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“As the power of computer approaches the
theoretical limit and as we turn to more realistic
(and thus more complicated) problems, we
face ‘the curse of dimension’, which stands
in the way of successful implementations of
numerics in science and engineering. Here
one needs a much higher level of mathematical
sophistication in computer architechture as well
as in computer programming. ...Successes here
may provide theoretical means for performing
computations with high power growing arrays
of data. ...We shall need ... the creation of
a new breed of mathematical professionals
able to mediate between pure mathematics and
applied science. The cross-fertilization of ideas
is crucial for the health of the science and
mathematics.”

Mikhaïl Gromov

“We must not believe those, who today, with
philosophical bearing and deliberative tone,
prophesy the fall of culture and accept the
ignorabimus. For us there is no ignorabimus,
and in my opinion none whatever in natural
science. In opposition to the foolish ignorabimus
our slogan shall be Wir müssen wissen – wir
werden wissen (We must know – we will know).”

David Hilbert





Resumo

A estratégia atual de controle do câncer de mama no sistema público de saúde brasileiro
depende da determinação manual de escores BI-RADS para avaliação de malignidade
durante exames de ultrassom, frequentemente resultando em biópsias desnecessárias. A
previsão de malignidade a partir de características clínicas e de ultrassom poderia aliviar
a carga de trabalho dos patologistas e compensar lacunas de habilidade em médicos inici-
antes ou não especialistas. Métodos de aprendizagem de máquina têm se mostrado pro-
missores no uso de características de ultrassom de modo B para previsão de malignidade
de lesões de mama. Nesta dissertação, discutimos elementos da teoria de aprendizagem
de máquina, incluindo desigualdades de concentração e dimensão VC, que são conceitos-
chave para a análise de propriedades de generalização de algoritmos de aprendizagem. Em
seguida, mostramos como tais conceitos podem ser usados para elaboração de cotas de
generalização para os valores preditivos. Em cenários com grandes tamanhos de amostra
e pequena dimensão VC, um estudo de validação baseado nessas cotas de generalização
seria possível. Também apresentamos uma abordagem baseada em gradient boosting
para identificação de lesões benignas, que incorpora características clínicas, baseadas em
Doppler e clássicas de ultrassom em modo B. Um classificador XGBoost foi treinado com
dados de 1929 lesões de mama obtidas a partir de uma coorte de pacientes de quatro
centros de referência de câncer de mama no Brasil. Nosso classificador alcançou uma área
sob a curva de precisão-recall média (AUPRC) de 0,95 e boa calibração em validação
cruzada repetida de 5 folds. Nosso trabalho fornece uma solução baseada em gradient
boosting promissora que pode beneficiar a prática clínica. Embora não seja aplicável
para estimar o erro de generalização das curvas de valor preditivo em nosso problema,
devido a um tamanho de amostra insuficiente e à falta de precisão nas estimativas atuais
para a dimensão VC de gradient boosted regression trees, as ferramentas matemáticas
desenvolvidas nesta dissertação são de extrema importância para o design de algoritmos
de aprendizagem confiáveis e podem ser aplicadas a uma gama mais ampla de problemas
do que os considerados nesta dissertação.

Palavras-chave: Aprendizagem de Máquina. Teoria de Aprendizagem de Máquina.
Modelagem de Predição Clínica. Câncer de Mama. Ultrassom.





Abstract

The current breast cancer control strategy employed in the Brazilian public health sys-
tem relies on manual determination of BI-RADS scores by clinicians to assess malignancy
during ultrasound examinations, often leading to unnecessary biopsies. Predicting malig-
nancy from clinical and ultrasound features could ease pathologists’ workload and offset
skill gaps in beginner or non-specialist physicians. Machine learning has shown promise
in using B-mode ultrasound features to predict breast lesion malignancy. In this thesis,
we discuss elements from the theory of machine learning, including concentration inequal-
ities and VC dimension, which are key concepts to analyse the generalization properties
of learning algorithms. Then, we show how such concepts can be used to devise general-
ization bounds for the predictive values. In scenarios with large sample sizes and small
VC dimension, a learning-theoretical validation study based on these predictive value
generalization bounds would be possible. We also present a gradient boosting approach
for identifying benign lesions that incorporates both clinical and Doppler-based features
alongside classical B-mode ultrasound features. An XGBoost classifier was trained with
data from 1929 breast lesions obtained from a cohort of patients across four breast cancer
reference centers in Brazil. Our classifier achieved a mean area under the precision-recall
curve (AUPRC) of 0.95 and good calibration in repeated 5-fold cross-validation. Our
work provides a promissing gradient boosting solution that may be of benefit to clinical
practice. Although not applicable to the estimation of the generalization error of the pre-
dictive value curves in our problem due to an insufficient sample size and lack of tightness
in current estimates of the VC dimension of gradient-boosted trees, the mathematical
tools developed in this thesis are of utmost importance to the design of reliable learning
algorithms and may be applied to a wider range of problems than the ones considered in
this thesis.

Keywords: Machine Learning. Learning Theory. Clinical Prediction Modeling. Breast
Cancer. Ultrasound.





Resumo Estendido

Introdução
A estratégia atual de controle do câncer de mama no sistema público de saúde brasileiro
depende da determinação manual de escores BI-RADS para avaliação de malignidade du-
rante exames de ultrassom, frequentemente resultando em biópsias desnecessárias. Neste
cenário, é evidente que a previsão precisa de malignidade a partir de características clíni-
cas e de ultrassonografia poderia aliviar a carga de trabalho dos patologistas e compensar
lacunas de habilidade em médicos iniciantes ou não especialistas. Entre as abordagens
computacionais para o auxílio à interpretação de exames de ultrassom, aquelas baseadas
em aprendizagem de máquina têm se mostrado particularmente promissoras. De um ponto
de vista matemático, tais metodologias podem ser analisadas no contexto de teoria do
aprendizado, uma área fértil na interseção da matemática aplicada, computação e estatís-
tica, que visa entender, entre outras coisas, as propriedades de generalização de algoritmos
de aprendizagem de máquina. Alguns elementos relevantes incluem as desigualdades de
concentração, as noções de complexidade para classes de modelos e o princípio/algoritmo
da minimização do risco empírico. Através desse ferramental, torna-se possível estudar
propriedades de generalização de métricas relevantes no contexto diagnóstico, em parti-
cular, os valores preditivos positivo e negativo.

Objetivos
Diante do exposto, esta dissertação de mestrado tem os seguintes objetivos:

1. Estudar e apresentar elementos da teoria do aprendizado supervisionado;

2. Analisar o algoritmo da minimização do risco empírico;

3. Apresentar cotas de generalização para os valores preditivos;

4. Desenvolver e validar um modelo de aprendizagem de máquina para predição de
malignidade.

Metodologia
Nesta dissertação, discutimos elementos da teoria de aprendizagem de máquina, incluindo
desigualdades de concentração, complexidade de Rademacher e dimensão VC, que são
conceitos-chave para a análise de propriedades de generalização de algoritmos de apren-
dizagem. Em seguida, mostramos como tais conceitos podem ser usados para elaboração
de cotas de generalização para os valores preditivos, métricas centrais no contexto diag-
nóstico. Também apresentamos experimentos baseados em gradient boosting para identi-
ficação de lesões benignas, que incorporam características clínicas, baseadas em Doppler
e clássicas de ultrassom em modo B. Em particular, treinamos um classificador XGBo-
ost com base em validação cruzada repetida de 5 folds utilizando dados de 1929 lesões
de mama obtidas a partir de uma coorte de pacientes de quatro centros de referência
de câncer de mama no Brasil, incluindo o Hospital das Clínicas de Ribeirão Preto e o
Hospital de Amor de Barretos. Adicionalmente, apresentamos um segundo conjunto de
experimentos que visou avaliar num contexto prático as cotas de generalização para os
valores preditivos.



Resultados e Discussão
Nosso modelo de classificação alcançou boas curvas de valores preditivos, ROC, de precisão
e recall, sensitividade, especificidade, e de calibração ao longo das 50 iterações de validação
cruzada. Em particular, todas as curvas se mostraram estáveis, as curvas de classificação
se mostraram altamente discriminatórias (AUPRC média = 0.9527; AUROC média =
0.9568) e as curvas de calibração se mantiveram perto do ideal (y = x). Com base nos
hiperparâmetros escolhidos durante a validação cruzada, desenvolvemos um classificador
final, que similarmente atingiu boas propriedades de discriminação e calibração. A fim de
inspecionar as predições individuais do modelo, computamos os valores SHAP associados
e visualizamos uma importância conjunta de atributos clínicos e de imagem. Por fim, os
experimentos baseados nas cotas de generalização não obtiveram resultados interessantes
no contexto do nosso dataset e método (XGBoost). Entretanto, notamos que, em cenários
com grandes tamanhos de amostra e pequena dimensão VC, um estudo de validação
baseado nessas cotas de generalização seria possível.

Considerações Finais
Os experimentos descritos nesta dissertação possuem vários desdobramentos interessan-
tes. Dentre eles, destacamos a realização de um estudo de validação externo detalhado,
estratificando por escore BI-RADS, idade e outros parâmetros importantes. Neste mo-
mento, seria interessante avaliar as predições individuais do modelo final com respeito a
valores SHAP e também no contexto de predição conforme, com a finalidade de identificar
possíveis vieses no modelo e também prover quantificação de incerteza. De um ponto de
vista matemático, notamos a importância de se estudar cotas dependentes da distribuição
subjacente dos dados e, em particular, baseadas na complexidade de Rademacher. Por
fim, embora não sejam aplicáveis para estimar o erro de generalização das curvas de valor
preditivo em nosso problema, devido a um tamanho de amostra insuficiente e imprecisão
nas estimativas atuais para a dimensão VC de gradient boosted regression trees, as ferra-
mentas matemáticas desenvolvidas nesta dissertação são de extrema importância para o
design de algoritmos de aprendizagem confiáveis e podem ser aplicadas a uma gama mais
ampla de problemas do que os considerados nesta dissertação.

Palavras-chave: Aprendizagem de Máquina. Teoria de Aprendizagem de Máquina.
Modelagem de Predição Clínica. Câncer de Mama. Ultrassom.
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1 Introduction
There were few successes in the
treatment of disseminated
cancer. It was usually a matter
of watching the tumor get
bigger, and the patient,
progressively smaller.

John Laszlo

Machine learning is quickly gaining ground within the medical community as a
tool for enabling automation and the discovery of new scientific facts [Deo15; Pic+21;
RDK19; Tie+23b]. In this thesis we explore the usage of gradient-boosted regression
trees to develop a model for the prediction of malignancy of breast lesions identified by
ultrasound in Brazil. A key concern of the thesis is to develop a model that reliably
rejects unnecessary biopsies without compromising cancer cases, thereby improving on
the current BI-RADS1 standard.

