α) ≤ α • (µ× idX).

By Corollary 3.4.11 it then follows that

α • (idM × α) ≤ α • (µ× idX) • (idM × α). (4.32)

By (4.18), (4.31) and (4.32) and Proposition 3.4.13 there is a morphism φ such
that the following diagram commutes.

M • (M •X)

(M •M) •X

M ×M ×X X

α◦(idM •α)(idM ×ι)◦ιM•(M•X)

φ

(idM ×ι)◦̂ι α◦(µ•idX)◦(ιM•M •idX)

(4.33)

Since (idM × ι) ◦ ιM•(M•X) and (idM × ι) ◦ ι̂ are both inclusion maps, by the
commutativity of the left triangle of (4.33) it follows that M • (M •X) ⊆ (M •M) •X
and φ is the corresponding inclusion map.

Let (n,m, x) ∈ (M • M) • X. Then, by (4.29), x ∈ domαnm ∩ domαm. Since
{αm}m∈M satisfies (PA2’), it follows that x ∈ α−1

m (domαn). So, by (4.15), we have
(n,m, x) ∈ M • (M •X). Hence, (M •M) •X ⊆ M • (M •X) and φ is a bijection.
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Since φ is a bijection, an isomorphism in Set, by Proposition 3.1.11 it follows
that the spans in (4.33) are isomorphic. Thus, by (4.18) and (4.31) we have (2).

Now assume (2). In particular, we have Proposition 4.2.5 (2), which is equivalent
to Proposition 4.2.5 (1). It suffices, then, to verify that domαnm ∩ domαm ⊆ α−1

m (domαn)
for all m,n ∈ M .

By (4.18), (4.28) and (4.31) there exists an isomorphism φ such that diagram (4.33)
commutes.

Similar to a previous argument, the commutativity of the left triangle of (4.33)
implies that M • (M •X) ⊆ (M •M) •X and φ is the corresponding inclusion map. Since
φ is an isomorphism in Set, it is a bijection, so we have

M • (M •X) = (M •M) •X. (4.34)

Let m,n ∈ M and x ∈ domαnm ∩ domαm. Then by (4.29) we have (n,m, x) ∈
(M •M) •X. Thus, by (4.34) (n,m, x) ∈ M • (M •X), and, so, by (4.15) it follows that
x ∈ α−1

m (domαn). Therefore, domαnm ∩ domαm ⊆ α−1
m (domαn), as desired.

(1) ⇔ (3). Observe that the square in

domαnm ∩ domαm

domαm domαnm

X X X

ιnm ιm⌟

ιmιm ιnm αnm

(4.35)

is a pullback, where ιm and ιnm are inclusion maps. Thus,

α(nm)•α(m) = [domαnm∩domαm, αnm◦ιm, ιm◦ιnm] = [domαnm∩domαm, αnm◦ιm, ιnm◦ιm],
(4.36)

where the last equality follows by the commutativity of the square in (4.35).
Firstly, assume (1). By Proposition 4.2.5, for all m,n ∈ M we have

α(n) • α(m) ≤ α(nm),

and, thus, by Corollary 3.4.11,

α(n) • α(m) ≤ α(nm) • α(m)

So, by Proposition 3.4.13 and (4.26) and (4.36), for all m,n ∈ M there exists a
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map φ : α−1
m (domαn) → domαnm ∩ domαm such that the following diagram commutes.

α−1
m (domαn)

domαnm ∩ domαm

X X

ιm◦ι̂n αn◦α̂m

φ

ιnm◦ιm αnm◦ιm

(4.37)

Since the left triangle in (4.37) commutes, it follows that φ is the inclusion map of
α−1
m (domαn) into domαnm ∩ domαm. By (PA2’) it follows that φ is, in fact, a bijection.

Thus, since (4.37) commutes, its top and bottom spans are isomorphic, and, so,
by (4.26) and (4.36) we have (3).

Now assume (3). In particular, it follows that α(n) • α(m) ≤ α(nm) • α(m) for
all m,n ∈ M , and, thus, we have (3), so by Proposition 4.2.5 {αm}m∈M satisfies (PA2)
and (PA3). Thus, to show (1), it suffices to verify that

domαnm ∩ domαm ⊆ α−1
m (domαn) (4.38)

for all m,n ∈ M .
Indeed, let m,n ∈ M . Since α(n) • α(m) = α(nm) • α(m), by (4.26) and (4.36)

there exists an isomorphism φ in Set such that (4.37) commutes.
By the commutativity of the left triangle of (4.37) we have that φ is the inclusion

map of α−1
m into domαnm ∩ domαm. Since φ is a bijection, (4.38) follows.

Proposition 4.2.7. Let {αm}m∈M and {βm}m∈M be partial action data of M on X and
Y , respectively, and let f : X → Y be a map. The following are equivalent.

(1) f is a datum morphism from {αm}m∈M to {βm}m∈M ;

(2) f is such that
f • α ≤ β • (idM × f)

in parSet(M × Y, Y ), where [M • X, ι, α] ∈ parSet(M × X,X) and [M • Y, κ, β] ∈
parSet(M × Y, Y ) are the isomorphism classes from Proposition 4.2.1, associated to
{αm}m∈M and {βm}m∈M , respectively;

(3) f is such that
f • α(m) ≤ β(m) • f

for all m ∈ M , where α : M → parSet(X,X) and β : M → parSet(Y, Y ) are the
maps from Proposition 4.2.1, associated to {αm}m∈M and {βm}m∈M , respectively.
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Proof. (1) ⇔ (2). By Proposition 3.2.18,

f • α = [M •X, ι, f ◦ α]. (4.39)

The following diagram illustrates a representative of f • α.

M •X

X Y

f◦αι

Denote (idM × f)−1(M • Y ) by M • f−1(Y ), i.e.,

M • f−1(Y ) = {(m,x) ∈ M ×X : x ∈ f−1(dom βm)}.

Then the square in

M • f−1(Y )

M ×X M • Y

M ×X M × Y Y

̂idM ×fκ̂ ⌟

idM×X idM ×f κ β

is a pullback, where κ̂ is the inclusion map of M • f−1(Y ) into M ×X and ̂idM × f is the
appropriate restriction and corestriction of idM × f , so

β • (idM × f) = [M • f−1(Y ), κ̂, β ◦ ̂idM × f ]. (4.40)

By Proposition 3.4.13 and (4.39) and (4.40), f • α ≤ β • (idM × f) if and only if
there exists a map φ such that the following diagram commutes.

M •X

M • f−1(Y )

X Y

ι f◦α

φ

κ̂ β◦ ̂idM ×f

(4.41)

Let us assume (1), so f satisfies (DM1) and (DM2).
Let (m,x) ∈ M •X. Then x ∈ domαm. By (DM1), it follows that f(x) ∈ dom βm,

so (idM × f)(m,x) = (m, f(x)) ∈ M • Y . Therefore, (m,x) ∈ M • f−1(Y ), and, thus,
M •X ⊆ M • f−1(Y ). Let φ be the associated inclusion map.

It is immediate that φ is such that the left triangle of (4.41) commutes, since it if
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formed by inclusion maps.
Now let (m,x) ∈ M •X. Then

β ◦ ̂idM × f ◦ φ(m,x) = β ◦ ̂idM × f(m,x) = β(m, f(x)) = βm(f(x)). (4.42)

Since (m,x) ∈ M • X, x ∈ domαm, so by (DM2) we have βm(f(x)) = f(αm(x)). Thus,
by (4.42),

β ◦ ̂idM × f ◦ φ(m,x) = f(αm(x)) = f ◦ α(m,x),

so the right triangle of (4.41) commutes.
Thus, since φ is such that (4.41) commutes, we have (2).
Now assume (2), so there exists a map φ such that (4.41) commutes.
The commutativity of the left triangle of (4.41) implies that

M •X ⊆ M • f−1(Y ) (4.43)

and φ is the associated inclusion map.
Let m ∈ M and x ∈ domαm. Then (m,x) ∈ M • X, so by (4.43) (m,x) ∈

M • f−1(Y ), and, thus, x ∈ f−1(dom βm). So, it follows that f(domαm) ⊆ dom βm.
Therefore, f satisfies (DM1).

And by the commutativity of the right triangle of (4.41) it follows that for all
(m,x) ∈ M •X

βm(f(x)) = β(m, f(x)) = β ◦ ̂idM × f ◦ φ(m,x) = f ◦ α(m,x) = f(αm(x)),

so f also satisfies (DM2). Thus, (1) follows.
(1) ⇔ (3). Let m ∈ M . By Proposition 3.2.18,

f • α(m) = [domαm, ιm, f ◦ αm]. (4.44)

The following diagram illustrates a representative of f • α(m).

domαm

X Y

f◦αmιm

Let us denote by κm the inclusion map of dom βm into Y . Then also observe that the
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square in
f−1(dom βm)

X dom βm

X Y Y

κ̂m
f̂⌟

idX f κm βm

(4.45)

is a pullback, where κ̂m is the inclusion map of f−1(dom βm) into X and f̂ is the appropriate
restriction and corestriction of f , so

β(m) • f = [f−1(dom βm), κ̂m, βm ◦ f̂ ]. (4.46)

Thus, by Proposition 3.4.13 and (4.44) and (4.46), f • α(m) ≤ β(m) • f if and
only if there exists a map φ such that the following diagram commutes.

domαm

f−1(dom βm)

X Y

ιm f◦αm

φ

κ̂m βm◦f̂

(4.47)

Assume (1) first and let m ∈ M . Then f satisfies (DM1) and (DM2). By (DM1),
it follows that domαm ⊆ f−1(dom βm), so let φ be the corresponding inclusion map.

Then we can see that the left triangle of (4.47) commutes immediately, and the
right triangle of (4.47) commutes by (DM2). Therefore, f • α(m) ≤ β(m) • f , and, so, (3)
follows.

Now assume (3) and let m ∈ M . Then there exists a map φ such that (4.47)
commutes.

By the commutativity of the left triangle of (4.47) it follows that domαm ⊆
f−1(dom βm) and φ is the corresponding inclusion map. Hence, f(domαm) ⊆ dom βm,
so (DM1) follows.

And by the commutativity of the right triangle of (4.47) it follows that βm ◦ f =
f ◦ αm on domαm, so (DM2) follows. Consequently, we have (1).

4.3 PARTIAL MONOID ACTIONS ON OBJECTS IN CATEGORIES
WITH PULLBACKS
For the remainder of this chapter, let C be a category with pullbacks (or only

with inverse images) and M a monoid, whose identity we denote by e.
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Motivated by the correspondences proved in Section 4.2, we define partial action
data of a monoid M on an object of C .

Definition 4.3.1. A partial action datum of M on X ∈ C is a map α : M →
parC (X,X).

A straightforward definition of a global action of M on an object X of C would
be that of a monoid homomorphism from M to EndC (X) (see, for example, the definition
of an M -object in [20], or, in the group case, the definition of a G-object in [21]). However,
we will give a different (albeit equivalent) definition, to see the global actions as partial
action data.

Definition 4.3.2. A global action of M on X ∈ C is a partial action datum α of M on
X such that:

(CGA1) α(e) = [X, idX , idX ];

(CGA2) α(m) is a global morphism from all m ∈ M and α(n) • α(m) = α(nm), for all
n,m ∈ M .

Remark 4.3.3. By Propositions 4.2.2 and 4.2.4, in Set axiom (CGA1) corresponds
to (GA1) and axiom (CGA2) corresponds to (GA2).

Proposition 4.3.4. A partial action datum α(m) = [domαm = X, idX , αm] of M on
X ∈ C is a global action if and only if the map α : M → EndC (X) given by α(m) = αm

is a monoid homomorphism.

Proof. Observe that α(m) is well-defined by Proposition 3.1.15.
Now, since α(e) = αe, α satisfies (CGA1) if and only if α(e) = idX .
And by Proposition 3.1.15 and Lemma 3.2.14 α satisfies (CGA2) if and only if

α(n) ◦ α(m) = α(nm),

for all m,n ∈ M .
Hence, α satisfies (CGA1) and (CGA2) if and only if α(m) = αm preserves the

identity and the product of M , as desired.

The following definitions were inspired by Propositions 4.2.2, 4.2.5 and 4.2.6.

Definition 4.3.5. A partial action of M on X ∈ C is a partial action datum α of M
on X such that

(CPA1) α(e) = [X, idX , idX ];

(CPA2) α(n) • α(m) ≤ α(nm) for all m,n ∈ M .
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Definition 4.3.6. A strong partial action of M on X ∈ C is a partial action datum α

of M on X such that

(SCPA1) α(e) = [X, idX , idX ];

(SCPA2) α(n) • α(m) = α(nm) • α(m) for all m,n ∈ M .

Remark 4.3.7. A (strong) partial action of M on X ∈ C is a (strong) premorphism [11,
Definitions 2.7 and 2.9] from M to the restriction monoid parC (X,X).

Remark 4.3.8. For each m ∈ M , let (domαm, ιm, αm) be a representative of α(m).
Axiom (CPA2) says that for all m,n ∈ M , if

α−1
m (domαn)

domαm domαn

X

ι̂mn α̂n
m⌟

αm ιn

(4.48)

is a pullback (recall diagram (4.25)), then there exists a morphism φ : α−1
m (domαn) →

domαnm such that the diagram

α−1
m (domαn)

domαnm

X X

αn◦α̂n
m

φ

ιm◦ι̂mn

αnmιnm

(4.49)

commutes.

Remark 4.3.9. For each m ∈ M , let (domαm, ιm, αm) be a representative of α(m).
Axiom (SCPA2) says that for all m,n ∈ M , if

domαnm ∩ domαm

domαm domαnm

X

ιmnm ιnm
m⌟

ιm ιnm

(4.50)

and (4.48) are pullbacks (recall diagrams (4.25) and (4.35)), then there exists an isomor-
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phism φ : α−1
m (domαn) → domαnm ∩ domαm such that the diagram

α−1
m (domαn)

domαm ∩ domαnm

X X

θ

αn◦α̂n
mιm◦ι̂mn

αnm◦ιnm
mιnm◦ιnm

m

(4.51)

commutes.

Remark 4.3.10. By Propositions 4.2.2, 4.2.5 and 4.2.6, in Set axioms (CPA1) and (SCPA1)
correspond to (PA1), axiom (CPA2) corresponds to (PA2) and (PA3) and axiom (SCPA2)
corresponds to (PA2’) and (PA3).

Hence, the set-theoretic (strong) partial actions of M on a set X correspond to
the (strong) partial actions of M on the object X in Set.

Proposition 4.3.11. Let α be a partial action datum of M on X ∈ C . The following
statements hold.

1. If α is a global action, then it is a strong partial action;

2. If α is a strong partial action, then it is a partial action.

Proof. First assume that α is a global action. Then (SCPA1) follows by (CGA1).
To verify (SCPA2), let m,n ∈ M . Since α is a global action, α(m) is a global

morphism, so α(m) = [X, idX , idX ]. Thus, by (CGA2) we have

α(n) • α(m) = α(nm) = α(nm) • α(m),

so it follows that α is a strong partial action.
Now assume that α is a strong partial action. Let us verify that it is a partial

action. Obviously, (CPA1) follows by (SCPA1).
And by (SCPA2), (CPA2) is equivalent to

α(nm) • α(m) ≤ α(nm)

for all m,n ∈ M , which follows by Proposition 3.4.12.