At its core, machine learning is concerned with leveraging regularities present
in natural processes to obtain patterns that generalize; i.e., that continue to hold in the
presence of new data. In the context of the malignancy prediction problem, this means
to find some function h of the observed attributes that reliably predicts the malignancy
of breast lesions not present in its training dataset. Naturally, there is much interest in
developing mathematical models of learning so that one can analyze which factors most
strongly affect it, develop new algorithms, and provide statistical guarantees on practical
experiments. For these reasons, in this thesis we explore the classical framework of learn-
ing theory2 [BBL02; BLM16; MRT18; Vap98] and apply it to estimate the generalization
error of predictive value curves in our machine learning experiments.

1.1 Breast lesion malignancy prediction

Breast cancer is the most common invasive cancer among women [Sie+23]. In
2022 alone, there were an estimated 2.3 million new cases and 666.000 deaths worldwide
1 BI-RADS is a standard for classifying findings based on their malignancy risk (from 0 up to 6). See

[MBB+13] for further details.
2 What is nowadays referred to as learning theory is the combination of two lines of research: statistical

learning theory and computational learning theory. The first originated with the theoretical analysis of
the Perceptron by A. Novikoff, M. Aizerman, E. Braverman, and L. Rozonoer [ABR64; MP43; Nov62;
Ros62] and blossomed with the analysis of empirical risk minimization and model complexity by V.
Vapnik and A. Chervonenkis [VC68; VC74; VC89]. The second is centered around the introduction
of the Probably Approximately Correct (PAC) model of learnability to theoretical computer science
by Valiant [Val84]. Although originally developed with different goals, both fields shared many tools
and techniques and were eventually considered to be part of the more general framework nowadays
referred to as learning theory.
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[Bra+24]. In Brazil, the situation is not different [INC23]. Breast cancer screening is
widely employed to identify early-stage cancers, allowing for easier and less costly treat-
ment [Pra+18]. While mammography serves as the primary technique, it may not always
yield conclusive results, particularly in cases involving dense breasts [Ber08]. In such
instances, supplemental breast ultrasound3 (US) is frequently utilized as an alternative.
Additionally, US is the recommended tool for the evaluation of many breast abnormalities
[Eva+18].

Figure 1 – US samples from benign and malignant lesions.

Source: [Buz+23].

US has several advantages over other imaging methods, including its relatively
lower cost, absence of ionizing radiation, and real-time image evaluation capabilities
[Fei10]. However, it has a major problem: it is highly operator-dependent and exhibits
a high false positive rate [Cor+11; Yan+20]. Moreover, this issue is only partially ame-
liorated by employing the widely adopted Breast Imaging Reporting & Data System
(BI-RADS) standard [Kim+21; SBC20], resulting in a substantial number of unneces-
sary biopsies, added burden on pathologists, and instilled fear on patients and families
[Buz24]. This underscores the need for improved diagnostic strategies to mitigate unnec-
essary biopsies and enhance the precision of ultrasound-based evaluations.

There have been numerous studies employing the use of machine learning to im-
prove the diagnostic performance of US [Cho+19; Lee+12; Mou+20; Pfo+22; She+07;
3 Refer to Figure 1 for an example of US imaging.
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She+23; She+21; Zel+19]. In this thesis, we extend the work of Buzatto et al. [Buz+23]
by exploring a learning-theoretic approach to malignancy prediction and considering al-
ternative model validation techniques based on predictive value generalization bounds
[VS20] and repeated cross-validation. Our experiments build on the dataset collected
by Buzatto et al. in collaboration with four breast cancer reference centers in Brazil:
University of São Paulo’s University Hospital at Ribeirão Preto (SP), Women’s Health
Reference Center of Ribeirão Preto (MATER) (SP), Hospital de Amor de Barretos (SP),
and Hospital de Amor de Campo Grande (MS).

Although clinical prediction modeling has a long relationship with statistical in-
ference [Ste19], the machine learning approach taken in this thesis is better discussed
within the context of learning theory. There are two reasons for this. The first is that
gradient boosting originates from learning theory [CG16; FS97; FHT00; Fri01; KV94].
The second is that the theory enables the estimation of the generalization error of predic-
tive value curves under the relatively mild assumption that the flow of suspicious lesions
through the clinic is given by independent and identically distributed (i.i.d.) sampling
from a fixed but unknown probability distribution P. From a more general perspective, it
is also worth highlighting that most supervised learning approaches, including our own,
follow the inductive principle of empirical risk/loss minimization (we minimize a regu-
larized version of the log-loss), and, as such, there is intrinsic motivation for studying
it. Moreover, it must be noted that concentration inequalities are a basic tool to the
non-asymptotical analysis of many random processes [BLM16], both inside and outside
of machine learning, and as such are applicable to a wider range of problems than the
ones considered in this thesis.

1.2 Goals

The objectives of this dissertation are as follows.

• Present elements of learning theory: In this thesis, we review central con-
cepts from learning theory. In particular, we study the concentration inequalities
of Chernoff-Hoeffding (Theorem 2.3.1) and McDiarmid (Theorem 2.3.3), and the
notions of Rademacher complexity (Definition 2.4.1) and VC dimension (Defini-
tion 2.4.4).

• Analyze empirical risk minimization: Simultaneously with the introduction
of the mathematical tools of model complexity and concentration, we study the
empirical risk minimization principle as a learning algorithm and show how such
tools may be used to analyse its learning rate.

• Provide a learning-theoretic treatment of malignancy prediction: After
reviewing foundational material, we specialize the discussion to malignancy pre-
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diction. In particular, we explore relevant classification metrics, discuss scoring
functions and threshold-based classifiers, and provide a learning-theoretic analysis
of the generalization error of predictive value curves that builds on VC dimension
and concentration.

• Develop and validate a machine learning model: Finally, we experiment with
the dataset described in [Buz+23] to develop and validate a gradient-boosted trees
model for predicting the malignancy of breast lesions identified by ultrasound in the
Brazilian public health system.

1.3 Structure of the thesis

This dissertation is organized as follows. Chapter 2 introduces concentration
inequalities and abstract notions of model complexity wrapped around a discussion on
empirical risk minimization. The chapter begins with a thorough introduction to the
binary classification problem and the empirical risk minimization algorithm. Following
this, the central inequalities of McDiarmid and Chernoff-Hoeffding are introduced. Then,
two formalizations of the intuitive notion of model complexity are discussed: Rademacher
complexity and VC dimension. The chapter culminates with the usage of such complexity
measures to provide non-asymptotical generalization bounds for empirical risk minimiza-
tion over infinite classes. Chapter 3 starts with an introduction to relevant performance
metrics. Following this, we discuss threshold-based classifiers and the learning-theoretic
generalization bounds of Vemuri and Srebro [VS20]. Chapter 4 revolves around two ex-
periments. The first experiment illustrates the theory of chapters 2 and 3 in the context of
gradient boosting and our dataset. Given the high uncertainty present in the performance
bounds obtained in the first experiment, the second experiment relies on more empirical
methods for hyperparameter tuning and internal validation. Chapter 5 discusses both the
theoretical material of Chapters 2 and 3 as well as the experiments of Chapter 4. The
thesis ends with a description of possible extensions of this work.
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2 Mathematical foundations of
supervised learning

I heard reiteration of the
following claim: Complex
theories do not work; simple
algorithms do. I would like to
demonstrate that in the area of
science a good old principle is
valid: Nothing is more practical
than a good theory.

Vladimir Vapnik

In this chapter, we delve into the mathematical underpinnings of supervised learn-
ing. We focus particularly on binary classification, as all applied learning problems of this
thesis can be cast into this framework. For multiclass classification and regression, readers
can refer to [MRT18, Chapters 9 and 11].

In the context of machine learning, the problem of binary classification consists
in learning to discern between two classes denoted by the labels +1 and −1. Specifically,
given a training dataset {(xi, yi)}m

i=1, where xi ∈ X (usually X ⊂ Rd for some d ∈ N)
and yi ∈ {−1, 1}, the goal is to construct a classifier function h : X → {−1, 1} capable
of predicting the classes of new, unseen data points; i.e., to construct a classifier that
generalizes beyond the training dataset. In practice, generalization is assessed by com-
paring the classifier’s accuracy in predicting labels for the training data {(xi, yi)}m

i=1 to
its performance on a separate test set {(xi, yi)}n

i=m+1, where n > m. In this setting, a
classifier demonstrating small error on both datasets is said to have generalized, while a
classifier with low training error but high test error is deemed overfitted to the training
data. Furthermore, a classifier exhibiting high error in both training and test sets is said
to be underfitted to the training data. For a concrete example of binary classification,
readers are referred to [SWM93], which discusses the problem of classifying breast fine
needle aspirates as malignant or benign.

The construction of the classifier can be approached in multiple ways. For in-
stance, a group of domain experts may handcraft a model1 whose weights reflect their
prior knowledge about the problem. More common, however, is to algorithmically extract
a model from the data; i.e., to let the machine learn. This can also be done in numerous
ways, but a very common strategy is to consider a collection of classifiers H and to choose
h ∈ H that best fits the data2. Two noteworthy examples of model classes are given by
1 We will use the words classifier and model interchangeably.
2 In machine learning, fitness is measured by a loss function L : H × X × Y → R+ that quantifies the
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the class of linear classifiers, defined as HLIN = {x 7→ sign(⟨w, x⟩ + b) : w ∈ Rd, b ∈ R},
and the class of neural network classifiers of a given architecture, given by HNET = {x 7→
f(x,w) : w ∈ W}, where f represents a neural network architecture and W encompasses
the set of all conceivable choices of weights for this specific architecture. With these exam-
ples in mind, the problem of data fitting can be formulated as the optimization problem
(2.1).

min
h∈H

1
m

mX
i=1

1h(xi )̸=yi
. (2.1)

This methodology gives rise to perhaps the simplest learning algorithm: Empirical
Risk Minimization over H (ERM-H). Given the training sample (x1, y1), ..., (xm, ym), it
consists in finding

ĥm ∈ argminh∈H

1
m

mX
i=1

1h(xi) ̸=yi
. (2.2)

This setup motivates a lot of interesting questions within multiple scientific fields,
including optimization [SNW11], theoretical computer science [Val84], and mathematical
statistics. In this thesis, we delve into the realm of statistical learning theory [Vap10] to
understand when ERM-H can be expected to successfully learn from the available data.
In particular, we will see that the success of learning hinges on three things:

1. On the ability of the chosen model class to approximate the desired pattern, i.e., on
there being h ∈ H that often produces the right classifications;

2. On the complexity of the chosen model class, as measured by VC dimension (Defi-
nition 2.4.4) or Rademacher complexity (Definition 2.4.1);

3. On the number of samples available for training.

In machine learning applications, practitioners often have control over both the
complexity of the model class and the number of samples. As such, this chapter provides
a sound framework for thinking about phenomena like generalization, overfitting, and
underfitting. In particular, given a choice of δ ∈ (0, 1), our analysis yields upper bounds
on the generalization error of ERM-H of the following form:

P
 

ˆgenm(ĥm) ≤ ε(Complexity(H), δ,m)
!

≥ 1 − δ, (2.3)

where ĥm is the same as in (2.2), ˆgen is formally introduced in Definition 2.1.2, and
ε → 0 as m → ∞. These bounds enable us to characterize overfitting as attempting
to learn a pattern using fewer samples than the required for the model class complexity.

discrepancy between the model’s prediction h(x) and the ground truth y. In this chapter, we stick
with the natural choice of L(h, x, y) = 1h(x)̸=y, which captures the notion of accuracy.
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Additionally, from the first of the tree conditions above, underfitting can be seen as trying
to learn with a model class that lacks the richness needed to capture the desired pattern.

As a note, the generalization bounds discussed in this chapter have significantly
shaped the development of machine learning. In particular3, margin-based bounds played
a crucial role in influencing max-margin methodologies such as Support Vector Machines
(SVMs) [ABR64; BGV92], which remained state-of-the-art until the early 2010s when
deep neural networks emerged as dominant players [KSH12]. Unfortunately, the general-
ization ability of deep neural networks cannot be explained by the theory of this chapter,
as these models don’t respect the principle of capacity control, usually having orders of
magnitude more parameters than data [Zha+16]. Understanding the mechanisms that af-
fect the generalization of deep neural networks is still an active area of research [Aro+19;
DR17; Ger+24].

This chapter is organized as follows. We begin in Section 2.1 by introducing
the standard mathematical model for binary classification and discussing the concepts of
learning and generalization within this framework. In Section 2.2, we deepen our discus-
sion on empirical risk minimization, laying ground with a key lemma (Lemma 2.2.1) that
will be pivotal throughout the text. In Section 2.3, we introduce tools from probability
theory, in particular the concentration inequalities of Chernoff-Hoeffding (Theorem 2.3.1)
and McDiarmid (Theorem 2.3.3), which we then apply to obtain non-asymptotic upper
bounds on the estimation error (defined in Section 2.1) of ERM-H when using a finite
class H. Under the inductive bias assumption that will be introduced in Section 2.1,
this entails that learning with ERM-H, H finite, is always possible given enough data.
In Section 2.4, we generalize these results to infinite classes H. We begin by employ-
ing concentration inequality machinery to upper bound the estimation error in terms of
Rademacher complexity (Definition 2.4.1). Although the bounds are tight, they are not
easily computable in practice. As such, we upper bound the Rademacher complexity with
yet another complexity measure: the VC dimension (Definition 2.4.4). Building on this,
we establish the fundamental result of the chapter, which states that learning is only
feasible when using classes that have finite VC dimension (see Theorem 2.4.4).

To navigate this chapter effectively, readers should be familiar with measure-
theoretic probability, as covered in [AL06]. Additionally, the text presupposes an informal
understanding of basic machine learning concepts such as binary classification and risk (or
loss) minimization, as presented in [DFO20]. For a more comprehensive understanding,
readers can refer to [MRT18, Chapters 1-3].

3 For a more recent example in the context of learning dynamical systems, see [Kos+22].
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2.1 Binary classification

The purpose of this section is to present a mathematical model for binary classi-
fication and to formalize the notions of learning and generalization. In essence, we aim to
develop a theoretical framework for asserting the future performance of classifiers, which
clearly involves introducing modeling assumptions on both the training and test data
points. This sort of data modeling problem is typical in statistics, and the standard solu-
tion is to assume the existence of a data-generating process from which all points under
consideration are drawn.

Given feature and label spaces X and Y = {−1, 1}, the simplest and most fre-
quently adopted assumption is that points are drawn independently and identically dis-
tributed (iid) from an unknown but fixed probability distribution P over X. To accom-
modate more realistic scenarios, where y is not solely determined by x, it is common to
consider a probability distribution over X × Y. This is the framework we shall adhere
to in this thesis. As a note, the present framework can be extended to encompass inter-
dependence between samples and a non-stationary data-generating process. For further
details, refer to [Dar+15].

Having motivated our mathematical framework, we now describe it in more detail.
Let X be a feature space and Y = {−1, 1}. Consider a sigma-algebra A on X so that X×Y

is equipped with the product sigma-algebra A × P(Y) and P(·) denotes the powerset
operation. Henceforth, we shall consider a fixed but unknown probability measure P
over X × Y. In this context, learning consists in finding a classifier h with small risk
(Definition 2.1.1) and a model that generalizes is one with small generalization error as
in Definition 2.1.2.

Definition 2.1.1 (Risk). Let h be a classifier, then we define its risk to be

R(h) := P(h(x) ̸= y), (2.4)

Furthermore, given a sample (x1, y1), ..., (xm, ym) iid∼ P, the empirical risk of the classifier
h with respect to the sample is given by

R̂m(h) := 1
m

mX
i=1

1h(xi )̸=yi
. (2.5)

Remark 2.1.1. Note that

E
(x1,y1),...,(xm,ym)iid∼P

"
1
m

mX
i=1

1h(xi )̸=yi

#
= 1
m

mX
i=1

E
(x1,y1),...,(xm,ym)iid∼P

"
mX

i=1
1h(xi )̸=yi

#
(2.6)

= E
h
1h(x1 )̸=y1

i
(2.7)

= R(h). (2.8)
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Remark 2.1.2. For expressions such as (2.4) to make sense, we have to assume that
model classes H are always comprised of measurable functions with respect to the sigma-
algebras A and P({−1, 1}).

Definition 2.1.2 (Generalization error). Let h be a classifier and (x1, y1), ..., (xm, ym) iid∼
P be a sample. Then, the generalization error of h with respect to the sample is given by

ˆgenm(h) = R(h) − R̂m(h). (2.9)

Remark 2.1.3. In section 2.2 we will see that the tasks of learning and minimizing the
generalization error can be approached simultaneously (see Remark 2.2.2).

Remark 2.1.4. As we are not assuming the existence of a functional relation between x

and y, there may not necessarily be a classifier that achieves zero risk for any given P.
Consider, for instance, the extreme case where y is entirely independent of x; e.g., y is
determined by tossing an unbiased coin. In this scenario, the risk of any classifier is 1/2.

Remark 2.1.5. Notice it is not possible to find a classifier that achieves a smaller risk
than h(x) = sign(η(x) − 1/2), where η(x) = P(y = +1 | X = x). Indeed, we may write

P(h(x) ̸= y) = E(x,y)∼P[1h(x) ̸=y] (2.10)
= ExEy[1h(x)̸=11y=+1 + 1h(x)̸=−11y=−1] (2.11)
= Ex[η(x)1h(x)=−1 + (1 − η(x))1h(x)=1]. (2.12)

The expression (2.12) is minimized by choosing a classifier that is 1 when η(x) ≥ 1/2 and
−1 otherwise. This classifier is known as the Bayes classifier and its risk is denoted by
R∗ = R(h∗).

In light of Remark 2.1.4, it is evident that the extent to which learning can occur
is ultimately dependent on the underlying distribution P. For easier problems, a simpler
class H may be expressive enough for

inf
h∈H

R(h), (2.13)

to be small, whereas for harder problems, a more complex class is required to maintain
the same level of performance. In order to keep the generality of the theory, it is essential
that we operate under the assumption that the given problem is well modelled by the
chosen class H. This assumption is known as a flat inductive bias towards the class H.
For further details on its necessity, readers are encouraged to consult [Ger+24, Chapter
1] and references therein. Under this assumption, learning is reduced to minimizing the
estimation error

R(h) − inf
h∈H

R(h). (2.14)
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From Section 2.2 onwards, we focus exclusively on studying the estimation error of ERM-
H.

2.2 Empirical risk minimization

In the previous section we introduced the standard model for binary classification.
In this section, we begin the analysis of the empirical risk minimization algorithm (ERM-
H) (Definition 2.2.1). In particular, we present a key result that allows us to bound the
estimation error of ERM-H by the largest generalization error realized by a classifier
inside H. That is, by

êrrm(H) = sup
h∈H

|R(h) − R̂m(h)|. (2.15)

The first application of this bound is outlined in Proposition 2.2.2, which shows
that the estimation error of ERM-H asymptotically goes to zero as m → ∞ when H

is finite. We will make substantial improvements to this bound after introducing the
necessary concentration inequalities in Section 2.3.

Definition 2.2.1 (ERM-H). Given a model class H and a sample (x1, y1), ..., (xm, ym) iid∼
P, the ERM-H algorithm returns ĥm such that

ĥm ∈ argminh∈H R̂m(h), (2.16)

where R̂m(h) = 1
m

Pm
i=1 1h(xi )̸=yi

is the empirical risk.

Remark 2.2.1. Achieving the minimum in (2.16) may not be possible. However, for
our purposes, it suffices to approximately solve the optimization problem, as seen in
Lemma 2.2.1.

Lemma 2.2.1. Let H be any collection of models and define

êrrm(H) = sup
h∈H

|R(h) − R̂m(h)|, (2.17)

where (x1, y1), ..., (xm, ym) iid∼ P , then for ĥm from (2.16), we have

R(ĥm) − inf
h∈H

R(h) ≤ 2êrrm(H). (2.18)

Additionally, if ĥm only approximately solves (2.16); i.e., if R̂m(ĥm) ≤ R̂m(h) + ε for
every h ∈ H, then we have

R(ĥm) − inf
h∈H

R(h) ≤ 2êrrm(H) + ε. (2.19)
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Proof. In the case ĥm minimizes the empirical risk, we have that

R̂m(ĥm) ≤ R̂m(h), ∀h ∈ H. (2.20)

In particular, for hϵ ∈ H such that R(hϵ) ≤ infh∈HR(h) + ϵ, we also have R̂m(ĥm) ≤
R̂m(hϵ). Moreover,

R(ĥm) = R̂m(ĥm) + (R(ĥm) − R̂m(ĥm)) (2.21)
≤ R̂m(hϵ) + êrrm(H) (2.22)
= R(hϵ) + (R̂m(hϵ) −R(hϵ)) + êrrm(H) (2.23)
≤ inf

h∈H
R(h) + ϵ+ 2êrrm(H). (2.24)

As this is valid for all ϵ > 0, it is also valid without it. Thus,

R(ĥm) − inf
h∈H

R(h) ≤ 2êrrm(H), (2.25)

as desired. If ĥm only satisfies

R̂m(ĥm) ≤ R̂m(h) + ε, ∀h ∈ H, (2.26)

then (2.22) gets an extra ε, which propagates until the end to give us

R(ĥm) − inf
h∈H

R(h) ≤ 2êrrm(H) + ε. (2.27)

Remark 2.2.2. The quantity êrrm(H) appearing in Lemma 2.2.1 is crucial to statistical
learning theory, as it provides a unified way to study the generalization error of any
learning algorithm. Indeed, given a learning algorithm A that produces a classifier A(S) ∈
H given a sample S = (x1, y1), ..., (xm, ym), it is evident that

ˆgenm(A(S)) ≤ êrrm(H). (2.28)

As such, any high-probability upper bound on êrrm(H) immediately yields a high-probability
upper bound on the generalization error of A. In Section 2.4 we will relate the complexity
of H to E[êrrm(H)] and the rate by which êrrm(H) converges to E[êrrm(H)], in the at-
tempt to show that êrrm(H) quickly converges to zero. Thus, we will show that both the
generalization and estimation errors of ERM-H converge to zero.