For the following definition, recall Proposition 3.3.1.

Definition 4.3.12. Let C and D be categories with pullbacks, F : C → D a functor and
α(m) = [domαm, ιm, αm] a partial action datum of M on X ∈ C . We define the partial
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action datum F (α) of M on F (X) in D given by

(F (α))(m) = F (α(m)) = [F (domαm), F (ιm), F (αm)],

for each m ∈ M .

Observe that by Proposition 3.3.1 the partial action datum in Definition 4.3.12 is
well-defined.

Proposition 4.3.13. Let C and D be categories with pullbacks, F : C → D a functor
that preserves pullbacks and α(m) = [domαm, ιm, αm] a partial action datum of M on
X ∈ C . Then

(1) If α is a partial action (resp. strong partial action), then F (α) is a partial action
(resp. strong partial action);

(2) If F the induced functor F : parC → parD is faithful and F (α) is a partial action
(resp. strong partial action), then α is a partial action (resp. strong partial action);

Proof. We will only verify (1) and (2) for strong partial actions.
(1). Assume that α is a strong partial action and denote β = F (α). Since F is a

functor and α satisfies (SCPA1) we have

β(e) = [F (X), F (idX), F (idX)] = [F (X), idF (X), idF (X)],

so β satisfies (SCPA1).
Now recall that since F preserves pullbacks it induces a functor from parC to

parD , as in Proposition 3.3.2, which, by Proposition 3.4.18 is a restriction functor between
the two restriction categories. Thus, since α satisfies (SCPA2), for each m,n ∈ M we have

β(n) • β(m) = F (α(n)) • F (α(m)) = F (α(n) • α(m)) = F (α(nm) • α(m))
= F (α(nm)) • F (α(m)) = β(nm) • β(m).

(2). Assume β = F (α) is a strong partial action. Once again, since F preserves
pullbacks it induces a restriction functor F : parC → parD .

Because β satisfies (SCPA1) we have

F (α(e)) = β(e) = [F (X), idF (X), idF (X)] = F ([X, idX , idX ]).

Since F : parC → parD is faithful, it follows that α(e) = [X, idX , idX ]. Therefore, α
satisfies (SCPA1).
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Now let m,n ∈ M . Since β satisfies (SCPA2), we have

F (α(n) • α(m)) = F (α(n)) • F (α(m)) = F (α(nm)) • F (α(m))
= F (α(nm)) • F (α(m)) = F (α(nm) • α(m)),

so, since F : parC → parD is faithful, α satisfies (SCPA2). Thus, α is a strong partial
action, as desired.

In particular in many concrete categories the (strong) partial actions coincide
with the set-theoretical (strong) partial actions.

Proposition 4.3.14. Let C be a concrete category whose associated forgetful functor
U : C → Set preserves pullbacks and induces a faithful functor U : parC → parSet. Let
α(m) = [domαm, ιm, αm] be a partial action datum of M on X ∈ C where domαm ⊆ X

and ιm is the corresponding inclusion map of domαm into X. Then α is a partial action
(resp. strong partial action) if and only if the set-theoretic partial action datum {αm}m∈M

of M on X is a partial action (resp. strong partial action).

Proof. By Proposition 4.3.13, since the forgetful functor U preserves pullbacks and the
induced functor U : parC → parSet is faithful, α is a partial action if and only if F (α) is
a partial action.

Now, by Remark 4.3.10, F (α) satisfies (CPA1) and (CPA2) if and only if the
corresponding partial action datum {αm}m∈M of M on U(X) = X satisfies (PA1)–(PA3).

Thus, α is a partial action if and only if {αm}m∈M is a partial action, as desired.
Similarly, α is a strong partial action if and only if {αm}m∈M is a strong partial

action.

In particular,

Corollary 4.3.15. Let C ∈ {Set,Sem,Mon,Grp,Ring,VectK,AlgK,C*-Alg} and
α(m) = [domαm, ιm, αm] a partial action datum of M on X ∈ C where domαm ⊆ X and
ιm is the corresponding inclusion map of domαm into X. Then α is a partial action (resp.
strong partial action) if and only if the set-theoretic partial action datum {αm}m∈M of M
on X is a partial action (resp. strong partial action).

Proof. The forgetful functor U from C to Set preserves pullbacks in each of those cases.
It is a straightforward verification that U also satisfies the hypothesis of Proposition 3.3.4,
so the induced functor U : parC → parSet is faithful. Hence, the result follows from
Proposition 4.3.14.

Remark 4.3.16. If M is a group, by Proposition 4.1.19, the partial action datum α

in Proposition 4.3.14 or in Corollary 4.3.15 is a strong partial action if and only if the
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set-theoretic partial action datum {αm}m∈M of M on X is a partial action in the sense of
Definition 4.1.14.

However, Corollary 4.3.15 does not apply to certain concrete categories whose
associated forgetful functor preserves pullbacks, such as Top and Poset, as the following
example illustrates.

Example 4.3.17. Let M be the trivial monoid and X a set with at least two elements.
Consider τ the indiscrete topology on X and τ ′ the discrete topology on X.

Consider the partial action datum α of M on the object (X, τ) in Top, where
α(e) is the isomorphism class represented by the following partial morphism.

(X, τ ′)

(X, τ) (X, τ)

idX idX

Observe that idX is a continuous map from (X, τ ′) to (X, τ) that is a monomor-
phism in Top, so α(e) is indeed an element of parTop(X,X).

However, idX is not an isomorphism in Top. Therefore, α(e) ̸= [(X, τ), id(X,τ), id(X,τ)],
so α does not satisfy (CPA1), and is, thus, not a partial action.

Nonetheless, α, seen as a partial action datum of M on the object X in Set, is a
partial action.

A similar example can be found in Poset, by considering partial orders ≤ and ≤′

on the set X = {a, b}, where a ≤ b, but a ≰′ b. In this situation, idX is an order preserving
map from (X,≤′) to (X,≤) that is not an isomorphism in Poset.

The following illustrates what are the partial actions on objects of a category
coming from a meet-semilattice.

Example 4.3.18. Let (X,≤) be a meet-semilattice, C its corresponding category and
x ∈ X. Then a partial morphism from x to x in C is a diagram of the form

a

x x

ιxa ιxa

in C . That is, each partial morphism from x to x corresponds to an element a ∈ X such
that a ≤ x. By reflexivity of ≤, (a, ιxa, ιxa) is the only representative of its isomorphism
class.

Since the pullbacks in C are given by the meet of the elements of X, we have

[b, ιxb , ιxb ] • [a, ιxa, ιxa] = [b ∧ a, ιxb∧a, ι
x
b∧a].
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Also, by Proposition 3.4.13 the partial order in parC (X,X) is given by [a, ιxa, ιxa] ≤
[b, ιxb , ιxb ] if and only if a ≤ b.

Hence, the restriction monoid (recall Remark 3.4.3) parC (X,X) is isomorphic to
the semilattice x↓ = {a ∈ X : a ≤ x}.

Therefore, the partial actions of M on x correspond to the maps α : M → x↓

where
α(e) = x and α(n) ∧ α(m) ≤ α(nm),

and the strong partial actions of M on x correspond to the maps α : M → x↓ where

α(e) = x and α(n) ∧ α(m) = α(nm) ∧ α(m).

4.4 DATUM MORPHISMS AND THE CATEGORY OF PARTIAL
ACTION DATA
The following definition was inspired by Proposition 4.2.7.

Definition 4.4.1. Let α and β be partial action data of M on objects X and Y in C ,
respectively. A datum morphism from α to β is a morphism f : X → Y in C such that

(CDM1) f • α(m) ≤ β(m) • f for all m ∈ M .

Remark 4.4.2. For each m ∈ M , let (domαm, ιm, αm) be a representative of α(m) and
(dom βm, κm, βm) be a representative of β(m). Axiom (CDM1) says that for all m ∈ M , if

f−1(dom βm)

X dom βm

Y

κ̂m
f̂⌟

f κm

(4.52)

is a pullback (recall diagram (4.45)), then there exists a morphism φ : domαm →
f−1(dom βm) such that the following diagram commutes.

domαm

f−1(dom βm)

X Y

ιm f◦αm

φ

κ̂m βm◦f̂

(4.53)
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Proposition 4.4.3. Let α(m) = [domαm, ιm, αm] and β(m) = [dom βm, κm, βm] be partial
action data of M on objects X and Y in C , respectively. Then a morphism f : X → Y

is a datum morphism from α to β if and only if for all m ∈ M there exists a morphism
fm : domαm → dom βm such that the following diagram commutes.

domαm

X X

dom βm

Y Y

fm

ιm αm

f f

κm βm

(4.54)

Proof. Firstly, assume f is a datum morphism from α to β and let m ∈ M . Then by
Remark 4.4.2 there exists a morphism φ : domαm → f−1(dom βm) such that (4.53)
commutes, where (4.52) is a pullback.

Then observe that fm := f̂ ◦ φ is such that (4.54) commutes. Indeed, by the
commutativity of (4.52) and (4.53) we have

κm ◦ fm = κm ◦ f̂ ◦ φ = f ◦ κ̂m ◦ φ = f ◦ ιm

and
βm ◦ fm = βm ◦ f̂ ◦ φ = f ◦ αm.

Conversely, assume that for each m ∈ M there exists a morphism fm such
that (4.54) commutes, and let m ∈ M . Since the left square of (4.54) commutes and (4.52)
is a pullback, there exists a unique morphism φ : domαm → f−1(dom βm) such that the
following diagram commutes.

domαm

f−1(dom βm)

X dom βm

ιm fm

φ

κ̂m f̂

(4.55)

Then φ is such that (4.53) commutes. Indeed, the commutativity of the left
triangle of (4.53) follows from the commutativity of the left triangle of (4.55), and the
commutativity of the right triangle of (4.53) follows from the commutativity of (4.54)
and (4.55), because

βm ◦ f̂ ◦ φ = βm ◦ fm = f ◦ αm.
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When β is a global action, datum morphisms f : α → β admit a simpler
description.

Lemma 4.4.4. Let α(m) = [domαm, ιm, αm] be a partial action datum on X ∈ C and
β(m) = [Y, idY , βm] be a global action of M on Y ∈ C . Then a morphism f from X to Y
in C is a datum morphism from α to β if and only if the following diagram commutes for
all m ∈ M .

domαm

X X

Y

αmιm

βm◦f f

(4.56)

Proof. If f is a datum morphism from α to β, then, by Proposition 4.4.3, for each m ∈ M

there exists a morphism fm : domαm → Y such that the diagram

domαm

X X

Y

Y Y

ιm αm

fm

f f

id βm

(4.57)

commutes. The commutativity of the left square of (4.57) yields fm = f ◦ ιm, which
together with the commutativity of the right square yields βm ◦ f ◦ ιm = βm ◦ fm = f ◦αm,
so the commutativity of (4.56) follows.

Conversely, if (4.56) commutes for all m ∈ M , then the morphism fm := f ◦ ιm
makes the diagram (4.57) commute, and hence, by Proposition 4.4.3, f is a datum
morphism.

Corollary 4.4.5. Let α(m) = [X, idX , αm] and β(m) = [Y, idY , βm] be global actions on
objects X and Y in C , respectively. Then a morphism f from X to Y in C is a datum
morphism from α to β if and only if

f ◦ αm = βm ◦ f,

for all m ∈ M .

Proof. Follows immediately from Lemma 4.4.4.
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Proposition 4.4.6. Let α(m) = [domαm, ιm, αm], β(m) = [dom βm, κm, βm] and γ(m) =
[dom γm, λm, γm] be partial action data of M on objects X, Y and Z in C , respectively. If
f is a datum morphism from α to β and g is a datum morphism from β to γ. Then g ◦ f
is a datum morphism from α to γ.

Proof. Let m ∈ M . Since f is a datum morphism from α to β, by Proposition 4.4.3 there
exists a morphism fm : domαm → dom βm such that the following diagram commutes.

domαm

X X

dom βm

Y Y

fm

ιm αm

f f

κm βm

(4.58)

And since g is a datum morphism from β to γ, by Proposition 4.4.3 there exists a
morphism gm such that the following diagram commutes.

dom βm

Y Y

dom γm

Z Z

gm

κm βm

g g

λm γm

(4.59)

Then consider the following diagram.

domαm

X dom βm X

Y dom γm Y

Z Z

fm
ιm αm

f κm βmgm f

g λm γm g

(4.60)

Observe that by the commutativity of (4.58) the top two squares of (4.60) commute,
and by the commutativity of (4.59) the bottom two squares of (4.60) commute. Thus,
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gm ◦ fm is a morphism such that the following diagram commutes.

domαm

X X

dom γm

Z Z

gm◦fm

ιm αm

g◦f g◦f

λm γm

Hence, by Proposition 4.4.3, g ◦ f is a datum morphism from α to γ.

Proposition 4.4.7. Let α(m) = [domαm, ιm, αm] be a partial action datum of M on
X ∈ C . Then idX is a datum morphism from α to α.

Proof. For each m ∈ M , the morphism iddomαm makes the diagram

domαm

X X

domαm

X X

iddom αm

ιm αm

idX idX

ιm αm

commute. Thus, idX is a datum morphism from α to α.

We can then define the categories of partial action data, partial actions and global
actions.

Definition 4.4.8. Denote by M−DatumC the category whose objects are partial action
data of M on objects in C and whose morphisms are the datum morphisms between those
objects, where the composition is inherited from C . Moreover, let

1. M−pActC denote the full subcategory of M−DatumC formed by the partial actions
of M on objects in C .

2. M−ActC denote the full subcategory of M−DatumC formed by the global actions
of M on objects in C .

3. M−spActC denote the full subcategory of M−DatumC formed by the strong
partial actions of M on objects in C .
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4.5 PARTIAL GROUP ACTIONS ON OBJECTS IN CATEGORIES
WITH PULLBACKS
If M is a group, there are some equivalent descriptions of its strong partial actions,

which will be explored in this section. Throughout this section, let G be a group, that will
be treated as its underlying monoid whenever necessary, and recall that C is a category
with pullbacks.

Recall that isoC is the inverse category induced by the restriction structure in
parC , which, by Proposition 3.5.14, is composed of the isomorphism classes [A, f, g] in
parC such that g is a monomorphism.

From this point onward, for each X ∈ C we will denote isoC (X,X) by I(X).

Lemma 4.5.1. Let α be a strong partial action of G on X ∈ C . Then

α(g−1) • α(g) = α(g), (4.61)

for all g ∈ G.

Proof. Let g ∈ G. By (SCPA1) and (SCPA2), we get

α(g−1) • α(g) = α(g−1g) • α(g) = α(e) • α(g) = α(g),

as desired.

Corollary 4.5.2. Let α be a strong partial action of G on X ∈ C . Then

α(g) • α(g−1) • α(g) = α(g), (4.62)

for all g ∈ G.

Proof. Let g ∈ G. Then, by Corollary 4.5.3 and (R1), we have

α(g) • α(g−1) • α(g) = α(g) • α(g) = α(g)

as desired.

Corollary 4.5.3. Let α be a strong partial action of G on X ∈ C . Then α(G) ⊆ I(X).