Preliminary results on empirical risk minimization

In this short subsection, we give some early results on ERM-H. Specifically, we
consider a sequence of data points (x1, y1), (x2, y2), ... iid∼ P, and show that R̂m(h) converges
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in probability to R(h) as m → ∞ (Proposition 2.2.1). Furthermore, we extend this
reasoning to show that the estimation error of ERM-H converges to zero in probability
for finite classes H (Proposition 2.2.2). For these results, we need the following version
of the Weak Law of Large Numbers.

Theorem 2.2.1 (Weak Law of Large Numbers [AL06, p. 238]). Let X1, X2, ... be an
infinite sequence of i.i.d. random variables with mean E[X1] = E[X2] = ... = µ. Then,
the empirical averages

X̂m = 1
m

mX
i=1

Xi (2.29)

converge to the expected value µ in probability:

X̂m
P→ µ, as m → ∞. (2.30)

Proposition 2.2.1. Given a classifier h ∈ H, then

R̂m(h) P→ R(h), as m → ∞. (2.31)

Proof. Consider an infinite sample
n
(xi, yi)

o∞

i=1
iid∼ P, then the sequence

n
1h(xi) ̸=yi

o∞

i=1
is

also i.i.d. as the map L(x, y) = 1h(x)̸=y is measurable from X × Y to R. Thus, in view of
Definition 2.1.1, by applying the Weak Law of Large Numbers (Theorem 2.2.1), we
have that R̂m(h) P→ R(h), as desired.

Proposition 2.2.2. Let H be finite, then

R(ĥm) P→ inf
h∈H

R(h). (2.32)

Proof. By Lemma 2.2.1, we have that

P
n
R(ĥm) − inf

h∈H
R(h) > ϵ

o
≤ P

n
êrrm(H) > ϵ/2

o
(2.33)

= P
n

max
h∈H

|R(h) − R̂m(h)| > ϵ/2
o

(2.34)

≤
X
h∈H

P
n
|R(h) − R̂m(h)| > ϵ/2

o
. (2.35)

By taking the limit m → ∞ and using Proposition 2.2.1 we get the desired result.

2.3 Concentration inequalities

So far, we have given asymptotic results on the performance of ERM-H. In
practice, there are only finitely many data points and so non-asymptotic results become
crucial. To address this, we rely on a series of results called concentration inequalities.
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Our approach is self-contained and focused on learning theory. For a more comprehensive
treatment, readers can refer to [BLM16].

We begin by introducing Chernoff’s bounding technique [Che52]: suppose you are
interested in bounding the tail event

P
n
X ≥ a

o
, (2.36)

where X is any random variable that has a moment-generating function (MGF). Let
M(t) = E[etX ] be its MGF, then the technique consists in applying Markov’s inequality
to get the MGF and then taking the infimum. Indeed, for any t > 0, we have

P
n
X ≥ a

o
= P

n
etX ≥ eta

o
(2.37)

≤ M(t)e−ta, (2.38)

which gives

P
n
X ≥ a

o
≤ inf

t>0
M(t)e−ta. (2.39)

Remark 2.3.1. One might wonder whether these bounds are any good, since they look so
arbitrary. This is the content of Cramér’s theorem on large deviations [CT18, Thm. 6],
which shows that such bounds are optimal in the case where X is a sum of i.i.d. random
variables.

Before applying this technique to our problems, we need the following technical lemma.

Lemma 2.3.1 (Hoeffding [Hoe63]). Let X : Ω → [a, b] be a random variable with MGF
M : (0,∞) → R+ and satisfying E[X] = 0, then

log(M(t)) ≤ t2(b− a)2

8 . (2.40)

With this, we can prove the following.

Theorem 2.3.1 (Chernoff-Hoeffding [Hoe63, Thm. 2]). For i = 1, ...,m, let Ti : Ω →
[ai, bi] be independent random variables defined on a common probability space Ω. Then,
for every ϵ > 0,

P
(

mX
i=1

(Ti − E[Ti]) > ϵ

)
≤ exp

 
−2ϵ2Pm

i=1(bi − ai)2

!
(2.41)

P
(�����

mX
i=1

(Ti − E[Ti])
����� > ϵ

)
≤ 2 exp

 
−2ϵ2Pm

i=1(bi − ai)2

!
. (2.42)

Proof. Without loss of generality, suppose that E[Ti] = 0 (otherwise, consider T̃i = Ti −
E[Ti]). Now, we apply Chernoff’s technique:
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P
(

mX
i=1

Ti > ϵ

)
= P

(
et
Pm

i=1 Ti > etϵ

)
(2.43)

≤ E
"
et
Pm

i=1 Ti

#
e−tϵ (2.44)

= E
"

mY
i=1

etTi

#
e−tϵ (2.45)

=
mY

i=1
E
h
etTi

i
e−tϵ (2.46)

≤ exp
 
t2

8

mX
i=1

(bi − ai)2 − tϵ

!
, (2.47)

where the last inequality follows from Lemma 2.3.1. Minimizing on t, we get that t =
4ϵPm

i=1(bi−ai)2 . Hence,

P
(

mX
i=1

Ti > ϵ

)
≤ exp

 
−2ϵ2Pm

i=1(bi − ai)2

!
, (2.48)

as desired. The second inequality follows from the first by considering the random vari-
ables −Ti : Ω → [−bi,−ai]. The first inequality then implies:

P
(

mX
i=1

(−Ti + E[Ti]) > ϵ

)
≤ exp

 
−2ϵ2Pm

i=1(bi − ai)2

!
. (2.49)

The union bound finishes the proof:

P
(�����

mX
i=1

(Ti − E[Ti])
����� > ϵ

)
= P

(
mX

i=1
(Ti − E[Ti]) > ϵ

_ mX
i=1

(−Ti + E[Ti]) > ϵ

)
(2.50)

≤ 2 exp
 

−2ϵ2Pm
i=1(bi − ai)2

!
(2.51)

Chernoff-Hoeffding’s inequality (Theorem 2.3.1) enables us to characterize the
rate of convergence of R(ĥm) to infh∈HR(h), as the following two results show.

Corollary 2.3.1. Let G be a finite family of measurable functions g : Z → [0, 1] and
z1, ..., zm

iid∼ P. Then, for every ϵ > 0, we have

P
(

sup
g∈G

����� 1
m

mX
i=1

g(zi) − Ez∼P[g(z)]
����� > ϵ

)
≤ 2#G exp

�
− 2mϵ2

�
. (2.52)

Proof. Let Ti = g(zi). Note that the g(zi) are independent and that bi − ai = 1 since
the image of g is contained in [0, 1]. Thus, by Chernoff-Hoeffding’s inequality (The-
orem 2.3.1), we have
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P
(

sup
g∈G

����� 1
m

mX
i=1

g(zi) − Ez∼P[g(z)]
����� > ϵ

)
= P

(
∃g ∈ G :

����� 1
m

mX
i=1

g(zi) − Ez∼P[g(z)]
����� > ϵ

)
(2.53)

≤
X
g∈G

2 exp
�

− 2mϵ2
�

(2.54)

= 2#G exp
�

− 2mϵ2
�
, (2.55)

as desired.

Theorem 2.3.2. Let H be finite, then

P
(
R(ĥm) − inf

h∈H
R(h) > ϵ

)
≤ 2#H exp

 
−mϵ2

2

!
, (2.56)

which can be expressed in the form of a high-probability bound: for every δ ∈ (0, 1), with
probability at least 1 − δ:

R(ĥm) − inf
h∈H

R(h) ≤

vuut2 log
�

2#H
δ

�
m

. (2.57)

Proof. Let Z = X × Y and G = {(x, y) 7→ 1h(x)̸=y : h ∈ H}, then, by Lemma 2.2.1 and
Corollary 2.3.1,

P
(
R(ĥm) − inf

h∈H
R(h) > ϵ

)
≤ P

(
max
h∈H

|R(h) − R̂m(h)| > ϵ/2
)

(2.58)

= P
(

max
g∈G

�����E[g(z))] − 1
m

mX
i=1

g(zi)
����� > ϵ/2

)
(2.59)

≤ 2#H exp
 

−mϵ2

2

!
. (2.60)

To get the generalization bound, set the rhs to δ and solve for ϵ:

δ = 2#H exp
 

−mϵ2

2

!
(2.61)

δ

2#H
= exp

 
−mϵ2

2

!
(2.62)

log
�

δ

2#H

�
= −mϵ2

2 (2.63)vuut2 log
�

2#H
δ

�
m

= ϵ. (2.64)
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For the next section, we will need a stronger version of Chernoff-Hoeffding’s
inequality (Theorem 2.3.1) known as McDiarmid’s inequality (Theorem 2.3.3).