Proof. Let g ∈ G. By Lemma 4.5.1, α(g−1) is an isomorphism class in parC (X,X) such
that

α(g−1) • α(g) = α(g)

and
α(g) • α(g−1) = α(g−1).
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Thus, by Definition 3.5.6 α(g) ∈ I(X). Therefore, α(G) ⊆ I(X) as desired.

Theorem 4.5.4. A partial action datum α of G on X ∈ C is a strong partial action if
and only if

(1) α(G) ⊆ I(X),

(2) α(e) = [X, idX , idX ],

(3) α(h) • α(g) • α(g−1) = α(hg) • α(g−1) for all g, h ∈ G.

Proof. (⇒). Assume that α is a strong partial action. Then (1) follows by Corollary 4.5.3
and (2) follows by (SCPA1).

To verify (3), let g, h ∈ G. By (SCPA2) and Lemma 4.5.1 we have

α(h) • α(g) = α(hg) • α(g) = α(hg) • α(g−1) • α(g). (4.63)

By (4.63) and Corollary 4.5.2 it follows that

α(h) • α(g) • α(g−1) = α(hg) • α(g−1) • α(g) • α(g−1) = α(hg) • α(g−1),

so we have (3).
(⇐). Now assume (1)–(3). By (2), α satisfies (SCPA1), so it suffices to ver-

ify (SCPA2).
By (2) and (3),

α(g) • α(g−1) • α(g) = α(e) • α(g) = α(g)

for all g ∈ G.
Let g ∈ G. Since α(g) • α(g−1) • α(g) = α(g) and α(g−1)α(g)α(g−1 = α(g−1), and

I(X) is an inverse monoid, by (1) we have α(g)∗ = α(g−1). In particular, by Proposi-
tion 3.5.12, we get

α(g−1) • α(g) = α(g). (4.64)

Now let g, h ∈ G. By (3) and (4.64) it follows that

α(h) • α(g) = α(h) • α(g) • α(g−1) • α(g) = α(hg) • α(g−1) • α(g) = α(hg) • α(g).

Thus, α satisfies (SCPA2), and is a strong partial action, as desired.

We then have the following relationship between the strong partial actions of a
group and the Exel’s semigroup of the group.

Theorem 4.5.5. Let X ∈ C . There is a correspondence between the
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(1) strong partial actions of G on X;

(2) monoid homomorphisms from S(G) to I(X).

Proof. The monoid homomorphisms from S(G) to I(X) are in correspondence with the
maps from G to I(X) satisfying Proposition 2.3.18 (1) and (2). Those, in turn, correspond
to the strong partial actions of G on X, by Theorem 4.5.4.

As a final characterization of strong partial actions of groups we have the following.

Theorem 4.5.6. A partial action datum α of G on X ∈ C is a strong partial action if
and only if

(1) α is a partial action,

(2) α(G) ⊆ I(X),

(3) α(g−1) = α(g)∗ for all g ∈ G.

Proof. If α is a strong partial action, then (1) follows by Proposition 4.3.11, and (2) and (3)
follow by Corollaries 4.5.2 and 4.5.3.

Now assume that α satisfies (1)–(3). By (2), α satisfies Theorem 4.5.4 (1), and
by (CPA1), α satisfies Theorem 4.5.4 (2). Let us verify Theorem 4.5.4 (3).

Let g, h ∈ G. By (CPA2),

α(h) • α(g) ≤ α(hg),

so, by Proposition 3.4.10,

α(h) • α(g) • α(g−1) ≤ α(hg) • α(g−1). (4.65)

On the other hand, also by (CPA2) we have

α(hg) • α(g−1) ≤ α((hg)g−1) = α(h).

So, using the definition of the partial order ≤ and by (R1)–(R3) we have

α(hg) • α(g−1) = α(h) • α(hg) • α(g−1) = α(h) • α(hg) • α(g−1) • α(g−1)
= α(h) • α(hg) • α(g−1) • α(g−1) = α(h) • α(g−1) • α(hg) • α(g−1).

By (3), it follows that α(g−1) = α(g) • α(g−1). Thus, by Proposition 3.4.12 we
have

α(hg) • α(g−1) = α(h) • α(g) • α(g−1) • α(hg) • α(g−1) ≤ α(h) • α(g) • α(g−1). (4.66)
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Therefore, Theorem 4.5.4 (3) follows by (4.65) and (4.66), and, so, α is a strong
partial action by Theorem 4.5.4.
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5 RESTRICTIONS AND GLOBALIZATIONS
OF PARTIAL MONOID ACTIONS

The problem of the globalization of the partial actions of monoids on objects
in categories with pullbacks is tackled in this chapter. In Section 5.1 we introduce the
restriction of a global action of a monoid on an object in a category with pullbacks to a
subobject, and show that it is a strong partial action.

Section 5.2 contains the main results of this work, where we introduce globalizations
of partial actions in this categorical context and find conditions for a given partial action
to be globalizable.

In Theorem 5.2.5 we show necessary and sufficient conditions in terms of pullback
diagrams for a given partial action to have a (universal) globalization, under the assumption
that it has a reflection in M−ActC . We then show in Theorem 5.2.15 and Corollary 5.2.19
that if the category C has a certain colimit, or if it has certain coproducts and coequalizer,
the partial action has such a reflection, which allows the application of Theorem 5.2.5.
Assuming the existence of the previous coproducts, in Theorem 5.2.26 we show necessary
and sufficient conditions for such a reflection to exist, in terms of a coequalizer in M−ActC .

5.1 RESTRICTIONS OF GLOBAL ACTIONS
Throughout this chapter, M will be a monoid with identity e and C a category

with pullbacks, and whenever β is a global action of M on an object Y ∈ C , we will
assume that β(m) = [Y, idY , βm] for all m ∈ M .

In this categorical context, we can also construct (strong) partial actions from
global actions, similar to Definition 4.1.11.

Definition 5.1.1. Let β be a global action of M on Y ∈ C and ι : X → Y a
monomorphism in C . The restriction of β to X (via ι) is the partial action datum
α(m) = [domαm, ιm, αm], where for each m ∈ M the following diagram is a pullback.

domαm

X X

Y

αmιm ⌟

βm◦ι ι

(5.1)

Remark 5.1.2. Observe that since ι is a monomorphism, each ιm is a monomorphism, so
[domαm, ιm, αm] ∈ parC (X,X) and α is indeed a partial action datum.
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Also, α does not depend on the choice of a pullback of βm ◦ ι and ι, since any two
such pullbacks are always isomorphic spans.

Remark 5.1.3. Notice that by Lemma 4.4.4 the morphism ι : X → Y in Definition 5.1.1
is a datum morphism from α to β.

The following proposition gives an equivalent way to describe restrictions of global
actions.

Recall that any morphism ι : X → Y in C can be seen as the isomorphism class
[X, idX , ι] ∈ parC (X, Y ). Moreover, if ι is a monomorphism, it can be seen as a morphism
in the inverse category isoC . In this case, by Proposition 3.5.14, [X, idX , ι]∗, which we will
denote only by ι∗, is the isomorphism class [X, ι, idX ] ∈ parC (Y,X).

Proposition 5.1.4. Let β be a global action of M on Y ∈ C , ι : X → Y a monomorphism
in C and α(m) = [domαm, ιm, αm] the restriction of β to X via ι. Then

α(m) = ι∗ • β(m) • ι,

for all m ∈ M .

Proof. Observe that the square in

X

X Y

X Y Y

idX ι⌟

idX ι idY βm

is a pullback, so
β(m) • ι = [X, idX , βm ◦ ι]. (5.2)

Now, since α is the restriction of β to X via ι, the square in the diagram

domαm

X X

X Y X

ιm αm⌟

idX βm◦ι ι idX

is a pullback, so

ι∗ • [X, idX , βm ◦ ι] = [domαm, idX ◦ ιm, idX ◦ αm] = [domαm, ιm, αm]. (5.3)
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Thus, by (5.2) and (5.3),

ι∗ • β(m) • ι = ι∗ • [X, idX , βm ◦ ι] = [domαm, ιm, αm] = α(m),

as desired.

If C = Set and ι is the inclusion of a subset X into Y , the restriction of β to X
via ι from Definition 5.1.1 gives us the construction seen in Definition 4.1.11, as shown in
the sequel.

Proposition 5.1.5. Let β be a global action of M on Y ∈ Set and X ⊆ Y with associated
inclusion map ι. Then the restriction of β to X in the sense of Definition 4.1.11 corresponds
(as in Proposition 4.2.1) to the restriction of β to X via ι in the sense of Definition 5.1.1.

Proof. The restriction of β to X in the sense of Definition 4.1.11 is the partial action
{αm}m∈M where, for each m ∈ M

domαm = X ∩ β−1
m (X)

and αm : domαm → X is given by

αm(x) = βm(x) (5.4)

for each x ∈ domαm.
By Proposition 4.2.1 the family {αm}m∈M corresponds to α(m) = [domαm, ιm, αm],

where ιm is the inclusion of domαm into X.
Notice that, by (5.4), diagram (5.1) commutes for all m ∈ M . We are going to

verify that it is a pullback diagram.
Let Z ∈ Set and p1, p2 : Z → X such that

βm ◦ ι ◦ p1 = ι ◦ p2. (5.5)

Given z ∈ Z, since βm(ι(p1(z))) = ι(p2(z)) ∈ ι(X) = X, we have p1(z) = ι(p1(z)) ∈
β−1
m (X), so p1(z) ∈ domαm. This way, define φ : Z → domαm by

φ(z) = p1(z). (5.6)

Then we have for all z ∈ Z

ιm(φ(z)) = ιm(p1(z)) = p1(z)

and, by (5.4)–(5.6),
αm(φ(z)) = βm(p1(z)) = p2(z).
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Thus φ makes the diagram

Z

domαm

A A

B

p1 p2

φ

αmιm

βm◦ι ι

commute, and it is unique as such because ιm is a monomorphism in Set. It follows
that (5.1) is a pullback diagram.

By Definition 5.1.1, we have that α is the restriction of β to X via ι, as desired.

We will prove below that any restriction of a global action is a partial action.
To this end, for the remainder of this section, assume that we are in the setting of
Definition 5.1.1.

Lemma 5.1.6. The restriction α of β to X via ι in Definition 5.1.1 is a partial action.

Proof. We first check (CPA1). Since β is a global action, βe = idY , so βe ◦ ι = ι. Thus,
because ι is a monomorphism, by Proposition 2.2.16 the following diagram is a pullback.

X

X X

Y

idXidX ⌟

βe◦ι ι

Therefore,
α(e) = [X, idX , idX ].

We will verify (CPA2) by using Remark 4.3.8. Let m,n ∈ M . Our goal is to, given
pullback squares (4.48) and (4.50), construct an isomorphism φ : α−1

m (domαn) → domαnm

which makes diagram (4.51) commute.
Notice that, since β is a global action, and by the commutativity of the dia-

grams (4.48) and (5.1), we have

(βnm ◦ ι) ◦ (ιm ◦ ι̂mn ) = (βn ◦ βm) ◦ ι ◦ ιm ◦ ι̂mn = βn ◦ (βm ◦ ι ◦ ιm) ◦ ι̂mn
= βn ◦ (ι ◦ αm) ◦ ι̂mn = βn ◦ ι ◦ (αm ◦ ι̂mn ) = βn ◦ ι ◦ (ιn ◦ α̂mn )
= (βn ◦ ι ◦ ιn) ◦ α̂mn = (ι ◦ αn) ◦ α̂mn = ι ◦ (αn ◦ α̂mn ).
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Thus, the diagram

α−1
m (domαn)

X X

Y

ιm◦ι̂mn αn◦α̂m
n

βnm◦ι ι

commutes, and so, by the universal property of the pullback (5.1), there exists a unique
morphism φ such that the diagram

α−1
m (domαn)

domαnm

X X

Y

ιm◦ι̂mn αn◦α̂m
n

φ

ιnm αnm

⌟

βnm◦ι ι

commutes, and so φ makes (4.49) commute. Therefore, α satisfies (CPA2), as desired.

Proposition 5.1.7. The restriction α of β to X via ι in Definition 5.1.1 is a strong
partial action.

Proof. By Lemma 5.1.6, α is a partial action. In particular, α satisfies (CPA1), and,
thus, (SCPA1).

We will now verify (SCPA2) by using Remark 4.3.9. To do so, let m,n ∈ M .
Since α is a partial action, there exists a morphism φ : α−1

m (domαn) → domαnm

that makes diagram (4.49) commute.
Notice that, by the commutativity of (4.49),

ιnm ◦ φ = ιm ◦ ι̂mn ,

so since (4.50) is a pullback there exists a unique morphism θ : α−1
m (domαn) → domαnm ∩
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domαm that makes the following diagram commute.

α−1
m (domαn)

domαnm ∩ domαm

domαm domαnm

X

ι̂mn φ

θ

ιmnm ιnm
m

⌟

ιm ιnm

(5.7)

The morphism θ makes (4.51) commute, because, by the commutativity of (4.50)
and (5.7),

(ιnm ◦ ιnmm ) ◦ θ = (ιm ◦ ιmnm) ◦ θ = ιm ◦ (ιmnm ◦ θ) = ιm ◦ ι̂mn

and by the commutativity of (4.49) and (5.7),

(αnm ◦ ιnmm ) ◦ θ = αnm ◦ (ιnmm ◦ θ) = αnm ◦ φ = αn ◦ α̂nm.

Let us verify that θ is an isomorphism by exhibiting its inverse. Notice that by
the commutativity of (4.50) and (5.1) we have

ι ◦ (αnm ◦ ιnmm ) = (ι ◦ αnm) ◦ ιnmm = (βnm ◦ ι ◦ ιnm) ◦ ιnmm
= (βn ◦ βm) ◦ ι ◦ (ιnm ◦ ιnmm ) = βn ◦ βm ◦ ι ◦ (ιm ◦ ιmnm)
= βn ◦ (βm ◦ ι ◦ ιm) ◦ ιmnm = βn ◦ (ι ◦ αm) ◦ ιmnm
= βn ◦ ι ◦ (αm ◦ ιmnm).

so since (5.1) is a pullback, there exists a unique morphism η : domαnm ∩ domαm →
α−1
m (domαn) such that the following diagram commutes.

domαnm ∩ domαm

domαn

X X

Y

αm◦ιmnm αnm◦ιnm
m

η

ιn αn

⌟

βn◦ι ι

(5.8)
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In particular, by the commutativity of (5.8) it follows that

ιn ◦ η = αm ◦ ιmnm,

so since (4.48) is a pullback, there exists a unique morphism ψ : domαnm ∩ domαm →
α−1
m (domαn) such that the following diagram commutes.

domαnm ∩ domαm

α−1
m (domαn)

domαm domαn

X

ιmnm η

ψ

ι̂mn α̂n
m

⌟

αm ιn

(5.9)

Let us verify that ψ is the inverse of θ. Notice that by the commutativity of (5.7)
and (5.9) we have

ιmnm ◦ θ ◦ ψ = ι̂mn ◦ ψ = ιmnm = ιmnm ◦ iddomαnm∩domαm ,

so, since ιmnm is a monomorphism (because (4.50) is a pullback for all m,n ∈ M and ιnm is
a monomorphism), we have θ ◦ ψ = iddomαnm∩domαm .