Theorem 2.3.3 (McDiarmid [Doo40]). For i = 1, ...,m, let Xi : Ω → X, Xi ∼ Pi, be
independent random variables defined on a common probability space Ω. Additionally,
assume there are c1, c2, ..., cm > 0 such that f : Xm → R satisfies the bounded differences
condition:

���f(x1, ..., xi, ..., xm) − f(x1, ..., x
′
i, ..., xm)

��� ≤ ci, (2.65)

for all i ∈ [m] and x1, ..., xm, x
′
i ∈ X. Denote by Xm

1 the vector (X1, ..., Xm). Then, for
all ε > 0,

P
(
f(Xm

1 ) − E[f(Xm
1 )] > ε

)
≤ exp

 
−2ε2Pm

i=1 c
2
i

!
. (2.66)

Proof. We begin with Chernoff’s bounding technique: for t > 0, we have

P
(
f(Xm

1 ) − E[f(Xm
1 )] > ε

)
= P

(
et(f(Xm

1 )−E[f(Xm
1 )]) > etε

)
(2.67)

≤ inf
t>0

e−tεE
"
et(f(Xm

1 )−E[f(Xm
1 )])

#
(2.68)

We establish control over the MGF in (2.68) using induction. The base case (m = 1)
follows from Hoeffding’s lemma (Lemma 2.3.1). Indeed, define

A = inf
x∈X

f(x), B = sup
x∈X

f(x). (2.69)

The random variable f(X1
1 ) takes values on [A,B], where B − A ≤ c1, so that, by

Lemma 2.3.1, we have

E
"
et(f(X1

1 )−E[f(X1
1 )])
#

≤ exp
 
t2c2

1
8

!
. (2.70)

For m > 1, consider the following definitions

fm−1(xm−1
1 ) =

Z
X
f(x1, ..., xm−1, xm)dPm(xm), (2.71)

∆m(xm
1 ) = f(xm

1 ) − fm−1(xm−1
1 ). (2.72)

Notice that E[f(Xm
1 )] = E[fm−1(Xm−1

1 )] so that we can write

E
"
et(f(Xm

1 )−E[f(Xm
1 )])

#
= E

"
et∆m(Xm

1 )et(fm−1(Xm−1
1 )−E[fm−1(Xm−1

1 )])
#
. (2.73)

By fixing the values of x1, ..., xm−1 and integrating first with respect to xm, we get
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Z
X
et∆m(xm

1 )et(fm−1(xm−1
1 )−E[fm−1(xm−1

1 )])dPm(xm)

= et(fm−1(xm−1
1 )−E[fm−1(xm−1

1 )])Exm∼Pm

"
et∆m(xm

1 )
#
. (2.74)

If we let g : X → R be given by g(x) = f(x1, ..., xm−1, x), then its clear that g satisfies
the bounded differences condition (2.65) with constant cm. Moreover, by a reduction to
the base case (m = 1), it is possible to see that

Exm∼Pm

"
et∆m(xm

1 )
#

= E
"
et(g(Xm

m )−E(g(Xm
m ))
#

≤ exp
 
t2c2

m

8

!
. (2.75)

Now, if we integrate with respect to the remaining variables x1, ..., xm−1, we obtain

E
"
et(f(Xm

1 )−E[f(Xm
1 )])

#
≤ E

"
et(fm−1(Xm−1

1 )−E[fm−1(Xm−1
1 )])

#
exp

 
t2c2

m

8

!
. (2.76)

By noting that fm−1 respects the bounded differences condition (2.65), we apply induction
to get

E
"
et(f(Xm

1 )−E[f(Xm
1 )])

#
≤ exp

 
mX

i=1

t2c2
i

8

!
. (2.77)

Analogously to the proof of Chernoff-Hoeffding’s inequality (Theorem 2.3.1), we
substitute the last expression into (2.68) and minimize with respect to t > 0. This
finishes the proof.

2.4 Empirical risk minimization over infinite classes

Although Theorem 2.3.2 is already a great improvement over Proposition 2.2.2, it
continues to be limited by the fact that H must be finite. To overcome this limitation, in
this section we delve deeper into the analysis of the empirical process4 from Lemma 2.2.1:

êrrm(H) = sup
h∈H

����R(h) − R̂m(h)
����, (2.78)

which we will henceforth write as

sup
g∈G

����� 1
m

mX
i=1

g(zi) − E[g(z)]
�����, (2.79)

4 In probability theory, empirical processes are families of random variables of the form {
Pm

i=1 f(xi) −R
fdP : f ∈ F}, where F is a collection of measurable functions f : X → R. In the sub-field of empirical

process theory, it is common to study the convergence properties of such random variables and to
characterize for which classes F different modes of convergence can be shown. In this context, the
analysis of this section (specially Theorem 2.4.4) can be seen as an analysis of the uniform convergence
of the empirical process ||Pn − P||G = supg∈G | 1

m

Pm
i=1 g(zi) − E[g(z)]|. For more information on this

fascinating connection, consult [VW23].
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where Z = X × Y, G = {(x, y) 7→ 1h(x) ̸=y : h ∈ H}, and z1, ..., zm
iid∼ P. In particular, we

note that the function

f(z1, ..., zm) = sup
g∈G

����� 1
m

mX
i=1

g(zi) − E[g(z)]
�����. (2.80)

satisfies the bounded differences condition (2.65), which implies that the random vari-
able êrrm(H) quickly concentrates around its mean errm(H) = E[êrrm(H)] (see Corol-
lary 2.4.1).

Corollary 2.4.1. Given a class H and a sample z1, ..., zm
iid∼ P, we have

P
(

êrrm(H) > ϵ+ E[êrrm(H)]
)

≤ exp
 

− mϵ2

2

!
. (2.81)

As such, we shift our analysis towards understanding the simpler quantity errm(H)
in terms of the capacity of the class H of generating distinct classifications. Specifically,
we start in Subsection 2.4 by developing the notion of Rademacher complexity (Defini-
tion 2.4.1) and showing that it can be used to bound errm(H) via a Symmetrization
result (Lemma 2.4.1). Although the obtained bound is sharp, it is not easily computable
in practice, as the Rademacher complexity depends on the unkown distribution P. This
motivates the introduction of a simpler, distribution-free, notion of complexity: the VC
dimension. In Subsection 2.4, we develop the concept and show that it can remarkably be
used to characterize the family of classes H for which errm(H) → 0 as m → ∞, uniformly
over all distributions P (see Theorem 2.4.4).

Proof of Corollary. Fix z1, ..., zi, z
′
i, ..., zm and define f(z1, ..., zm) = êrrm(H). For con-

ciseness, let C(g) = 1
m

Pm
j ̸=i g(zj) − E[g(z)] so that we can write

|f(z1, ..., zi, ..., zm) − f(z1, ..., z
′
i, ..., zm)|

=
������ sup

g∈G

����� 1
m
g(zi) + C(g)

�����− sup
g∈G

����� 1
m
g(z′

i) + C(g)
�����
������, (2.82)

We proceed to show that (2.82) ≤ 2
m

. Indeed, suppose without loss of generality that
supg∈G

���� 1
m
g(zi) + C(g)

���� ≥ supg∈G

���� 1
m
g(z′

i) + C(g)
����. Then,
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������ sup
g∈G

����� 1
m
g(zi) + C(g)

�����− sup
g∈G

����� 1
m
g(z′

i) + C(g)
�����
������ (2.83)

= sup
g∈G

����� 1
m
g(zi) + C(g)

�����− sup
g∈G

����� 1
m
g(z′

i) + C(g)
����� (2.84)

≤ 1
m

+ sup
g∈G

|C(g)| − sup
g∈G

����� 1
m
g(z′

i) + C(g)
����� (2.85)

≤ 1
m

+ sup
g∈G

|C(g)| −
 

− 1
m

+ sup
g∈G

|C(g)|
!

(2.86)

≤ 2
m
. (2.87)

Now, let X = (z1, z2, ..., zn) iid∼ P. By McDiarmid’s inequality (Theorem 2.3.3), we
have that

P
(

êrrm(H) > ϵ+ E[êrrm(H)]
)

≤ exp
 

− mϵ2

2

!
, (2.88)

as desired.

Rademacher complexity and symmetrization

The Rademacher complexity serves as measure of richness for function classes
g : Z → [a, b] (see Definition 2.4.1). Although the notion applies to any such collection
of functions, we will only consider those of the form G = {(x, y) 7→ 1h(x)̸=y : h ∈ H},
where H is a model class. In this context, it can be understood as the extent to which a
hypothesis class H is able to fit random noise. Specifically, more complex classes should
be able to produce more classification vectors (h(x1), ..., h(xm)), and as such should more
easily be able to maximize ⟨(σ1, ..., σm), (g(z1), ..., g(zm)⟩, where (σ1, ..., σm) ∈ {−1, 1}m is
an arbitrary labeling of the data (x1, ..., xm). For a more comprehensive understanding,
readers are encouraged to consult [MRT18, Chapter 3] and the original papers [BBL02;
Kol01; KP00].

Definition 2.4.1 (Empirical Rademacher complexity). Let G be a family of func-
tions from Z to [a, b] and let z1, ..., zm

iid∼ P be a sample of size m, then the empirical
Rademacher complexity of G with respect to the sample is given by:

R̂m(G) = Eσ

"
sup
g∈G

���� 1
m

mX
i=1

σig(zi)
����
#
, (2.89)

where the expectation is taken only with respect to the Rademacher random variables
σ1, ..., σm

iid∼ Unif{−1,+1}.

Definition 2.4.2 (Rademacher complexity). Let G be a family of functions from Z

to [a, b] and let z1, ..., zm
iid∼ P, then the Rademacher complexity of G is given by:
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Rm(G) = E
h
R̂m(G)

i
. (2.90)

The following result relates our original problem with the notion of Rademacher complex-
ity.

Lemma 2.4.1 (Symmetrization). Let z1, ..., zm
iid∼ P and σ1, ..., σm

iid∼ Unif{−1,+1}
be independent random variables, then

E

 sup
g∈G

�����
mX

i=1

�
g(zi) − Ez∼P[g(z)]

������
 ≤ 2E

 sup
g∈G

�����
mX

i=1
σig(zi)

�����
. (2.91)

Proof. We can assume that (Ω,F,P) also supports z′
1, ..., z

′
m

iid∼ P independent from the
other random variables. Then, if we denote (z1, ..., zm) by zm

1 ,

E

 sup
g∈G

�����
mX

i=1

�
g(zi) − Ez∼P[g(z)]

������
 = E

 sup
g∈G

�����E
"

mX
i=1

�
g(zi) − g(z′

i)
� ���� zm

1

#�����
 (2.92)

≤ E

 sup
g∈G

E
"�����

mX
i=1

�
g(zi) − g(z′

i)
������
���� zm

1

# (2.93)

≤ E

E" sup
g∈G

�����
mX

i=1

�
g(zi) − g(z′

i)
������
���� zm

1

# (2.94)

= E

 sup
g∈G

�����
mX

i=1

�
g(zi) − g(z′

i)
������
 (2.95)

= E

 sup
g∈G

�����
mX

i=1
σi

�
g(zi) − g(z′

i)
������
 (2.96)

≤ E

 sup
g∈G

�����
mX

i=1
σig(zi)

�����+
�����

mX
i=1

σig(z′
i)
�����
 (2.97)

≤ E

 sup
g∈G

�����
mX

i=1
σig(zi)

�����+ sup
g∈G

�����
mX

i=1
σig(z′

i)
�����
 (2.98)

= 2E
 sup

g∈G

�����
mX

i=1
σig(zi)

�����
. (2.99)

The second line is an application of Jensen’s inequality and the fifth involves the
introduction of Rademacher random variables (see Definition 2.4.1). The expectation
doesn’t change because, given σm

1 , the effect of each individual σi just corresponds to
swapping (or not) zi and z′

i. As zi and z′
i come from the same distribution, this fixed

swap doesn’t change the distribution of the samples.

We now put everything together to obtain the following fundamental result.
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Theorem 2.4.1. Let H be a hypothesis class. Then, with probability at least 1 − δ, we
have the following bounds on the estimation error of ERM-H:

R(ĥm) − inf
h∈H

R(h) ≤ 2
s

2 log 1
δ

m
+ 4Rm(G), (2.100)

R(ĥm) − inf
h∈H

R(h) ≤ 6
s

2 log 2
δ

m
+ 4R̂m(G). (2.101)

Proof. From Corollary 2.4.1 and Lemma 2.4.1, we have

P
(

êrrm(H) ≤ ϵ+ 2Rm(G)
)

≥ 1 − exp
 

− mϵ2

2

!
. (2.102)

Let δ = exp
�

− mϵ2

2

�
. Solving for ϵ yields

exp
�

− mϵ2

2
�

= δ (2.103)

−mϵ2

2 = log(δ) (2.104)

ϵ =

vuut2 log
�

1
δ

�
m

, (2.105)

which can then be substituted back into (2.102) to give

êrrm(H) ≤

s
2 log 1

δ

m
+ 2R(G), (2.106)

with probability at least 1 − δ. Applying Lemma 2.2.1, we get the following high-
probability bound on the estimation error of ERM:

R(ĥm) − inf
h∈H

R(h) ≤ 2
s

2 log 1
δ

m
+ 4R(G). (2.107)

Additionally, we may use McDiarmid’s inequality (Theorem 2.3.3) with f(z1, ..., zm) =
R̂m(G) to obtain a data-dependent upper bound for the estimation error of ERM-H.
Indeed, we have

|f(z1, ..., zi, ..., zm) − f(z1, ..., z
′
i, ..., zm)| ≤ 2

m
, (2.108)

for the same reason as in Corollary 2.4.1. Thus,

P
(
R(G) ≤ R̂m(G) +

s
2 log 1

δ

m

)
≥ 1 − δ, (2.109)

By letting δ = δ/2 in both (2.107) and (2.109), and using the union bound, we obtain

R(ĥm) − inf
h∈H

R(h) ≤ 6
s

2 log 2
δ

m
+ 4R̂m(G), (2.110)
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with probability at least 1 − δ.

Remark 2.4.1. In general, computing the Rademacher complexity of a given hypothe-
sis space H with respect to a binary classification problem P is not possible since P is
unknown. However, the empirical Rademacher complexity appearing in (2.101) depends
only on a specific sample and can be estimated [MRT18, p. 38]. In the next section,
we will demonstrate how the Rademacher complexity can be upper-bounded by a purely
combinatorial notion, which is often easier to deal with: the VC dimension.

VC dimension and a fundamental theorem on learnability

In contrast to the concept of Rademacher complexity, which is a localized measure
of complexity that is then averaged considering the relative likelihood of different samples
to occur, the VC dimension is a globalized, worst-case measure of capacity/complexity.
Its definition concerns the behavior of the growth function Π(G, ·), which we introduce
in Definition 2.4.3. Given m ∈ N, Π(G,m) represents the largest number of distinct
classifications realizable by G over a sample of m points. It is evident that Π(G,m) ≤ 2m,
and that if Π(G,m) = 2m for a given m, then Π(G, n) = 2n for every n ≤ m. As such, it
is natural to study Π(G,m) for m > d, where d is the largest natural number such that
Π(G, d) = 2d. This critical point is precisely the VC dimension (see Definition 2.4.4).

Chronologically, the VC dimension was introduced into machine learning theory
roughly 30 years earlier than the Rademacher complexity [VC68]. At the time, researchers
where interested in characterizing which classes possessed the uniform convergence prop-
erty; that is, characterizing for which H the convergence êrrm(H) P→ 0 could be shown
uniformly over all P. After discussing VC-based upper bounds on the estimation error
of ERM-H, we present this fundamental result as Theorem 2.4.4. For a more detailed
treatment, readers are referred to the original work by Vapnik.

Definition 2.4.3 (Growth function). Let G be a family of functions g : Z → {0, 1},
then the growth function of G is given by

Π(G,m) = max
{z1,...,zm}⊂Z

#
��
g(z1), ..., g(zm)

�
: g ∈ G

�
. (2.111)

Example 2.4.1 (Intervals). Let Z = R and G = {1A : A ⊂ R is a closed interval },
then Π(G,m) = (m+1)m

2 +1. This example can be generalized to produce hypothesis classes
based on any family of geometric shapes on Rn.

Details. Consider a fixed sample z1 < z2 < ... < zm ∈ R. We can partition the line
R = (−∞, z1] ∪ (z1, z2] ∪ ... ∪ (zm,∞) so that the starting point a of any closed interval
[a, b] lies exclusively in one of those subpartitions. Notice that the exact place the point
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lands in each partition doesn’t matter for the sake of classification, except only for the
case of the trivial classification (0, 0, ..., 0) (e.g., [z1, b) cannot generate it). Let’s start
by counting this trivial classification: 1. After we have done this, the classifications
generated by each equivalence class are guaranteed to be distinct from each other class.
Now, to finish counting the distinct classifications one only has to note that for each class
k ∈ [m+ 1], there are only m+ 1 − k classifications that can be achieved by moving the
end point b futher right. As such, Π(G,m) = 1 + (m+ (m− 1) + ...+ 1) = (m+1)m

2 + 1, as
desired.

Remark 2.4.2. Observe that any set of functions from Z → {0, 1} essentially constitutes
a collection of indicator functions. Consequently, it can be seamlessly interchanged with
the corresponding family of subsets of Z that these functions represent.

Definition 2.4.4 (VC dimension). Given a collection G of functions g : Z → {0, 1},
then the VC-dimension of G is defined as:

VC-dim(G) = sup
n
m : Π(G,m) = 2m

o
, (2.112)

where Π(G, ·) is the growth function of G.

Remark 2.4.3. In words, the VC dimension VC-dim(G) represents the maximum sample
size for which there exists a sample that can be classified in every conceivable way by the
class G, a condition often referred to as being “shattered”.

Example 2.4.2 (Intervals). The VC dimension of the family in example Example 2.4.1
is 2.

Example 2.4.3 (Linear classifiers). Let Z = Rd and G = {z 7→ sign(⟨w, z⟩ + b) : w ∈
Rd, b ∈ R} be the class of linear classifiers. Then, VC-dim(G) = d+ 1.

Details. Consider the set S = {0, e1, ..., ed}, where the vectors e1, ..., ed represent the
canonical basis of Rd. We show that all possible classifications of S are achievable by G.
Indeed, given the classification S+ = {0, ei1 , ..., eik

} and S− = S − S+, we can let b = 0
and w be +1 in the S+ indices and −1 in the remaining indices. If 0 ̸∈ S+, then we can
adjust b = −0.5. Such construction covers all 2d+1 classifications of these d+ 1 points so
that VC-dim(G) ≥ d+ 1.

The other inequality follows from Theorem 2.4.2 that will be presented ahead.
Indeed, suppose VC-dim(G) > d + 1. Then, there would be d + 2 points which could be
classified in all possible ways by G. From Theorem 2.4.2, there would exist a labelling
S+ = {z1, ..., zT } and S− = {zT +1, ..., zd+2} such that the convex hulls intersected non-
trivially, i.e., z ∈ hull(S+) ∩ hull(S−). As such, there would be p1, ..., pd+2 ≥ 0 such thatPT

t=1 pt = Pd+2
t=T +1 pt = 1 and z = PT

t=1 ptzt = Pd+2
t=T +1 ptzt. However, this would lead to

a contradiction, as ⟨w, z⟩ + b = PT
t=1 pt(⟨w, zt⟩ + b) = Pd+2

t=T +1 pt(⟨w, zt⟩ + b), but the last
two expressions would have to have different signs.
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Theorem 2.4.2 (Radon [Rad21, p. 113-115]). Let S ⊂ Rd be a set of at least d + 2
elements. There are S+ and S− such that S+ ∪ S− = S, S+ ∩ S− = ∅, but hull(S+) ∩
hull(S−) ̸= ∅.

Example 2.4.4 (Spheres). Let Z = Rd and G = {z 7→ 1||z−c||22≤r : c ∈ Rd} be the class
of spherical classifiers. Then, VC-dim(G) ≤ d+ 2.

Details. Suppose for the sake of contradiction that VC-dim(G) > d+ 2. There would be
a set of d + 3 points z1, ..., zd+3 ∈ Rd shattered by G. In particular, if we considered the
maps from Rd to Rd+1 given by ϕ(z) = (z, ||z||22) and ψ(c) = (−2c, 1), then there would be
a classification of the set ϕ({z1, ..., zd+3}) that wouldn’t be realizable by linear classifiers
in Rd+1, as the VC dimension of linear classifiers in Rd+1 is d+ 2. Fix the ball (c, r) that
realizes this classification for {z1, ..., zd+3} in Rd. If we look at the decision rule:

||z − c||22 ≤ r ⇐⇒ ||z||22 − 2⟨z, c⟩ + ||c||22 ≤ r ⇐⇒ ⟨ψ(c), ϕ(z)⟩ + b ≤ 0, (2.113)

where b = ||c||22 − r, it is evident that there would be a linear classifier in Rd+1 that
realized the impossible classification for ϕ({z1, ..., zd+3}). This is absurd, which implies
that VC-dim(G) ≤ d+ 2.

Now that we have a clear understanding of the VC dimension and the growth
function, we return to our task of bounding errm(H). The following lemma due to Massart
enables us to remove the dependency on P.

Lemma 2.4.2 (Massart [Mas00]). Let A ⊂ Rm be a finite set and r = maxx∈A||x||2,
then

Eσ

"
sup
x∈A

mX
i=1

σixi

#
≤ r

q
2 log(#A), (2.114)

where the expectation is taken with respect to σ1, ..., σm
iid∼ Unif{−1,+1}.