Similarly, the commutativity of (5.7) and (5.9) gives us

ι̂mn ◦ ψ ◦ θ = ιmnm ◦ θ = ι̂mn = ι̂mn ◦ idα−1
m (domαn),

so, since ι̂mn is a monomorphism (because ιn is a monomorphism in (4.48)), we have
ψ ◦ θ = idα−1

m (domαn). Thus, ψ is an isomorphism, as desired.
Therefore, α satisfies (SCPA2), and is, thus, a strong partial action, as desired.

Remark 5.1.8. Another proof that α satisfies (SCPA2) using Proposition 5.1.4 goes as
follows. Let m,n ∈ M . Then by the fact that β is a global action and Proposition 5.1.4
and (R4)

α(n) • α(m) = (ι∗ • β(n) • ι) • (ι∗ • β(m) • ι) = ι∗ • β(n) • (ι • ι∗ • β(m) • ι)
= ι∗ • β(n) • (ι∗ • β(m) • ι) = ι∗ • β(n) • (β(m) • ι • ι∗ • β(m) • ι)
= ι∗ • (β(n) • β(m)) • ι • α(m) = ι∗ • β(nm) • ι • α(m) = α(nm) • α(m).

Inspired by Proposition 5.1.4, one could in fact define restrictions of any partial
action data to a subobject. The following proposition illustrates what happens if one were
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to restrict partial actions and strong partial actions in such a way.

Proposition 5.1.9. Let β be a partial action datum of M on Y ∈ C , ι : X → Y a
monomorphism in C and consider the partial action datum α(m) = ι∗ • β(m) • ι of M on
X. If β is a (strong) partial action, then α is a (strong) partial action.

Proof. First, observe that, by (R4), for all m,n ∈ M we have

α(n) • α(m) = (ι∗ • β(n) • ι) • (ι∗ • β(m) • ι) = ι∗ • β(n) • (ι • ι∗ • β(m) • ι)
= ι∗ • β(n) • (ι∗ • β(m) • ι) = ι∗ • β(n) • (β(m) • ι • ι∗ • β(m) • ι)

so,
α(n) • α(m) = ι∗ • β(n) • β(m) • ι • α(m), (5.10)

Assume, then, that β is a partial action. Since β satisfies (CPA1), β(e) =
[Y, idY , idY ] is the identity morphism of Y in parC . Thus, we have

α(e) = ι∗ • β(e) • ι = ι∗ • ι = ι = [X, idX , idX ],

so α satisfies (CPA1).
Now let m,n ∈ M . Then, since β satisfies (CPA2), and by Propositions 3.4.10

and 3.4.12 and (5.10), we have

α(n) • α(m) = ι∗ • (β(n) • β(m)) • ι • α(m) ≤ ι∗ • β(nm) • ι • α(m)
= α(nm) • α(m) ≤ α(nm).

Thus, α is a partial action.
Now assume that β is a strong partial action. Similar to the previous case, it then

follows that α satisfies (SCPA1), so let us verify (SCPA2).
Let m,n ∈ M . Then, since β satisfies (SCPA2), and by (R2)–(R4) and (5.10) we

have

α(n) • α(m) = ι∗ • (β(n) • β(m)) • ι • α(m) = ι∗ • (β(nm) • β(m)) • ι • α(m)
= ι∗ • β(nm) • (β(m) • ι) • α(m) = ι∗ • β(nm) • (ι • β(m) • ι) • α(m)
= (ι∗ • β(nm) • ι) • (β(m) • ι • α(m)) = α(nm) • (α(m) • β(m) • ι)

= α(nm) • α(m) • β(m) • ι = α(nm) • α(m),

where the final equality follows by (R1), since α(m) = ι∗•β(m)•ι. Thus, α satisfies (SCPA2).

Proposition 5.1.10. Let β be a global action of M on Y ∈ C and ι : X → Y and
ι′ : X ′ → Y monomorphisms. Let α be the restriction of β to X via ι and α′ be the
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restriction of β to X ′ via ι′. If ι and ι′ represent the same subobject of Y , then α and α′

are isomorphic in M−DatumC .

Proof. Let us say that α(m) = [domαm, ιm, αm] and α′(m) = [domα′
m, ι

′
m, α

′
m] for all

m ∈ M .
Assume that ι and ι′ represent the same subobject of Y . Then there exists an

isomorphism φ : X → X ′ such that

ι′ ◦ φ = ι. (5.11)

Let us verify that φ is an isomorphism from α to α′ in M−DatumC . We will first
verify that φ is a datum morphism from α to α′.

Let m ∈ M . Observe that since α is the restriction of β to X via ι, the diagram (5.1)
is a pullback, and, in particular, commutes. With this and (5.11) we thus have

βm ◦ ι′ ◦ φ ◦ ιm = βm ◦ ι ◦ ιm = ι ◦ αm = ι′ ◦ φ ◦ αm. (5.12)

Now, since α′ is the restriction of β to X ′ via ι′, the diagram

domα′
m

X ′ X

Y

α′
mι′m ⌟

βm◦ι′ ι′

is a pullback. Then, by (5.12), there exists a unique morphism φm : domαm → domα′
m

such that the diagram
domαm

X domα′
m X

X ′ X ′

Y

φm
ιm αm

φ ι′m α′
m⌟ φ

βm◦ι′ ι′
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commutes. In particular, the diagram

domαm

X X

domα′
m

X ′ X ′

φm

ιm αm

φ φ

ι′m α′
m

commutes for all m ∈ M , so φ is a datum morphism from α to α′ by Proposition 4.4.3.
Now let ψ be the inverse of φ. A similar verification, utilizing the universal property

of (5.1), shows us that ψ is a datum morphism from α′ to α. It is immediate, then, that ψ
is an inverse of φ in M−DatumC , so φ is an isomorphism from α to α′ in M−DatumC ,
as desired.

5.2 GLOBALIZATIONS OF PARTIAL ACTIONS
We can now define the notion which is in some sense inverse to the restriction of

a global action.

Definition 5.2.1. Let α be a partial action datum of M on X ∈ C . A globalization of α
is a pair (β, ι) formed by a global action β of M on an object Y ∈ C and a monomorphism
ι : X → Y , such that α is the restriction of β to X via ι.

If α has a globalization, we say that α is globalizable.

By Remark 5.1.3, the morphism ι in Definition 5.2.1 is a datum morphism from α

to β.

Example 5.2.2. Let (X,≤) be a meet-semilattice, C its associated category and α a
globalizable partial action of M on x ∈ C . Then α is a global action.

Indeed, for all y ∈ C the only global morphism in parC (y, y) is [y, idy, idy], so any
global action of M on y is trivial. Hence, if (β, ι) is a globalization of α where, say, β acts
on y ∈ C , then, by Proposition 5.1.4,

α(m) = ι∗ • β(m) • ι = ι∗ • [y, idy, idy] • ι = ι∗ • ι = [x, idx, idx],

for all m ∈ M .

Definition 5.2.3. Let α be a partial action datum of M on X ∈ C . A universal
globalization of α is a pair (β, ι) such that:
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(UG1) (β, ι) is a globalization of α;

(UG2) whenever (γ, κ) is a globalization of α, there exists a unique morphism κ′ : β → γ

such that the following diagram commutes.

α β

γ

ι

κ
κ′ (5.13)

Remark 5.2.4. Observe that our concept of a universal globalization slightly differs from
that of a globalization defined in [18] because we do not require the datum morphism ι in
Definition 5.2.3 to be a reflection of α in M−ActC .

Nevertheless, whenever a reflection ι of α in M−ActC exists, it gives us a necessary
and sufficient condition for α to have a (universal) globalization.

Theorem 5.2.5 ([15, Theorem 4.4]). Let α(m) = [domαm, ιm, αm] be a partial action
datum of M on X ∈ C . Assume that α has a reflection ι : α → β in M−ActC , with, say,
β acting on Y ∈ C . Then the following are equivalent:

(1) (β, ι) is a globalization of α;

(2) (β, ι) is a universal globalization of α;

(3) α has a universal globalization;

(4) α has a (not necessarily universal) globalization;

(5) for all m ∈ M the following diagram is a pullback diagram in C .

domαm

X X

Y

ιm αm⌟

βm◦ι ι

(5.14)

Proof. Implication (1) ⇒ (2) follows because (β, ι), being a globalization, satisfies (UG1),
and (UG2) is a consequence of the fact that ι is a reflection.

Implications (2) ⇒ (3) and (3) ⇒ (4) are immediate and (5) ⇒ (1) follows
from the definition of a globalization, so it remains to check (4) ⇒ (5).

Assume thus that α has a globalization (γ, κ), with, say, γ acting on Z ∈ C . By
Definition 5.2.1, α is the restriction of γ to X via κ. That is, for all m ∈ M the diagram
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domαm

X X

Z

ιm αm⌟

γm◦κ κ

is a pullback diagram.
Since ι is a reflection of α in M−ActC and γ is a global action with κ a datum

morphism from α to γ, there exists a unique datum morphism κ′ : β → γ such that

κ = κ′ ◦ ι. (5.15)

Fix m ∈ M . As κ′ and ι are datum morphisms, by Lemma 4.4.4 we have

γm ◦ κ′ = κ′ ◦ βm and βm ◦ ι ◦ ιm = ι ◦ αm. (5.16)

This way, by (5.15) and (5.16), the diagram

domαm

X X

Y

Z

ιm αm

βm◦ι

γm◦κ

ι

κ
κ′

commutes. Now, since its perimeter is a pullback diagram, it is customary to check that
the inner square is also a pullback.

Remark 5.2.6. Since ι is a datum morphism from α to β, diagram (5.14) is already a
commutative diagram, by Lemma 4.4.4.

In Example 6.3.10 we will present a universal globalization (β, ι) whose ι is not a
reflection.

Observe that universal globalizations are unique up to isomorphism.

Proposition 5.2.7. Let α be a partial action datum of M on X ∈ C and (β, ι) and
(γ, κ) universal globalizations of α. Then there exists an isomorphism φ : β → γ such that
φ ◦ ι = κ.

Proof. Since (β, ι) is a universal globalization of α and (γ, κ) is a globalization of α,
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by (UG2) there exists a unique morphism φ such that the following diagram commutes.

α β

γ

ι

κ

φ

In particular, φ is such that φ ◦ ι = κ. Let us verify that it is an isomorphism.
In a similar way, since (γ, κ) is a universal globalization of α, by (UG2) there

exists a unique morphism ψ : γ → β such that ψ ◦ κ = ι.
Then observe that

ψ ◦ φ ◦ ι = ψ ◦ κ = ι = idβ ◦ ι,

so since (β, ι) satisfies (UG2) it follows that ψ ◦ φ = idβ.
Similarly, since (γ, κ) satisfies (UG2) we have φ ◦ ψ = idγ. Hence, φ is an

isomorphism, as desired.

Corollary 5.2.8. Let α be a partial action datum of M on X ∈ C and (β, ι) an universal
globalization of α. If α has a reflection in M−ActC , then ι : α → β is a reflection of α in
M−ActC .

Proof. Let r : α → γ be a reflection of α in M−ActC . Since α has a globalization, by
Theorem 5.2.5, (γ, r) is a universal globalization of α. Hence, since (β, ι) and (γ, r) are
universal globalizations of α, the result follows by Proposition 5.2.7.

5.2.1 REFLECTION IN TERMS OF A COLIMIT

Now we are going to provide conditions for a partial action datum to have a
reflection in M−ActC . To this end, for the remainder of this subsection fix a partial action
datum α(m) = [domαm, ιm, αm] of M on X ∈ C .

Define the category I with Ob(I) = (M ×M) ⊔M , where for each (m,n) ∈ Ob(I)
there is a morphism from (m,n) to mn and a morphism from (m,n) to m, and there are
no other non-trivial morphisms.

Definition 5.2.9. The functor1 associated to α is the functor F : I → C defined as
follows. Given m,n ∈ M , it maps

• (m,n) to domαn,

• m to X,
1 Strictly speaking, the functor is not unique, since it depends on the choice of representatives of the

isomorphism classes α(m), m ∈ M .
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• the morphism (m,n) → mn to ιn, and

• the morphism (m,n) → m to αn,

as illustrated.

(m,n)

mn m

F
domαn

X X

ιn αn

We are going to show that a colimit of F induces a reflection of α in M−ActC .
To this end, recall that for all Y ∈ C we denote by ∆(Y ) the constant functor from I to
C that maps all objects in I to Y and all morphisms in I to idY .

Lemma 5.2.10. Let η = {F (i) Y
ηi : i ∈ I} be a natural transformation from F to

∆(Y ). Then for each m ∈ M the family ηm = {F (i) Y
ηm

i : i ∈ I}, where

ηmi =

η(ms,t), if i = (s, t) ∈ M ×M,

ηms, if i = s ∈ M,
(5.17)

is also a natural transformation from F to ∆(Y ).

Proof. Fix m ∈ M . Since the only non-trivial morphisms in I are (s, t) → st and (s, t) → s

for each s, t ∈ M , to verify that ηm is a natural transformation from F to ∆(Y ), it suffices
to check that the diagrams

domαt Y

X Y

ηm
(s,t)

ιt id

ηm
st

and
domαn Y

X Y

ηm
(s,t)

αt id

ηm
s

(5.18)

commute for each s, t ∈ M .
Let s, t ∈ M . Since η is a natural transformation from F to ∆(Y ), ηm(st) ◦ ιt =

η(ms)t ◦ ιt = η(ms,t). So, we have the commutativity of the left diagram of (5.18), in view
of (5.17).

The commutativity of the right diagram of (5.18) follows similarly.

Assume that there exists a colimit η : F → ∆(Y ) of the functor F associated
to α and let ηm be the corresponding natural transformation from Lemma 5.2.10. Fixed
m ∈ M , by the universal property of η there exists a unique natural transformation βm

from ∆(Y ) to ∆(Y ) such that ηm = βm ◦ η.
That is, for each m ∈ M there exists a unique morphism Y Y

βm such that

βm ◦ η(s,t) = ηm(s,t) = η(ms,t) (5.19)
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for all s, t ∈ M , and
βm ◦ ηs = ηms = ηms (5.20)

for all s ∈ M .
Consider then the partial action datum β of M on Y given by

β(m) = [Y, idY , βm] (5.21)

for each m ∈ M .

Lemma 5.2.11. The partial action datum β defined in (5.21) is a global action of M on
Y .

Proof. We will verify that the map β : M → EndC (Y ), where β(m) = βm is a monoid
homomorphism.

By (5.17),

idY ◦ η(s,t) = η(s,t) = η(es,t) = ηe(s,t) = βe ◦ η(s,t)

for all s, t ∈ M , and
idY ◦ ηs = ηs = ηes = ηes = βe ◦ ηs

for all s ∈ M . Thanks to the uniqueness of βe, it follows that βe = idY . Therefore, β
preserves the identity.

Now let m,n ∈ M . By (5.19) and (5.20), for all s, t ∈ M we have

(βn ◦ βm) ◦ η(s,t) = βn ◦ (βm ◦ η(s,t)) = βn ◦ η(ms,t) = η(n(ms),t)

= η((nm)s,t) = βnm ◦ η(s,t)

and
(βn ◦ βm) ◦ ηs = βn ◦ (βm ◦ ηs) = βn ◦ ηms = ηn(ms) = η(nm)s = βnm ◦ ηs.

Thus, by the uniqueness of βnm we have βn ◦ βm = βnm. Therefore, olβ preserves the
product of M .

Thus, β is a monoid homomorphism. Hence, β is a global action by Proposi-
tion 4.3.4.

Definition 5.2.12. Let η be a colimit of the functor associated to α. By the global
action associated to η we mean β ∈ M−ActC given by (5.21).

Proposition 5.2.13. Let η : F → ∆(Y ) be a colimit of the functor F associated to α,
and let β be the global action associated to η. Then ηe : X → Y is a datum morphism from
α to β.
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Proof. Given m ∈ M , since η is a natural transformation from F to ∆(Y ), we have
ηm ◦ ιm = ηem ◦ ιm = η(e,m) = ηe ◦ αm. By (5.20) we have βm ◦ ηe = ηm. Thus,

(βm ◦ ηe) ◦ ιm = ηm ◦ ιm = ηe ◦ αm,

and so, by Lemma 4.4.4, ηe is a datum morphism as desired.

Lemma 5.2.14. Let (γ, f) be a pair formed by a global action γ of M on Z ∈ C and a
datum morphism f : α → γ. Then the family ξ = {F (i) Z

ξi : i ∈ I}, where

ξi =

γmn ◦ f ◦ ιn, if i = (m,n) ∈ M ×M,

γm ◦ f, if i = m ∈ M,
(5.22)

is a natural transformation from F to ∆(Z).

Proof. We shall verify that for each m,n ∈ M the diagrams

domαn Z

X Z

ξ(m,n)

ιn id

ξmn

and
domαn Z

X Z

ξ(m,n)

αn id

ξm

(5.23)

commute.
The commutativity of the left diagram of (5.23) follows directly by (5.22).
For the second diagram, by Lemma 4.4.4 we have

f ◦ αn = γn ◦ f ◦ ιn.

Thus, since γ is a global action, we have

ξm ◦ αn = (γm ◦ f) ◦ αn = γm ◦ (f ◦ αn) = γm ◦ (γn ◦ f ◦ ιn)
= (γm ◦ γn) ◦ f ◦ ιn = γmn ◦ f ◦ ιn = ξ(m,n),

giving us the commutativity of the right diagram of (5.23).

Theorem 5.2.15 ([15, Theorem 4.15]). Let F ∆(Y )η be a colimit of the functor F
associated to α and β the global action associated to η. Then α β

ηe is a reflection of α
in M−ActC .

Proof. Let (γ, f) be a pair formed by a global action γ of G on Z ∈ C and a datum
morphism f : α → γ. We must show that there exists a unique datum morphism f ′ : β → γ
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such that the diagram
α β

γ

ηe

f
f ′ (5.24)

commutes.
Let ξ be the natural transformation (5.22) from F to ∆(Z) constructed in

Lemma 5.2.14.
By the universal property of η, there exists a unique morphism Y Z

f ′
such that

ξi = f ′ ◦ ηi (5.25)

for each i ∈ I. Since γe = idZ , by (5.22) we have ξe = f , whence f ′ ◦ ηe = f by (5.25). So,
diagram (5.24) commutes modulo the verification that f ′ is a datum morphism from β to
γ, which we are going to do now. By Lemma 4.4.4, this will be accomplished if we show
that for each m ∈ M

f ′ ◦ βm = γm ◦ f ′. (5.26)

To this end, fix m ∈ M and consider the natural transformation ξm = {F (i) Z
ξm

i :
i ∈ I} from F to ∆(Z), where

ξmi =

ξ(ms,t), if i = (s, t) ∈ M ×M,

ξms, if i = s ∈ M,
(5.27)

constructed from ξ as in Lemma 5.2.10.
By the universal property of η, there exists a unique morphism Y Z

ξm

such that
for each i ∈ I

ξmi = ξm ◦ ηi. (5.28)

Since γ is a global action, for all s ∈ M we have

γm ◦ γs = γms. (5.29)

Thus, for all s, t ∈ M ,

γm ◦ f ′ ◦ ηs
(5.25)= γm ◦ ξs

(5.22)= γm ◦ γs ◦ f (5.29)= γms ◦ f (5.22)= ξms
(5.27)= ξms

(5.28)= ξm ◦ ηs

and

γm ◦ f ′ ◦ η(s,t)
(5.25)= γm ◦ ξ(s,t)

(5.22)= γm ◦ γst ◦ f ◦ ιt
(5.29)= γm(st) ◦ f ◦ ιt

= γ(ms)t ◦ f ◦ ιt
(5.22)= ξ(ms,t)

(5.27)= ξm(s,t)
(5.28)= ξm ◦ η(s,t),
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so the uniqueness of ξm in (5.28) gives

γm ◦ f ′ = ξm. (5.30)

On the other hand, for all s, t ∈ M we have

f ′ ◦ βm ◦ ηs
(5.20)= f ′ ◦ ηms

(5.25)= ξms
(5.27)= ξms

(5.28)= ξm ◦ ηs

and
f ′ ◦ βm ◦ η(s,t)

(5.19)= f ′ ◦ η(ms,t)
(5.25)= ξ(ms,t)

(5.27)= ξm(s,t)
(5.28)= ξm ◦ η(s,t),

so the uniqueness of ξm in (5.28) also gives

f ′ ◦ βm = ξm. (5.31)

This way, (5.30) and (5.31) complete the proof of (5.26), so f ′ is a datum morphism
from β to γ, as desired.

Finally, let us check the uniqueness of f ′ as a datum morphism from β to γ. To
do so, let f ′′ be a datum morphism from β to γ such that

f = f ′′ ◦ ηe. (5.32)

Since f ′′ is a datum morphism, by Lemma 4.4.4 we have

f ′′ ◦ βm = γm ◦ f ′′. (5.33)

Thus, given s, t ∈ G, we have

f ′′ ◦ ηs
(5.20)= f ′′ ◦ βs ◦ ηe

(5.33)= γs ◦ f ′′ ◦ ηe
(5.32)= γs ◦ f (5.22)= ξs. (5.34)

Since η is a natural transformation from F to ∆(Y ), for each s, t ∈ M we have

η(s,t) = ηst ◦ ιt. (5.35)

Hence,

f ′′ ◦ η(s,t)
(5.35)= f ′′ ◦ ηst ◦ ιt

(5.34)= ξst ◦ ιt
(5.22)= γst ◦ f ◦ ιt

(5.22)= ξ(s,t). (5.36)

So, by (5.34) and (5.36), ξi = f ′′ ◦ ηi for all i ∈ I. Since f ′ is the unique morphism
satisfying (5.25), we have f ′′ = f ′, as desired.

Corollary 5.2.16. Let C be a cocomplete category. Then α has a strong universal
globalization if and only if α has a (not necessarily strong universal) globalization.
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Proof. Since C is cocomplete, the functor F associated to α has a colimit. In this case, by
Theorem 5.2.15, α has a reflection in M−ActC . Thus, the result follows by Theorem 5.2.5.

5.2.2 REFLECTION IN TERMS OF COPRODUCTS AND A COEQUALIZER

One particular case of a colimit of the functor F gives us a stronger but more
tangible condition for a partial action to have a reflection in M−ActC , where we assume
that certain coproducts and a certain coequalizer exist in C .

Fix a partial action datum α(m) = [domαm, ιm, αm] of M on X ∈ C and assume
that the coproducts ∐m∈M X and ∐

(m,n)∈M×M domαn exist in C . For each m,n ∈ M ,
denote the associated inclusion morphisms by

um : X →
∐
m∈M

X and u(m,n) : domαn →
∐

(m,n)∈M×M
domαn, (5.37)

and all the coproducts of morphisms in this subsection will be with respect to one of the
two families in (5.37).

Consider the morphisms p, q : ∐(m,n)∈M×M domαn → ∐
m∈M X given as follows:

p =
∐

(m,n)∈M×M
(umn ◦ ιn) and q =

∐
(m,n)∈M×M

(um ◦ αn). (5.38)

We shall now work towards verifying that a coequalizer of p and q induces a
colimit of the functor F associated to α.

Lemma 5.2.17. Let Z ∈ C and ξ = {F (i) Z
ξi : i ∈ I} be a natural transformation

F → ∆(Z). Then the coproduct ∐m∈M ξm : ∐m∈M X → Z satisfies
( ∐
m∈M

ξm

)
◦ p =

( ∐
m∈M

ξm

)
◦ q. (5.39)

Proof. To prove (5.39), it suffices to verify that for all m,n ∈ M we have
( ∐
m∈M

ξm

)
◦ p ◦ u(m,n) =

( ∐
m∈M

ξm

)
◦ q ◦ u(m,n).

Denote, for simplicity, ∐m∈M ξm by Ξ. Fix m,n ∈ M . Then we have

Ξ ◦ (p ◦ u(m,n)) = Ξ ◦ (umn ◦ ιn) = (Ξ ◦ umn) ◦ ιn = ξmn ◦ ιn = ξ(m,n),

where the last equality follows from the fact that ξ is a natural transformation (see (5.23)).
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Similarly, we have

Ξ ◦ (q ◦ u(m,n)) = Ξ ◦ (um ◦ αn) = (Ξ ◦ um) ◦ αn = ξm ◦ αn = ξ(m,n).

Proposition 5.2.18. Assume that there exists a coequalizer ∐m∈M X Yc of p and q.
Then the family η = {F (i) Y

ηi : i ∈ I} such that

ηi =

c ◦ p ◦ u(s,t) = c ◦ q ◦ u(s,t), if i = (s, t) ∈ M ×M,

c ◦ us, if i = s ∈ M,
(5.40)

is a colimit of the functor F associated to α.

Proof. Firstly, note that η is a natural transformation from F to ∆(Y ), since for each
m,n ∈ G the diagrams

domαn Y

X Y

η(m,n)

ιn id

ηmn

and
domαn Y

X Y

η(m,n)

αn id

ηm

commute by (5.38) and (5.40).
Given Z ∈ C , let ξ = {F (i) Z

ξi : i ∈ I} be a natural transformation from F to
∆(Z). Let us show that there exists a unique morphism φ : Y → Z such that

ξ = φ ◦ η. (5.41)

By Lemma 5.2.17, we have (∐m∈M ξm) ◦ p = (∐m∈M ξm) ◦ q, so, by the universal
property of c as a coequalizer of p and q, there exists a unique morphism φ : Y → Z such
that ∐

m∈M
ξm = φ ◦ c. (5.42)

Now, φ satisfies (5.41), since for all m,n ∈ M by (5.40) and (5.42) we have

φ ◦ ηm = φ ◦ (c ◦ um) = (φ ◦ c) ◦ um =
( ∐
m∈M

ξm

)
◦ um = ξm

and by (5.38), (5.40) and (5.42) together with the fact that ξ is a natural transformation

φ ◦ η(m,n) = φ ◦ (c ◦ p ◦ u(m,n)) = (φ ◦ c) ◦ (p ◦ u(m,n))

=
( ∐
m∈M

ξm

)
◦ (umn ◦ ιn) = ξmn ◦ ιn = ξ(m,n).

It remains to show that φ is the unique morphism satisfying (5.41). For, assume
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that φ′ is a morphism such that ξ = φ′ ◦ η. Then for each m ∈ M using (5.40) we have

φ′ ◦ c ◦ um = φ′ ◦ ηm = ξm,

so that φ′ ◦c = ∐
m∈M ξm. Since φ is the unique morphism that satisfies (5.42), we conclude

that φ′ = φ.

Let β(m) = [Y, idY , βm] be the global action associated (see Definition 5.2.12) to
the colimit η from Proposition 5.2.18. Notice that for each m ∈ M , βm can be described
precisely as the unique morphism such that for all s, t ∈ M

βm ◦ c ◦ us = c ◦ ums, (5.43)

since, in this case,
βm ◦ c ◦ p ◦ us,t = c ◦ p ◦ ums,t

automatically follows from (5.43).
As a consequence of Proposition 5.2.18 and Theorem 5.2.15, we get the following.

Corollary 5.2.19 ([15, Corollary 4.20]). Let ∐m∈M X Yc be a coequalizer of p and q.
Then c ◦ ue : α → β is a reflection of α in M−ActC .

So, in this case, we can work with a universal globalization of α in terms of
coproducts and a coequalizer, due to Theorem 5.2.5.

In a final approach to finding conditions for α to have a reflection in M−ActC ,
we shall define structures of global actions on the coproducts we worked with so far, in
order to find necessary and sufficient conditions in terms of a coequalizer in M−ActC .

For each m ∈ M , consider the morphisms

φm =
∐

(s,t)∈M×M
u(ms,t) :

∐
(s,t)∈M×M

domαt →
∐

(s,t)∈M×M
domαt (5.44)

and
ψm =

∐
s∈M

ums :
∐
s∈M

X →
∐
s∈M

X. (5.45)

It is a simple verification that the partial action data

φ(m) = [∐(s,t)∈M×M domαt, id, φm] and ψ(m) = [∐s∈M X, id, ψm]

are global actions of M on ∐(m,n)∈M×M domαn and ∐m∈M X, respectively.

Proposition 5.2.20. The morphisms p, q : ∐(m,n)∈M×M domαn → ∐
m∈M X in (5.38) are

morphisms from φ to ψ in M−ActC .



Chapter 5. Restrictions and globalizations of partial monoid actions 136

Proof. We shall only verify that q is a datum morphism, as the verification for p is
analogous. By Lemma 4.4.4, it suffices to show that

q ◦ φm = ψm ◦ q,

for each m ∈ M . The latter is equivalent to

q ◦ φm ◦ u(s,t) = ψm ◦ q ◦ u(s,t) for each (s, t) ∈ M ×M.

Indeed, fixed m ∈ M , by (5.38), (5.44) and (5.45), for all s, t ∈ M we have

q ◦ φm ◦ u(s,t) = q ◦ u(ms,t) = ums ◦ αt = (ψm ◦ us) ◦ αt
= ψm ◦ (us ◦ αt) = ψm ◦ q ◦ u(s,t).

Lemma 5.2.21. Let γ be a global action of M on Z ∈ C and X Z
f a morphism in C .

Then ∐
m∈M(γm ◦ f) is a morphism from ψ to γ in M−ActC .

Proof. For the simplicity of notation, let Γ = ∐
m∈M(γm ◦ f). Then for each s ∈ M we

have
Γ ◦ us = γs ◦ f.

Therefore, given m, s ∈ M , by (5.45) and the fact that γ is a global action we have

(Γ ◦ ψm) ◦ us = Γ ◦ (ψm ◦ us) = Γ ◦ ums = γms ◦ f = (γm ◦ γs) ◦ f

= γm ◦ (γs ◦ f) = γm ◦ (Γ ◦ us) = (γm ◦ Γ) ◦ us,

so that Γ ◦ ψm = γm ◦ Γ.
Thus, by Lemma 4.4.4, Γ is a datum morphism from ψ to γ, as desired.

In view of Lemma 5.2.21 we can define the following map.

Definition 5.2.22. Let γ be a global action of M on Z ∈ C . Define HX,γ : HomC (X,Z) →
HomM−ActC

(ψ, γ) by

HX,γ(f) =
∐
m∈M

(γm ◦ f), (5.46)

for any f ∈ HomC (X,Z).

Proposition 5.2.23. Let γ be a global action of M on Z ∈ C . Then HX,γ given by (5.46)
is a bijection whose inverse is

HomM−ActC
(ψ, γ) ∋ Γ 7→ Γ ◦ ue ∈ HomC (X,Z). (5.47)
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Proof. To simplify the notation, denote HX,γ by H. Let us verify that the map G defined
in (5.47) is the inverse of H.