Proof. Given x ∈ A, note that:

E
"

exp
�
t

mX
i=1

σixi

�#
= E

"
mY

i=1
exp(tσixi)

#
(2.115)

=
mY

i=1
E
h

exp(tσxi)
i

(2.116)

≤
mY

i=1
exp

�
t2|xi|2

2

�
(2.117)

= exp
�
t2||x||22

2

�
(2.118)

≤ exp
�
t2r2

2

�
, (2.119)

(2.120)
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where the third line follows from Hoeffding’s lemma (Lemma 2.3.1). To avoid clutter,
lets denote Xj = Pm

i=1 σix
(j)
i , where A = {x(1), ..., x(n)}. Then, by Jensen’s inequality:

exp
�
tE
�

max
1≤j≤n

Xj

��
≤ E

�
exp

�
t max

1≤j≤n
Xj

��
(2.121)

= E
�

max
1≤j≤n

�
exp(tXj)

��
(2.122)

≤ E
� nX

j=1

�
exp(tXj)

��
(2.123)

≤ n exp
 
t2r2

2

!
. (2.124)

By taking the log, we get:

E
�

max
1≤j≤n

Xj

�
≤ log(n)

t
+ tr2

2 . (2.125)

Minimizing over t > 0 yields:

0 = − log(n)
t2

+ r2

2 (2.126)

2 log(n) = r2t2 (2.127)q
2 log(n)
r

= t. (2.128)

Substituting t =
√

2 log(n)
r

back into the previous inequality finishes the proof.

Remark 2.4.4. If we symmetrize the set A by letting A = A ∪ −A, then Massart’s
lemma (Lemma 2.4.2) gives the following

Eσ

 sup
x∈A

�����
mX

i=1
σixi

�����
 ≤ r

q
2 log(2#A). (2.129)

Now, by chaining Symmetrization (Lemma 2.4.1) and Massart’s lemma (Lemma 2.4.2),
we get a distribution-free bound on errm(H).

Corollary 2.4.2. Let G be a family of functions g : Z → {0, 1}, then

E

 sup
g∈G

����� 1
m

mX
i=1

�
g(zi) − Ez∼P[g(z)]

������
 ≤ 2

s
2 log(2Π(G,m))

m
, (2.130)

where Π(G, ·) is the growth function of G.

Proof. By applying the two lemmas, we get
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E

 sup
g∈G

����� 1
m

mX
i=1

�
g(zi) − Ez∼P[g(z)]

������
 ≤ 2

m
E

 sup
g∈G

�����
mX

i=1
σig(zi)

�����
 (2.131)

≤ 2
√
m

m
sup

{z1,...,zm}⊂Z

q
2 log(2#A) (2.132)

≤ 2
s

2 log(2Π(G,m))
m

, (2.133)

where A =
��
g(z1), ..., g(zm)

�
: g ∈ G

�
.

Before applying Corollary 2.4.2 to bound the estimation error of ERM-H, we note
the following fundamental result on the growth function (Lemma 2.4.3), which states that
Π(G,m) grows polynomially for m ≥ d = VC-dim(G).

Lemma 2.4.3 (Sauer-Shelah [Sau72]). Let G be a collection of functions g : Z → {0, 1}
with VC-dim(G) = d. Then, for all m ∈ N, the following holds:

Π(G,m) ≤
dX

i=0

 
m

i

!
. (2.134)

Corollary 2.4.3. Let G be a collection of functions g : Z → {0, 1} with VC-dim(G) = d,
then, for all m ≥ d,

Π(G,m) ≤
�
em

d

�d

. (2.135)

Proof. For m ≥ d,

Π(G,m) ≤
dX

i=0

 
m

i

!
(2.136)

≤
mX

i=0

 
m

i

! 
m

d

!d−i

(2.137)

=
 
m

d

!d mX
i=0

 
m

i

! 
d

m

!i

(2.138)

=
 
m

d

!d 
1 + d

m

!m

, (2.139)

≤
 
em

d

!m

(2.140)

where (2.136) follows from Sauer-Shelah’s lemma (Lemma 2.4.3), (2.139) follows from
the Binomial theorem, and (2.140) follows from the well-known inequality (1 − x) ≤
e−x.

Equipped with the closed-form expression of Corollary 2.4.3, we now present the
definitive VC bound on the estimation error of ERM-H (see Theorem 2.4.3).
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Theorem 2.4.3. Let H be a hypothesis class and G = {(x, y) 7→ 1h(x)̸=y : h ∈ H}. If
d = VC-dim(G), then, with probability at least 1 − δ, we have the following bound on the
estimation error of ERM-H:

R(ĥm) − inf
h∈H

R(h) ≤ 2
s

2 log 1
δ

m
+ 8

s
2 log(2) + 2d log( em

d
)

m
. (2.141)

Proof. From Corollary 2.4.1 and Corollary 2.4.2, we have the following bound

êrrm(H) ≤

s
2 log 1

δ

m
+ 4

s
2 log(2Π(G,m))

m
, (2.142)

with probability at least 1 − δ. Then, by Corollary 2.4.3,

êrrm(H) ≤

s
2 log 1

δ

m
+ 4

s
2 log(2) + 2d log( em

d
)

m
, (2.143)

Applying Lemma 2.2.1 finishes the proof:

R(ĥm) − inf
h∈H

R(h) ≤ 2
s

2 log 1
δ

m
+ 8

s
2 log(2) + 2d log( em

d
)

m
. (2.144)

At last, the fundamental theorem of statistical learning theory (Theorem 2.4.4).

Theorem 2.4.4 (Vapnik-Chervonenkis [VC68]). Let G be a collection of indicator
functions g : Z → {0, 1} with VC-dim(G) = d, then

i. If d < +∞, we have

sup
P measure over Z

E

 sup
g∈G

����� 1
m

mX
i=1

g(zi) − E[g(z)]
�����
 = O

s logm
m

. (2.145)

ii. Otherwise, if d = ∞,

lim sup
m→∞

sup
P measure over Z

E

 sup
g∈G

����� 1
m

mX
i=1

g(zi) − E[g(z)]
�����
 ≥ e−1 > 0. (2.146)

Proof. We proceed by cases.

i. By Corollaries 2.4.2 and 2.4.3, we have that

E

 sup
g∈G

����� 1
m

mX
i=1

g(zi) − E[g(z)]
�����
 ≤ 2

s
2 log(2Π(G,m))

m
(2.147)

≤ 2

vuut2d log
�

2
1
d em
d

�
m

(2.148)

= O

s logm
m

. (2.149)
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Since the rhs doesn’t depend on P, we can safely take the supremum without affect-
ing the rhs.

ii. For m ≥ 1, let Bm ⊂ Z be a set of m elements that is shattered by G and Pm =
Unif(Bm). Then,

E

 sup
g∈G

����� 1
m

mX
i=1

g(zi) − E[g(z)]
�����
 ≥

�
1 − 1

m

�m

, (2.150)

as we shall soon see. Indeed, let z1, ..., zm
iid∼ Pm and B̂m =

n
b ∈ Bm : ∃i ∈ [m] :

zi = b
o
. Now, since Bm is shattered by G, we have that there is ĝm ∈ G such that

ĝm = 1B̂m
in Bm. Thus,

sup
g∈G

����� 1
m

mX
i=1

g(zi) − E[g(z)]
����� ≥ 1

m

mX
i=1

ĝm(zi) − #B̂m

m
(2.151)

= 1 − #B̂m

m
(2.152)

=
#
n
b ∈ Bm : ∀i ∈ [m] : zi ̸= b

o
m

. (2.153)

(2.154)

We then take the expected value

E

 sup
g∈G

����� 1
m

mX
i=1

g(zi) − E[g(z)]
�����
 ≥ E

#
n
b ∈ Bm : ∀i ∈ [m] : zi ̸= b

o
m

 (2.155)

= 1
m

X
b∈Bm

P(∀i ∈ [m] : b ̸= zi) (2.156)

=
�

1 − 1
m

�m

. (2.157)

By taking the sup with respect to P, we can only increase the lhs so that

sup
P measure over Z

E

 sup
g∈G

����� 1
m

mX
i=1

g(zi) − E[g(z)]
�����
 ≥

�
1 − 1

m

�m

. (2.158)

Finally, the result follows by taking the limsup.
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3 The learning problem
The sciences do not try to
explain, they hardly even try to
interpret, they mainly make
models. By a model is meant a
mathematical construct which,
with the addition of certain
verbal interpretations, describes
observed phenomena. The
justification of such a
mathematical construct is
solely and precisely that it is
expected to work.

John von Neumann

In this chapter, we specialize the learning-theoretic discussion of Chapter 2 to
the malignancy classification problem. We begin by recapitulating the standard model of
binary classification, as introduced in Section 2.1. Let P be a probability distribution over
X × {0, 1} and (x1, y1), ..., (xm, ym) iid∼ P be a sample of size m, then the goal of binary
classification is to learn from the sample a measurable function ĥm such that

P(ĥm(x) ̸= y) is small. (3.1)

To design a good diagnostic system for our problem, however, accuracy is not enough.
This is neatly summarized by the following remark:

Any model suitable for clinical use must be guaranteed to avoid undetected
cancers up to a tolerable margin of uncertainty, while still reducing the number
of unnecessary biopsies.

To formalize these requirements, in Section 3.1, we introduce the notions of pre-
dictive values (ppv/precision and npv), sensitivity (recall), and specificity, which serve
as more suitable performance metrics for the design of reliable malignancy classification
systems. To address the absence of a cost model for classification errors and to facilitate
discussions regarding predictive values, in Section 3.2 we introduce scoring functions and
threshold-based classifiers. Finally, in Section 3.3, we review some learning-theoretic re-
sults of Vemuri and Srebro [VS20] on the generalization of the empirical predictive value
curves that we later employ for validation purposes. It’s worth noting that throughout
the chapter, the positive class is used to represent benign lesions.
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3.1 Classification metrics for malignancy prediction

There are numerous metrics for evaluating the performance of a binary classifier
on a sample [Tha20], each with their particular use cases. The medical community around
diagnostic tests has settled with the usage of predictive values, sensitivity, and specificity
[Tre17], all of which can be derived from the confusion matrix (see Definition 3.1.1). In
this section, we review these four metrics and discuss how they can be used to formalize
the requirements laid out at the beginning of the chapter.

Definition 3.1.1 (Confusion matrix). Given a sample (x1, y1), ..., (xm, ym) and a clas-
sifier h, then the confusion matrix of h with respect to the sample is given by

Predicted Negative Predicted Positive
Actual Negative TN FP
Actual Positive FN TP

where TN,TP,FN,FP are, respectively, the total number of true negatives, true positives,
false negatives, and false positives obtained by comparing y1, ..., ym with h(x1), ..., h(xm).

With the confusion matrix, we can now define the predictive values (Defini-
tion 3.1.2), sensitivity, and specificity (Definition 3.1.3).