Let f ∈ HomC (X,Z). Then by (5.46) and (5.47)

G(H(f)) =
∐
m∈M

(γm ◦ f) ◦ ue = γe ◦ f = f.

On the other hand, let Γ ∈ HomM−ActC
(ψ, γ). We have by (5.46) and (5.47)

H(G(Γ)) =
∐
m∈M

(γm ◦ (Γ ◦ ue)). (5.48)

As Γ is a datum morphism, for each m ∈ M we have Γ ◦ψm = γm ◦ Γ, so, by (5.45)
and (5.48),

Γ ◦ um = Γ ◦ ψm ◦ ue = γm ◦ Γ ◦ ue = H(G(Γ)) ◦ um.

Thus, Γ = H(G(Γ)).

Lemma 5.2.24. Let β and γ be global actions of M on Y ∈ C and Z ∈ C , respectively,
g ∈ HomM−ActC

(β, γ) and f ∈ HomC (X, Y ). Then

HX,γ(g ◦ f) = g ◦HX,β(f). (5.49)

Proof. Let m ∈ M . By Lemma 4.4.4 we have γm ◦ g = g ◦ βm, so by (5.46)

HX,γ(g ◦ f) ◦ um = γm ◦ g ◦ f = g ◦ βm ◦ f = g ◦HX,β(f) ◦ um,

whence (5.49).

Lemma 5.2.25. Let γ be a global action of M on Z ∈ C and f ∈ HomC (X,Z). Then f

is a datum morphism from α to γ if and only if

HX,γ(f) ◦ p = HX,γ(f) ◦ q. (5.50)

Proof. Write H = HX,γ for short. Assume that f is a datum morphism from α to γ. For
all m ∈ M , by Lemma 4.4.4 we have

γm ◦ f ◦ ιm = f ◦ αm, (5.51)

and by (5.46) we have
H(f) ◦ um = γm ◦ f. (5.52)

By (5.38) and (5.52) we get

H(f) ◦ q ◦ u(s,t) = H(f) ◦ us ◦ αt = γs ◦ f ◦ αt. (5.53)
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Therefore, by (5.38) and (5.51)–(5.53), and since γ is a global action, for each
(s, t) ∈ M ×M ,

H(f) ◦ q ◦ u(s,t)
(5.53)= γs ◦ f ◦ αt = γs ◦ (f ◦ αt)

(5.51)= γs ◦ (γt ◦ f ◦ ιt)
= (γs ◦ γt) ◦ f ◦ ιt = γst ◦ f ◦ ιt = (γst ◦ f) ◦ ιt
(5.52)= (H(f) ◦ ust) ◦ ιt = H(f) ◦ (ust ◦ ιt)

(5.38)= H(f) ◦ p ◦ u(s,t),

whence (5.50).
Conversely, assume that Γ := H(f) satisfies

Γ ◦ p = Γ ◦ q. (5.54)

By Proposition 5.2.23,
f = H(f) ◦ ue = Γ ◦ ue. (5.55)

It follows from (5.38), (5.52), (5.54) and (5.55) that for all m ∈ M

(γm ◦ f) ◦ ιm
(5.52)= (Γ ◦ um) ◦ ιm = Γ ◦ (um ◦ ιm) (5.38)= Γ ◦ (p ◦ u(e,m))

= (Γ ◦ p) ◦ u(e,m)
(5.54)= (Γ ◦ q) ◦ u(e,m) = Γ ◦ (q ◦ u(e,m))

(5.38)= Γ ◦ (ue ◦ αm) = (Γ ◦ ue) ◦ αm
(5.55)= f ◦ αm,

and, thus, by Lemma 4.4.4, f is a datum morphism from α to γ.

Theorem 5.2.26 ([15, Theorem 4.27]). The following statements hold:

(1) If α βr is a reflection of α in M−ActC , then HX,β(r) is a coequalizer of p and q
in M−ActC .

(2) If ψ βc is a coequalizer of p and q in M−ActC , then c ◦ ue is a reflection of α in
M−ActC .

In particular, α has a reflection in M−ActC if and only if p and q have a
coequalizer in M−ActC .

Proof. (1) Assume α βr is a reflection of α in M−ActC . Let us check that HX,β(r) is
a coequalizer of p and q in M−ActC .

By Lemmas 5.2.21 and 5.2.25, HX,β(r) is a datum morphism from ψ to β such
that HX,β(r) ◦ p = HX,β(r) ◦ q.

Let ψ γ
f be a datum morphism such that f ◦ p = f ◦ q. We must show that

there exists a unique datum morphism f ′ : β → γ such that

f = f ′ ◦HX,β(r). (5.56)
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By Lemma 5.2.25, H−1
X,γ(f) = f ◦ ue is a datum morphism from α to γ. Since r is

a reflection of α in M−ActC , there exists a unique datum morphism f ′ : β → γ such that

f ′ ◦ r = f ◦ ue. (5.57)

This way, by Proposition 5.2.23, (5.57), and Lemma 5.2.24 we have

f = HX,γ(f ◦ ue) = HX,γ(f ′ ◦ r) = f ′ ◦HX,β(r).

Note that f ′ is the unique datum morphism satisfying (5.56). Indeed, if f ′′ is a
datum morphism from β to γ such that f ′′ ◦HX,β(r) = f , then by Proposition 5.2.23

f ′′ ◦ r = f ′′ ◦ (HX,β(r) ◦ ue) = (f ′′ ◦HX,β(r)) ◦ ue = f ◦ ue,

and by the uniqueness of f ′ in (5.57), we have f ′′ = f ′. Thus, HX,β(r) is a coequalizer of p
and q in M−ActC .

(2) Let c be a coequalizer of p and q in M−ActC . We shall verify that c ◦ ue is a
reflection of α in M−ActC .

By Lemma 5.2.25, H−1(c) = c ◦ ue is a datum morphism from α to β, since c is a
datum morphism such that c ◦ p = c ◦ q.

So, let α γ
f be a datum morphism. We must show that there exists a unique

datum morphism f ′ from β to γ such that

f = f ′ ◦ (c ◦ ue). (5.58)

Lemma 5.2.25 tells us that HX,γ(f) is a datum morphism from ψ to γ such that
HX,γ(f) ◦ p = HX,γ(f) ◦ q. So, since c is a coequalizer of p and q, there exists a unique
datum morphism f ′ from β to γ such that

HX,γ(f) = f ′ ◦ c. (5.59)

This morphism is such that

f = HX,γ(f) ◦ ue = (f ′ ◦ c) ◦ ue = f ′ ◦ (c ◦ ue).

Moreover, f ′ is the unique datum morphism satisfying (5.58). Indeed, if there
were f ′′ with f = f ′′ ◦ (c ◦ ue), then by Lemma 5.2.24 and Proposition 5.2.23

HX,γ(f) = HX,γ(f ′′ ◦ (c ◦ ue)) = f ′′ ◦HX,β(c ◦ ue) = f ′′ ◦ c,

and, due to the uniqueness of f ′ in (5.59), we would have f ′′ = f ′.
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Observe that if a coequalizer of p and q exists in C , it is also a coequalizer in
M−ActC .

Proposition 5.2.27. Let ∐m∈M X Yc be a coequalizer of p and q in C and β the global
action of M on Y satisfying (5.43). Then c is a datum morphism from ψ to β that is a
coequalizer of p and q in M−ActC .

Proof. We will first verify that c is a morphism from ψ to β. By Corollary 4.4.5 it suffices
to verify that c ◦ ψm = βm ◦ c for all m ∈ M .

Let s ∈ M . Then, by (5.43),

βm ◦ c ◦ us = c ◦ ums = c ◦ ψm ◦ us

for all s ∈ M . Hence, it follows that

βm ◦ c = c ◦ ψm,

as desired.
Now let us verify that c : ψ → β is a coequalizer of p and q in M−ActC . Let

ψ γ
f be a morphism in M−ActC such that

f ◦ p = f ◦ q. (5.60)

The global action γ acts on, say, an object Z ∈ C . Since f is a morphism in
C satisfying (5.60) and c is a coequalizer of p and q, there exists a unique morphism
f ′ : Y → Z such that

f ′ ◦ c = f. (5.61)

Let us verify that f ′ is a morphism from β to γ by Corollary 4.4.5. For let m ∈ M .
Then, by Corollary 4.4.5 and (5.61),

γm ◦ f ′ ◦ c = γm ◦ f = f ◦ ψm = f ′ ◦ c ◦ ψm = f ′ ◦ βm ◦ c.

Since c is a coequalizer in C , it is an epimorphism in C . Hence, it follows that

γm ◦ f ′ = f ′ ◦ βm,

as desired.
Clearly, f ′ is the unique morphism from ψ to γ satisfying (5.61), because it is the

unique morphism in C satisfying such equation. Hence, c is a coequalizer of p and q in
M−ActC , as desired.

We will now verify a certain property that a reflection coming from a coequalizer
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satisfies.

Lemma 5.2.28. Let (β, ι) be a universal globalization of α and assume that p and q have
a coequalizer in C . Then ∐

m∈M(βm ◦ ι) is a coequalizer of p and q in C .

Proof. By Corollary 5.2.19, since p and q have a coequalizer c in C , α has a reflection
in M−ActC . Thus, by Corollary 5.2.8, it follows that ι : α → β is a reflection of α in
M−ActC .

Therefore, by Theorem 5.2.26 (1), HX,β(ι) = ∐
m∈M(βm ◦ ι) is a coequalizer of p

and q in M−ActC , as desired.

Theorem 5.2.29. Let (β, ι) be a universal globalization of α, where β acts on an object
Y ∈ C , and v : Y ′ → Y a monomorphism, and assume that p and q have a coequalizer in
C . If βm ◦ ι factors through v for all m ∈ M , then v is an isomorphism.

Proof. For each m ∈ M , let vm : X → Y ′ be the morphism such that

v ◦ vm = βm ◦ ι.

Consider then the morphism ∐
m∈M vm : ∐m∈M X → Y ′. Observe that

∐
m∈M

(βm ◦ ι) = v ◦
∐
m∈M

vm, (5.62)

since for each m ∈ M we have( ∐
m∈M

βm ◦ ι
)

◦ um = βm ◦ ι = v ◦ vm = v ◦ (
( ∐
m∈M

vm

)
◦ um) =

(
v ◦

∐
m∈M

vm

)
◦ um.

By Lemma 5.2.28, ∐m∈M(βm ◦ ι) is a coequalizer of p and q in C . Hence, since v
is a monomorphism, by Proposition 2.2.25 and (5.62) it is an isomorphism, as desired.

Theorem 5.2.29 tells us that the category-theoretic union of the family {βm◦ι}m∈M

of subobjects of Y is the subobject idY .
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6 RESULTS AND EXAMPLES IN CERTAIN
CATEGORIES

In this chapter we apply the results obtained in Chapter 5 to certain categories.
We verify in Section 6.1 that, in Set, Corollary 5.2.19 and Theorem 5.2.5 recover

Hollings’s results on the globalization of strong partial actions on sets.
In Section 6.2 we study the partial actions on objects in Top and classify the

globalizable ones in Proposition 6.2.4.
Finally, in Section 6.3 we consider the partial actions of groups on algebras in the

sense of [7] and in Proposition 6.3.9 we observe that, in the unital case, the enveloping
action of such a partial action α is a universal globalization of α, seen as a partial action
on an object in AlgId

K .

6.1 THE CATEGORY OF SETS
Fix α(m) = [domαm, ιm, αm] a partial action datum of M on X ∈ Set, where

domαm ⊆ X and ιm is the corresponding inclusion map (recall that every partial morphism
in Set has such a representative, by Proposition 3.1.16).

Denote by ≈ the equivalence relation on M ×X generated by ∼, where

(m,x) ∼ (n, y) ⇐⇒ ∃m′ ∈ M such that m = nm′, x ∈ domαm′ and y = αm′(x). (6.1)

Let Y = (M ×X)/≈ and denote by [m,x] the ≈-equivalence class of (m,x).

Lemma 6.1.1. The maps βn : Y → Y given by

βn([m,x]) = [nm, x] (6.2)

define a global action β of M on Y and the map ι : X → Y given by

ι(x) = [e, x]

is a reflection α → β of α in M−ActSet.

Proof. Consider the coproduct ∐m∈M X = M ×X with inclusions um : X ∋ x 7→ (m,x) ∈
M×X, and the coproduct ∐(m,n)∈M×M domαn = {(m,n, x) : x ∈ domαn} =: M2 •X with
inclusions u(m,n) : domαn ∋ x 7→ (m,n, x) ∈ M2•X. Then the maps p, q : M2•X → M×X
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from (5.38) are given by

p(m,n, x) = (mn, ιn(x)) = (mn, x)

and
q(m,n, x) = (m,αn(x)).

The canonical projection c of M ×X onto its quotient by the equivalence relation
generated by ∼= {(p(m,n, x), q(m,n, x)) : (m,n, x) ∈ M2 •X} is a coequalizer of p and
q. It is a simple verification that ∼ coincides with (6.1), so c is precisely the natural
projection of M ×X onto Y .

Then the global action β of M on Y from Corollary 5.2.19 (see (5.43)) is given
precisely by (6.2), with ι = c ◦ ue : α → β being a reflection of α in M−ActSet.

Lemma 6.1.2. Let ι be the reflection of α in M−ActSet as in Lemma 6.1.1. If α ∈
M−spActSet, then diagram (5.14) is a pullback for all m ∈ M .

Proof. Let m ∈ M . Since ι is a datum morphism, by Lemma 4.4.4 diagram (5.14) commutes.
Consider the pullback square

Z

X X

Y

p1 p2⌟

βm◦ι ι

where Z = {(x, y) ∈ X ×X : βm(ι(x)) = ι(y)} = {(x, y) ∈ X ×X : [m,x] = [e, y]} and p1

and p2 are the corresponding projections. There exists φ : domαm → Z, φ(x) = (x, αm(x))
such that φ ◦ p1 = ιm and φ ◦ p2 = αm. We are going to show that φ is a bijection. It is
clearly an injective map, so we will verify that it is surjective.

Observe that since α ∈ M−spActSet, (6.1) implies that

if (m,x) ∼ (n, y), then x ∈ domαm ⇐⇒ y ∈ domαn, (6.3)

and, in this case, αm(x) = αn(y). Indeed, by Corollary 4.3.15 the partial action datum
{αm}m∈M satisfies (PA2’) and (PA3), so we have

x ∈ α−1
m′ (domαn) = domαm′ ∩ domαnm′ = domαm′ ∩ domαm ⊆ domαm

and
αm(x) = αnm′(x) = αn(αm′(x)) = αn(y).

Now, let (x, y) ∈ Z. Then (m,x) ≈ (e, y), so, since ≈ is the smallest equivalence
relation containing ∼, there exists a sequence (m,x) = (m1, x1), . . . , (mk, xk) = (e, y) such
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that either
(mi, xi) ∼ (mi+1, xi+1) or (mi+1, xi+1) ∼ (mi, xi) (6.4)

for all i ∈ {1, . . . , k−1}. Since y ∈ domαe (because domαe = X, by (PA1)), in either of the
cases of (6.4), by (6.3) we have xk−1 ∈ domαk−1 and αmk−1(xk−1) = αe(y) = y. Recursively,
we have for all i that xi ∈ domαmi

and αmi
(xi) = αmi+1(xi+1) = · · · = αmk−1(xk−1) = y.

In particular, taking i = 1 we get x ∈ domαm and αm(x) = y.
Hence, (x, y) = (x, αm(x)) = φ(x), and it follows that φ is surjective. Thus, φ is a

bijection and (5.14) is a pullback, as desired.

Proposition 6.1.3. A partial action datum α in M−DatumSet has a universal global-
ization if and only if α ∈ M−spActSet.

Proof. If α has a universal globalization, then α ∈ M−spActSet by Proposition 5.1.7.
Conversely, by Lemma 6.1.1 α has a reflection in M−ActC , which, since α ∈

M−spActSet, by Lemma 6.1.2, is such that (5.14) is a pullback for all m ∈ M . Thus, by
Theorem 5.2.5 α has a universal globalization.

6.2 THE CATEGORY OF TOPOLOGICAL SPACES
The coequalizers in Top are, those from Set equipped with a suitable topology.
Fix α(m) = [domαm, ιm, αm] a partial action datum of M on X ∈ Top, where

domαm ⊆ X and ιm is the corresponding inclusion map.
Consider the topological space M ×X with the product topology, where M has

the discrete topology. Denote by ≈ the equivalence relation on M ×X generated by ∼,
where

(m,x) ∼ (n, y) ⇐⇒ ∃m′ ∈ M such that m = nm′, x ∈ domαm′ and y = αm′(x). (6.5)

Let Y = (M ×X)/≈ with the quotient topology and denote by [m,x] the ≈-equivalence
class of (m,x).

Lemma 6.2.1. The maps βn : Y → Y given by

βn([m,x]) = [nm, x] (6.6)

define a global action β of M on Y and the map ι : X → Y given by

ι(x) = [e, x]

is a reflection α → β of α in M−ActTop.
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Proof. Consider the coproduct ∐m∈M X = M ×X with inclusions um : X ∋ x 7→ (m,x) ∈
M×X, and the coproduct ∐(m,n)∈M×M domαn = {(m,n, x) : x ∈ domαn} =: M2 •X with
inclusions u(m,n) : domαn ∋ x 7→ (m,n, x) ∈ M2•X. Then the maps p, q : M2•X → M×X
from (5.38) are given by

p(m,n, x) = (mn, ιn(x)) = (mn, x)

and
q(m,n, x) = (m,αn(x)).

The canonical projection c of M ×X onto its quotient by the equivalence relation
generated by ∼= {(p(m,n, x), q(m,n, x)) : (m,n, x) ∈ M2 •X} is a coequalizer of p and
q. It is a simple verification that ∼ coincides with (6.5), so c is precisely the natural
projection of M ×X onto Y .

Then the global action β of M on Y from Corollary 5.2.19 (see (5.43)) is given pre-
cisely by (6.6), while the map ι is precisely the morphism c◦ue : α → β in Corollary 5.2.19,
which is a reflection of α in M−ActTop.

The following lemma characterizes the pullbacks in Top, which will be helpful for
the description of the (universally) globalizable partial actions on objects of Top.

Lemma 6.2.2. Let f : X → Z and g : Y → Z be morphisms in Top. Then a diagram

P

X Y

Z

p1 p2

f g

(6.7)

in Top is a pullback if and only if it is a pullback diagram in Set and the topology τ of P
is the smallest topology on P such that p1 and p2 are continuous maps.

Proof. Assume that (6.7) is a pullback in Top. Then it is a pullback diagram in Set
because the forgetful functor from Top to Set preserves pullbacks.

Let us verify that τ is the smallest topology on P such that p1 and p2 are continuous.
Let τ ′ be any such topology on P . Then the diagram

(P, τ ′)

X Y

Z

p1 p2

f g
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is a commutative diagram in Top. Since (6.7) is a pullback in Top, there exists a unique
continuous map φ : (P, τ ′) → (P, τ) such that the diagram

(P, τ ′)

(P, τ)

X Y

Z

p1 p2

φ

p1 p2

f g

commutes. Since (6.7) is a pullback in Set, the map φ can easily be verified to be equal to
idP . Hence, idP is a continuous map from (P, τ ′) to (P, τ). Thus, τ ′ contains τ , and, so, τ
is a the smallest topology on P such that p1 and p2 are continuous, as desired.

Now assume that (6.7) is a pullback diagram in Set and τ is the smallest topology
on P such that p1 and p2 are continuous. Let Q be a topological space and q1 and q2 be
continuous maps such that the diagram

Q

X Y

Z

q1 q2

f g

(6.8)

commutes.
Since (6.7) is a pullback in Set, there exists a unique map φ : Q → P such that

diagram
Q

P

X Y

Z

q1 q2
φ

p1 p2

f g

(6.9)

commutes in Set. Let us verify that φ is a continuous.
By hypothesis, the topology τ is generated by sets of the form p−1

1 (U), for some
open U ⊆ X and p−1

2 (V ) for some open V ⊆ Y . Therefore, it suffices to verify that the
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inverse image of each of those sets by φ is open in Q. Indeed, given an open U ⊆ X,

φ−1(p−1
1 (U)) = (p1 ◦ φ)−1(U) = q−1

1 (U),

which is open in Q, since q1 is continuous. Similarly, φ−1(p−1
2 (V )) is open in Q for all open

V ⊆ Y .
Hence, φ is a morphism in Top such that diagram (6.9) commutes, and it is

unique as mentioned above. Therefore, (6.7) is a pullback in Top, as desired.

Lemma 6.2.3. Let ι be the reflection of α in M−ActTop as in Lemma 6.2.1. If α ∈
M−spActSet and the topology on domαm is the smallest topology such that ιm and αm
are continuous maps for all m ∈ M , then diagram (5.14) is a pullback for all m ∈ M .

Proof. The forgetful functor U : Top → Set preserves pullbacks. Thus, by Proposi-
tion 4.3.13 (1), we have that U(α) is a strong partial action of M on X in Set.

By applying the forgetful functor U to (5.14) we obtain a diagram in Set, which
is a pullback by Lemma 6.1.2.

Therefore, given m ∈ M , since domαm has the smallest topology such that ιm
and αm are continuous maps, (5.14) is a pullback by Lemma 6.2.2.

Proposition 6.2.4. A partial action datum α in M−DatumSet has a universal globaliza-
tion if and only if α ∈ M−spActSet and the topology on domαm is the smallest topology
such that ιm and αm are continuous maps for all m ∈ M .

Proof. If α has a universal globalization, then α ∈ M−spActSet by Proposition 5.1.7. And,
by Theorem 5.2.5, for all m ∈ M diagram (5.14) is a pullback, so the topology on domαm

is the smallest topology such that ιm and αm are continuous maps, by Lemma 6.2.2.
Conversely, let ι be the reflection of α in M−ActC given by Lemma 6.2.1. Then,

since the topology on domαm is the smallest topology such that ιm and αm are continuous
maps for all m ∈ M , by Lemma 6.2.3 we have that diagram (5.14) is a pullback for all
m ∈ M . Thus, by Theorem 5.2.5 α has a universal globalization.

Definition 6.2.5. An embedding of a topological space X into a topological space Y is
an injective continuous map f : X → Y that is a homeomorphism onto its image.

Corollary 6.2.6. Let α(m) = [domαm, ιm, αm] be a strong partial action of M on
X ∈ Top, where domαm ⊆ X and ιm is the corresponding inclusion map. If ιm is an
embedding for all m ∈ M , then α has a universal globalization.

Proof. Let m ∈ M . Since ιm is an embedding, domαm has the smallest topology such
that ιm is a continuous map. Hence, domαm has the smallest topology such that ιm and
αm are continuous maps.

Therefore, α has a universal globalization by Proposition 6.2.4.
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The following example illustrates that the converse of Corollary 6.2.6 does not
hold.

Example 6.2.7. Let M = Z2 = {0, 1} and X = {x, y} with the topology whose only
non-trivial open set is {x}. Consider the partial action datum α of M on X in Top, where

α(0) = [X, idX , idX ] and α(1) = [Xdisc, idX , f ],

where Xdisc is the set X with the discrete topology and f : Xdisc → X is given by f(x) = y

and f(y) = x.
Then α is a strong partial action where the topology on domαm is the smallest

topology such that ιm and αm are continuous maps for all m ∈ M , so, by Proposition 6.2.4,
it has a universal globalization.

However, ι1 : Xdisc → X is not an embedding.

Example 6.2.8. Let α as in Example 6.2.7, and let X indisc be the set X with the indiscrete
topology. Consider β the global action of M on X indisc where

β1(x) = y and β1(y) = x, (6.10)

and
ι = idX : X → X indisc. (6.11)

Then (β, ι) is a universal globalization of α.
Indeed, consider the coproduct ∐m∈M X = M ×X (with the discrete topology on

M). Then the equivalence relation (6.5) on M ×X has exactly the following non-trivial
relations.

(0, x) ∼ (1, y), (1, y) ∼ (0, x), (0, y) ∼ (1, x) and (1, x) ∼ (0, y).

Hence, Y = (M × X)/≈ = {[0, x], [0, y]} ∼= {x, y} with the indiscrete topology.
That is, Y ∼= X indisc. In this situation, the global action β and map ι from Lemma 6.2.1
are, up to the homeomorphism Y ∼= X indisc, given by (6.10) and (6.11).

The following is an example of a strong partial action that does not have a
universal globalization.

Example 6.2.9. Let M = Z2 = {0, 1} and X = {x, y} with the topology whose only
non-trivial open set is {x}. Consider the partial action datum α of M on X in Top, where

α(0) = [X, idX , idX ] and α(1) = [Xdisc, idX , idX ],

where Xdisc is the set X with the discrete topology.
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Then α is a strong partial action of M on X. However, the discrete topology
is not the smallest topology on X that makes idX : X → X continuous. Hence, by
Proposition 6.2.4 the strong partial action α doesn’t have a universal globalization.

6.3 THE CATEGORIES OF ASSOCIATIVE ALGEBRAS
Throughout this section, let K be a field and G a group with identity e. Every

algebra in this section is assumed to be an associative and not necessarily unital K-algebra.
The concept of a partial action of G on an algebra, as defined by Dokuchaev and

Exel in [7], is the following.

Definition 6.3.1. A partial action of G on an algebra A is a partial action {αg}g∈G of G
on the underlying set of A where domαg is an ideal of A and αg is a homomorphism of
algebras for each g ∈ G.

Observe that, by Corollary 4.3.15 and Proposition 4.1.19, if {αg}g∈G is a partial
action of G on an algebra A, then the partial action datum α(g) = [domαg, ιg, αg] of the
monoid G on the object A ∈ AlgK, where ιg is the inclusion map of domαg into A for all
g ∈ G, is a strong partial action of G on the object A in AlgK.

At times we will interchange the notation a partial action {αg}g∈G in the sense of
Definition 6.3.1 with its corresponding strong partial action α in the sense of Definition 4.3.6.

We distinguish the two concepts of partial actions by saying that one is classical,
while the other is categorical.

However, given a strong partial action α of a group on an object X in AlgK, it
may not come from a partial action of the group on an algebra, as the domains of the
corresponding partial maps of α may be subalgebras of X that are not ideals.

In [7] the authors define the concept of an enveloping action of a partial action of
a group on an algebra, which may be described as follows.

Definition 6.3.2. Let α be a classical partial action of a group G on an algebra A. An
enveloping action of α is a pair (β, ι), where β is a global action of G on an algebra B
and ι : A → B is an injective K-algebra homomorphism whose image is an ideal of B,
satisfying the following.

(EA1) ι(domαg) = ι(A) ∩ βg−1(ι(A));

(EA2) ι ◦ αg(x) = βg ◦ ι(x) for all x ∈ domαg;

(EA3) B is generated by ⋃g∈G βg(ι(A)).

Proposition 6.3.3. Let α be a categorical partial action of a group G on an algebra A. A
pair (β, ι), where β is a global action of G on an algebra B and ι : A → B is an injective
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K-algebra homomorphism, satisfies (EA1) and (EA2) if and only if it is a globalization of
α, seen as a categorical partial action.

Proof. Let α(g) = [domαg, ιg, αg], where domαg ⊆ A and ιg is the corresponding inclusion
of each g ∈ G.

First assume that (β, ι) is a globalization of α. Then for each g ∈ G the diagram

domαg

A A

B

ιg αg⌟

βg◦ι ι

(6.12)

is a pullback in AlgK.
It is a simple verification that (EA2) follows from the commutativity of (6.12) for

each g ∈ G.
Let us now verify (EA1). Let g ∈ G. Consider the subalgebra

P = {(a, b) ∈ A× A : βg(ι(a)) = ι(b)}

of A× A. Then the diagram
P

A A

B

p1 p2⌟

βg◦ι ι

(6.13)

is a pullback in AlgK, where p1 and p2 are given by p1(a, b) = a and p2(a, b) = b, for all
(a, b) ∈ P .

Since both domαg and P form pullbacks of βg◦ι and ι, there exists an isomorphism
φ : domαg → P such that the diagram

domαg

P

A A

ιg αg

φ

p1 p2

(6.14)

commutes. It is a simple verification that φ is given by

φ(a) = (a, αg(a)). (6.15)
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Let x ∈ ι(domαg). Then x = ι(a) for some (unique) a ∈ domαg. In particular,
x ∈ ι(A), since a ∈ A. Also, observe that, by the commutativity of (6.12),

x = ι(a) = ι ◦ ιg(a) = βg−1 ◦ βg ◦ ι ◦ ιg(a) = βg−1 ◦ ι ◦ αg(a) = βg−1(ι(αg(a))).

Thus, since αg(a) ∈ A, x ∈ βg−1(ι(A)). Hence, x ∈ ι(A) ∩ βg−1(ι(A)).
On the other hand, let x ∈ ι(A) ∩ βg−1(ι(A)). Then there exist a, b ∈ A such that

x = ι(a) = βg−1(ι(b)).

In this situation, observe that
βg(ι(a)) = ι(b).

Thus, (a, b) ∈ P . Since φ : domαg → P is an isomorphism of algebras, in particular it
is a surjective map. Therefore, there exists c ∈ domαg such that φ(c) = (a, b). Hence,
by (6.15),

(a, b) = φ(c) = (c, αg(c)),

so a = c ∈ domαg, and, consequently, x = ι(a) ∈ ι(domαg).
Thus, ι(domαg) = ι(A) ∩ βg−1(ι(A)) so (EA1) also follows.
Now assume that (β, ι) satisfies (EA1) and (EA2). To verify that (β, ι) is a

globalization of α we must show that diagram (6.12) is a pullback for all g ∈ G.
Fix g ∈ G. By (EA2), (6.12) is commutative. Hence, since (6.13) is a pullback,

there exists a unique K-algebra homomorphism φ : domαg → P such that (6.14) commutes.
To verify that (6.12) is a pullback, it then suffices to prove that φ is an isomorphism of
algebras.

It is an easy verification that φ is given by the formula (6.15) and that it is
injective, so all that remains is to check that φ is surjective.

Let (a, b) ∈ P . Then βg(ι(a)) = ι(b), so ι(a) = βg−1(ι(b)). Hence, since a, b ∈ A,
ι(a) ∈ ι(A) ∩ βg−1(ι(A)).

By (EA1) it follows that ι(a) ∈ ι(domαg). Since ι is an injective map, we have
a ∈ domαg.

By (EA2), since a ∈ domαg we then have

ι(b) = βg(ι(a)) = ι(αg(a)).

Thus, by the injectivity of ι, b = αg(a).
Therefore, we have

φ(a) = (a, αg(a)) = (a, b).
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Hence, φ is surjective, as desired.

Proposition 6.3.4. Let α be a categorical partial action of G on an algebra A and (β, ι)
a universal globalization of α. Then (β, ι) satisfies (EA3).

Proof. Let us say that β acts on an algebra B. Consider the subalgebra ∑m∈M βm(ι(A))
of B. Then clearly it contains the subalgebra βm(ι(A)) of B for each m ∈ M .

Thus, βm ◦ ι factors through the inclusion map v of ∑m∈M βm(ι(A)) into B for
all m ∈ M . Therefore, by Theorem 5.2.29, v is an isomorphism, so ∑m∈M βm(ι(A)) = B.
Hence, (β, ι) satisfies (EA3), as desired.

Observe, however, that Propositions 6.3.3 and 6.3.4 do not imply that a universal
globalization (β, ι) of a classical partial action of a group on an algebra is an enveloping
action, since the image of ι may not be an ideal of the algebra on which β acts.

The following example illustrates this fact, by providing a partial action that has
an enveloping action and a universal globalization that are not isomorphic.

Example 6.3.5. Let G = Z2 = {0, 1} and A any non-trivial algebra. Consider the global
action β of G on B = A× A, where

β1(a, b) = (b, a),

for all (a, b) ∈ B.
Let ι : A → B be given by

ι(a) = (a, 0),

for all a ∈ A. Clearly, it is a monomorphism in AlgK. Let, then, α be the restriction of β
to A via ι.

It is a simple verification that α is the categorical partial action of G on A ∈ AlgK

given by
α(1) = [0, 0, 0]. (6.16)

This partial action comes from the classical partial action {αg}g∈G of G on the algebra A
where domα1 = {0} and α1 is the zero map.

Since (β, ι) is a globalization of α, by Proposition 6.3.3, it satisfies (EA1) and (EA2).
Since

B = A× A = A× {0} + {0} × A = ι(A) + βg(ι(A)),

the pair (β, ι) also satisfies (EA3). Thus, since ι(A) is an ideal of B, (β, ι) is an enveloping
action of α.

However, (β, ι) is not a universal globalization of α. Consider C = ∐
g∈GA with

corresponding inclusion morphisms u0 and u1 (recall Example 2.2.29). Let γ be the global
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action of G on C where γ1 is the unique morphism in AlgK with γ1 ◦ u0 = u1 and
γ1 ◦ u1 = u0, given by the universal property of the coproduct. Also let κ = u0 : A → C.

Since α has a globalization, Theorem 5.2.5 and the construction in Corollary 5.2.19
show us that the pair (γ, κ) is a universal globalization of α.

Now, assume by contradiction that (β, ι) is a universal globalization of α. Then,
by Proposition 5.2.7, there exists an isomorphism φ : β → γ such that φ ◦ ι = κ. Since
ι(A) is an ideal of B and φ is an isomorphism, it then follows that κ(A) = φ(ι(A)) is an
ideal of C.

However, since A is not the trivial algebra, κ(A) is not an ideal of C. Indeed,
κ(a)u1(a) ̸∈ κ(A) for any a ̸= 0 in A. Hence, (β, ι) is not a universal globalization of α.

As we have observed, the partial actions of a group on objects in AlgK generalize
properly the classical partial actions of the group on algebras. A more appropriate setting
to deal with these partial actions is, then, the category AlgId

K (recall Definition 2.2.11).

Proposition 6.3.6. Let α be a partial action datum of a monoid M on an object A ∈ AlgId
K .

Then α is a (strong) partial action if and only if it is a (strong) partial action of M on A

in AlgK.

Proof. By Lemma 2.2.13, the inclusion functor of AlgId
K into AlgK preserves pullbacks.

It is a simple verification that it also satisfies the hypothesis of Proposition 3.3.4, so the
result follows from Proposition 4.3.13.

Thus, the classical partial actions of a group on algebras correspond to strong
partial actions of the group on objects in AlgId

K . And, in this case, the converse is also
true, since the morphisms in AlgId

K that are inclusion maps are inclusions of ideals.
The next proposition will show a certain relationship between the enveloping

actions and the universal globalizations in AlgId
K . Its proof was heavily inspired by the

proof of the uniqueness part of [7, Theorem 4.5].

Lemma 6.3.7. Let {αg}g∈G be a classical partial action of a group G on an algebra A

where each ideal domαg is a unital algebra with unity element 1g. Then αg(1g) = 1g−1 for
each g ∈ G.

Proof. Let g ∈ G. Observe that αg is injective by Corollary 4.1.17. And by taking h = e

in Lemma 4.1.18 we obtain
αg(domαg) = domαg−1 . (6.17)

Hence, αg induces a bijective map, and, thus, an isomorphism of algebras, from domαg to
domαg−1 . Therefore, αg(1g) = 1g−1 , as desired.

Lemma 6.3.8. Let A be an algebra and {Ai}i∈I a finite family of unital ideals of A such
that A = ∑

i∈I Ai. Then A is a unital algebra.
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Proof. First we prove that if A is the sum of two ideals I and J , with unity elements 1I
and 1J , respectively, then A is a unital algebra.

Let 1A = 1I + 1J − 1I1J . Let a ∈ I. Then we have

a1A = a(1I + 1J − 1I1J) = a1I + a1J − a1I1J = a+ a1J − a1J = a

and, similarly, 1Aa = a. Likewise, a1A = a = 1Aa for all a ∈ J . Hence, since A = I + J , 1A
is a unity element of A.

Then the general result follows by induction.

Proposition 6.3.9. Let {αg}g∈G be a classical partial action of a group G on an algebra
A where each ideal domαg is a unital algebra, and (β, ι) an enveloping action of α. Then
(β, ι) is a universal globalization of the strong partial action α of G on A in AlgId

K .

Proof. For each g ∈ G denote by 1g the unity element of the ideal domαg.
Since the pullbacks in AlgId

K are the same as in AlgK and (β, ι) is an enveloping
action of α, by Proposition 6.3.3 it is a globalization of α. So, it suffices to verify that
(β, ι) satisfies (UG2).

Let (γ, κ) be a globalization of α. We must show that there exists a unique
morphism κ′ : β → γ such that diagram (5.13) commutes. Let us say that γ acts on an
algebra C.

Observe that if such κ′ exists, by the commutativity of (5.13) and by Corollary 4.4.5,
we must have that

κ′(βg(ι(a))) = γg(κ′(ι(a))) = γg(κ(a)), (6.18)

for all g ∈ G and a ∈ A.
Now, by (EA3), B is generated by ⋃

g∈G βg(ι(A)). Hence, B is generated as a
vector space by elements of the form βg(ι(a)), for g ∈ G and a ∈ A. So, once we establish
the existence of κ′, we have its uniqueness, as it must be given by (6.18).

Define, then, the map κ′ : B → C given on βg(ι(A)) by (6.18) for each g ∈ G.
Observe that if κ′ is a well-defined morphism in AlgId

K , then it is a morphism
from β to γ. Indeed, for each g ∈ G, and each generator x = βh(ι(a)) of B, by (6.18) and
the fact that β and γ are global actions, we have

κ′(βg(x)) = κ′(βg(βh(ι(a)))) = κ′(βgh(ι(a))) = γgh(κ(a)) = γg(γh(κ(a)))
= γg(κ′(βh(ι(a)))) = γg(κ′(x)),

so κ′ ◦ βg = γg ◦ κ′. Thus, by Corollary 4.4.5, κ′ is a datum morphism from β to γ.
Also, observe that, in this case, diagram (5.13) commutes, since, by (6.18),

κ′(ι(a)) = κ′(βe(ι(a))) = γe(κ(a)) = κ(a)
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for all a ∈ A.
All that remains is to show that κ′ is a well-defined homomorphism of algebras

whose image is an ideal of C.
First, let us verify that κ′ is a well-defined linear map. Let {ag}g∈G ⊆ A with only

a finite number of non-zero elements such that

∑
g∈G

βg(ι(ag)) = 0. (6.19)

We must verify that ∑g∈G γg(κ(ag)) = 0.
Let h ∈ G and a ∈ A. Then, by (6.19), ∑g∈G βg(ι(ag))βh(ι(a)) = 0. By applying

βh−1 to this equality we get ∑
g∈G

βh−1g(ι(ag))ι(a) = 0. (6.20)

Let g ∈ G. Since ι(A) and βh−1g(ι(A)) are ideals of B, we have βh−1g(ι(ag))ι(a) ∈
ι(A) ∩ βh−1g(ι(A)). Thus, by (EA1) and the fact that domαg−1h is a unital ideal of A,

βh−1g(ι(ag))ι(a) ∈ ι(domαg−1h) = ι(A1g−1h) = ι(A)ι(1g−1h).

The algebra ι(A)ι(1g−1h) is a unital ideal of B, with unit element ι(1g−1h).
Then, by Lemma 6.3.7 and (EA2)

βh−1g(ι(ag))ι(a) = βh−1g(ι(ag))ι(a)ι(1g−1h) = βh−1g(ι(ag))ι(1g−1h)ι(a)
= βh−1g(ι(ag))ι(αh−1g(1h−1g))ι(a) = βh−1g(ι(ag))βh−1g(ι(1h−1g))ι(a)

(6.21)

= βh−1g(ι(ag1h−1g))ι(a) = ι(αh−1g(ag1h−1g))ι(a) = ι(αh−1g(ag1h−1g)a).

Now, (γ, κ) is a globalization of α. Therefore, by Proposition 6.3.3 it satisfies (EA1)
and (EA2). Hence, similarly we have

γh−1g(κ(ag))κ(a) = κ(αh−1g(ag1h−1g)a). (6.22)

By (6.20) and (6.21),

ι

∑
g∈G

αh−1g(ag1h−1g)a
 =

∑
g∈G

ι(αh−1g(ag1h−1g)a) =
∑
g∈G

βh−1g(ι(ag))ι(a) = 0,

so, since ι is an injective map, we have

∑
g∈G

αh−1g(ag1h−1g)a = 0. (6.23)
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Then, by (6.22) and (6.23), we have

∑
g∈G

γh−1g(κ(ag))κ(a) =
∑
g∈G

κ(αh−1g(ag1h−1g)a) = κ

∑
g∈G

αh−1g(ag1h−1g)a
 = κ(0) = 0.

(6.24)
By applying γh to (6.24) we get

∑
g∈G

γg(κ(ag))γh(κ(a)) = 0. (6.25)

Since (6.25) holds for all h ∈ G and a ∈ A, the element ∑g∈G γg(κ(ag)) annihilates
γh(κ(A)) for all h ∈ G.

Let G′ be the finite set {g ∈ G : ag ̸= 0} ⊆ G and C1 be the algebra generated by⋃
g∈G′ γg(κ(A)). Since γg(κ(A)) is an ideal of C for each g ∈ G′, it is also an ideal of C1.

Clearly each γg(κ(A)) is unital, because A is unital. Therefore, as C1 = ∑
g∈G′ γg(κ(A)),

by Lemma 6.3.8 we have that C1 is a unital algebra. Let

1C1 =
∑
h∈G′

γh(κ(a1
h))

be its unit.
Now, ∑g∈G γg(κ(ag)) ∈ C1. Thus, since ∑g∈G γg(κ(ag)) annihilates each γh(κ(A)),

we have

∑
g∈G

γg(κ(ag)) =
∑
g∈G

γg(κ(ag))1C1 =
∑
g∈G

γg(κ(ag))
∑
h∈G′

γh(κ(a1
h))

=
∑
h∈G′

(
∑
g∈G

γg(κ(ag))γh(κ(a1
h))) =

∑
h∈G′

0 = 0.

Hence, the well-definition of κ′ follows.
We now have a linear map κ′ : B → C. Let us verify that it preserves the product

of the algebras.
It suffices to do so on two generators of B. Let g, h ∈ G and ag, ah ∈ A. We will

check that κ′(βg(ι(ag))βh(ι(ah))) = κ′(βg(ι(ag)))κ′(βh(ι(ah))).
By (6.21), we have βh−1g(ι(ag))ι(ah) = ι(αh−1g(ag1h−1g)ah), so, by applying βh we

obtain
βg(ι(ag))βh(ι(ah)) = βh(ι(αh−1g(ag1h−1g)ah)) (6.26)

Similarly, by (6.22) we have

γg(κ(ag))γh(κ(ah)) = γh(κ(αh−1g(ag1h−1g)ah)) (6.27)



Chapter 6. Results and examples in certain categories 157

Hence, by (6.18), (6.26) and (6.27),

κ′(βg(ι(ag))βh(ι(ah))) = κ′(βh(ι(αh−1g(ag1h−1g)ah))) = γh(κ(αh−1g(ag1h−1g)ah))
= γg(κ(ag))γh(κ(ah)) = κ′(βg(ι(ag)))κ′(βh(κ(ah))),

as desired.
So, κ′ is an algebra morphism from B to C. Finally, κ′ is a morphism in AlgId

K .
Indeed, by (EA3) and (6.18),

κ′(B) = κ′

∑
g∈G

βg(ι(A))
 =

∑
g∈G

κ′(βg(ι(A))) =
∑
g∈G

γg(κ(A))

is a sum of ideals of C, since each γg ◦ κ is a morphism in AlgId
K .

Unfortunately, AlgId
K does not have all colimits, so we cannot apply the results

from Theorem 5.2.15 or Corollary 5.2.19 to partial actions in this category.
In fact, the category AlgId

K gives us an example of a universal globalization that
does not come from a reflection.

Example 6.3.10. Let G = Z2 = {0, 1} and A be a non-trivial unital algebra. Let β and ι
as in Example 6.3.5. Observe that ι(A) is an ideal of B = A×A. We can then interpret β
as a global action on an object of AlgId

K and ι as a monomorphism in AlgId
K .

Let α be the restriction of β to A via ι in AlgId
K . Clearly, since the pullbacks

involving monomorphisms of AlgId
K are the same of AlgK (by Lemma 2.2.13), α is given

by (6.16).
As we have verified, (β, ι) is an enveloping action of α. Hence, since each of the

ideals of α is unital, by Proposition 6.3.9, (β, ι) is a universal globalization of α in AlgId
K .

Let us verify that ι is not a reflection of α in M−ActAlgId
K

.
To do so, consider the global action γ of M on A given by γ1 = idA and the

morphism κ = idA.
Notice that, by Lemma 4.4.4, κ is a morphism in M−pActAlgId

K
from α to γ,

since γ0 ◦ κ ◦ ι0 = idA = κ ◦ α0 and γ1 ◦ κ ◦ ι1 = 0 = κ ◦ α1.
Suppose that there is a morphism κ′ : β → γ such that

κ′ ◦ ι = κ.

Then it as a simple verification that that κ′ must be given by

κ′(a, b) = κ(a) + γ1(κ(b)) = a+ b,



Chapter 6. Results and examples in certain categories 158

which is not an algebra morphism, since

κ′(1, 0)κ′(0, 1) = 1 ̸= 0 = κ′((1, 0)(0, 1)).
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