Definition 3.1.2 (Empirical predictive values). Given a sample (x1, y1), ..., (xm, ym)
and a classifier h such that its confusion matrix with respect to the sample is (TN,FP,FN,
TP), then its empirical positive and negative predictive values are given by

ˆppv(h) = TP
TP + FP , (3.2)

ˆnpv(h) = TN
TN + FN . (3.3)

Remark 3.1.1. The predictive values capture the notion of confidence in a classifier’s
prediction. For instance, consider a model h with ˆppv(h) ≥ 1 − ϵ. In the context of
malignancy prediction, such a model is virtually certain, with a margin of uncertainty
of ϵ, to be correct when asserting that a patient does not have a malignant lesion. This
accreditation underscores the model’s high reliability in preventing cases of cancers from
going undetected.

Definition 3.1.3 (Sensitivity/Specificity). Given a sample (x1, y1), ..., (xm, ym) and a
classifier h such that its confusion matrix with respect to the sample is (TN,FP,FN,TP),
then its sensitivity and specificity with respect to the sample are given by
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sensitivity(h) = TP
TP + FN , (3.4)

specificity(h) = TN
TN + FP . (3.5)

Remark 3.1.2. Sensitivity and specificity express how much of the positive and negative
instances of a sample the classifier was able to discover. In the context of malignancy
prediction, a classifier h with high sensitivity is able to discover most of the benign lesions,
and as such is able to minimize the number of unnecessary biopsies.

Together the notions of predictive values, sensitivity, and specificity fully specify
the desired performance metrics necessary for the design of a good diagnostic system.
Concretely, a good system is one that maximizes sensitivity without compromising the
positive predictive value. In other words, high positive predictive value is top priority.
Only after achieving a minimum positive predictive value level one switches to maximizing
sensitivity.

Remark 3.1.3 (Precision/Recall). We note that, by inverting the labels so that the
positive class refers to benign lesions, we are able to use the lighter notation of precision
(to mean the positive predictive value) and recall (to mean sensitivity), which we borrow
from the information retrieval community. Thus, our goal becomes to maximize recall
without compromising precision. The advantages of this change will become clear once we
start relying on the Area Under the Precision-Recall Curve (AUPRC) for model selection
and validation.

3.2 Scoring functions and threshold-based classifiers

In Section 3.1, we did not require a specific values for the classification metrics
discussed. Instead, we vaguely referred to a good diagnostic system as one with high
precision and recall which somehow prioritizes precision over recall. This degree of free-
dom is left on purpose and motivates a natural approach involving scoring functions and
threshold-based classifiers. See the definition below.

Definition 3.2.1 (Threshold-based classifiers). Given a scoring function f : X →
[0, 1], we define its family of threshold-based classifiers to be {hf,t}t∈[0,1], where hf,t is
given by

hf,t(x) := 1f(x)>t. (3.6)

With scoring functions, the classification metrics of the last section become func-
tions of the threshold t. See definitions 3.2.2 and 3.2.3. Additionally, we are able to define
the precision-recall curve (Definition 3.2.4).
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Definition 3.2.2 (Empirical predictive value curves). Let f : X → [0, 1] be a scoring
function and t ∈ [0, 1] be a threshold level, then its empirical predictive value curves are
given by

ˆppv(f, t) = ˆppv(hf,t), (3.7)
ˆnpv(f, t) = ˆnpv(hf,t). (3.8)

Definition 3.2.3 (Sensitivity/Specificity curves). Let f : X → [0, 1] be a scoring
function and t ∈ [0, 1] be a threshold level, then its sensitivity/specificity curves are given
by

sensitivity(f, t) = sensitivity(hf,t), (3.9)
specificity(f, t) = specificity(hf,t). (3.10)

Definition 3.2.4 (Precision-recall curve). Let f : X → [0, 1] be a scoring function,
then its precision-recall curve is obtained by plotting precision as a function of recall
for increasing threshold levels t ∈ [0, 1]. For an example, consider the right column of
Figure 2.

One advantage of such approach is that it subdivides the binary classification
problem into two subproblems: to choose a data-dependent scoring function f̂m ∈ F

and to select a threshold level t ∈ [0, 1]. This is preferable as it allows one to perform
modeling experiments without having to commit to any particular trade-off between the
classification metrics [Har19; Hon+22]. Concretely, this enables the decision component of
the analysis to be performed at a later moment, preferably when more detailed information
about the usage of the model, such as a cost model for the classification mistakes, becomes
available.

Another motivating factor for the introduction of scoring functions and threshold-
based classifiers lies in the empirical predictive values. In particular, to analyze the
generalization of the empirical predictive values one inevitably has to deal with the de-
nominators

PP = TP + FP and PN = TN + FN, (3.11)

which constitute the number of points the classifier predicted as positive (PP) and negative
(PN) for a given sample. The determination of PP and PN for an arbitrary classifier h and
sample S isn’t trivial, but it can be easily done in the case of scoring functions by choosing
thresholds based on the empirical quantile function. Indeed, let f be a scoring function
and (x1, y1), ..., (xm, ym) be a sample so that f1 ≤ f2 ≤ ... ≤ fm is f(x1), f(x2), ..., f(xm)
in ascending order. Moreover, let k ∈ [m−1] and αk = k/m so that the empirical quantile
function q̂f is given by:
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q̂f (αk) = fm−k + fm−k+1

2 , for k = 1, ...,m− 1. (3.12)

Then, the empirical predictive values simplify to:

ˆppv(f, q̂f (αk)) = 1
k

mX
i=1

1yi=1∧f(xi)>q̂f (αk), (3.13)

ˆnpv(f, q̂f (αk)) = 1
m− k

mX
i=1

1yi=0∧f(xi)≤q̂f (αk), (3.14)

which suggests a natural reparameterization by considering the threshold levels to be
given by the positive rate αk:

ˆppv(f, αk) = 1
k

mX
i=1

1yi=1∧f(xi)>q̂f (αk), (3.15)

ˆnpv(f, αk) = 1
m− k

mX
i=1

1yi=0∧f(xi)≤q̂f (αk), (3.16)

(3.17)

Remark 3.2.1. Note that, under the framework of learning theory, the expressions in
equations (3.15) and (3.16) are almost sums of i.i.d. random variables, except for the
dependence introduced by the empirical quantile function.

Given the previous discussion on scoring functions and their benefits to our ap-
proach, in this thesis we shall consider the malignancy prediction problem as the problem
of selecting a data-dependent scoring function f̂m which possesses good classification
curves, as introduced in definitions 3.2.2, 3.2.3, and 3.2.4. In particular, we will focus on
obtaining (and establishing statistical control over) positive predictive value curves which
are as close as possible to 1 in the critical interval (0, 0.5] of positive rate/threshold levels
αk. Moreover, as a secondary goal, we will pursue the maximization of the AUPRC.

3.3 Predictive value generalization bounds

Having discussed the relevant classification metrics in Sections 3.1 and 3.2, in
this section we review the learning-theoretic results of Vemuri and Srebro [VS20] on
the generalization of predictive value curves. We begin by introducing the population
counterparts of the empirical quantile function and predictive values. Let k ∈ [m−1] and
αk = k/m, then

qf (αk) = sup{t : PX{x : f(x) > t} = αk}, (3.18)
ppv(f, αk) = P(y = 1 | f(x) > qf (αk)), (3.19)
npv(f, αk) = P(y = 0 | f(x) ≤ qf (αk)). (3.20)
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A natural question is how ˆppv and ˆnpv relate to ppv and npv. Lemma 3.3.1 shows
that the empirical predictive values are almost unbiased estimators of their population
counterparts.

Lemma 3.3.1 (Bias of empirical predictive values [VS20, Lemma 1]). For any
k = 1, 2, ...,m− 1 we have that����Eh ˆppv(f, αk)

i
− ppv(f, αk)

���� ≤ m

2k

s
π

2(m− 1) , (3.21)
����Eh ˆnpv(f, αk)

i
− npv(f, αk)

���� ≤ m

2(m− k)

s
π

2(m− 1) . (3.22)

Remark 3.3.1. Notice the trade-off between the two bounds. The bias of the positive
(negative) predictive value worsens (improves) as k → 0, while it improves (worsens)
as k → m − 1. If k is away from both extremes, then asymptotically, both empirical
predictive values approach their population counterparts. This trade-off is present in all
generalization bounds of this section.

Lemma 3.3.1 together with an application of McDiarmid’s inequality (Theo-
rem 2.3.3) to the empirical predictive values allows us to provide confidence bands for
the predictive value curves of a fixed scorer f : X → [0, 1]. See Theorem 3.3.1.

Theorem 3.3.1 (Large deviation bound [VS20, Theorem 2]). With probability at least
1 − δ, for all k = 1, 2, ..,m− 1,

��� ˆppv(f, αk) − ppv(f, αk)
��� ≤ 1

k

s
m log(4m

δ
)

2 + m

2k

s
π

2(m− 1) , (3.23)

��� ˆnpv(f, αk) − npv(f, αk)
��� ≤ 1

m− k

s
m log(4m

δ
)

2 + m

2(m− k)

s
π

2(m− 1) . (3.24)

Proof. Let Z = X × {0, 1} and F : Zm → R be defined by F (z1, ..., zm) = ˆppv(f, αk). We
begin by showing that F satisfies the bounded differences condition; i.e., that

|F (z1, ..., zi, ..., zm) − F (z1, ..., z
′
i, ..., zm)| ≤ 1

k
, (3.25)

for all z1, ..., zi, z
′
i, ..., zm ∈ Z and i ∈ [m]. This is more easily seen geometrically than

algebraically. Indeed, recall that ˆppv(f, αk) is computed by first sorting f(x1), ..., f(xm)
and then selecting a threshold q̂f (αk) such that the top k scores are above it and the other
m−k scores are below it. The ˆppv(f, αk) is then the number of points xj such that f(xj)
lies among the top k scores and yj is positive divided by k. It is clear that perturbing the
sample by one point won’t alter the denominator 1

k
, so that

|F (z1, ..., zi, ..., zm) − F (z1, ..., z
′
i, ..., zm)| (3.26)

is 1
k

times the difference between the counts of true positives across the two sets of top-k
scores. As the perturbation can only cause the set {xj : f(xj) > q̂f (αk)} to change by at
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most one point, the set {yj : f(xj) > q̂f (αk)} can also only change by at most one value.
The difference in counts is thus bounded by a difference of values of y: |1yi=1 − 1yl=1|, for
some l ∈ [m]. As such, the difference in the positive predictive values cannot be larger
than 1

k
, as desired.

This can be similarly shown for G(z1, ..., zm) = ˆnpv(f, αk), but with ci = 1
m−k

instead of 1
k
. Thus, McDiarmid’s inequality (Theorem 2.3.3) applies, and we have

that, for each k ∈ [m− 1],

P
(��� ˆppv(f, αk) − E[ ˆppv(f, αk)]

��� > ϵ

)
≤ 2 exp

 
−2k2ϵ2

m

!
, (3.27)

which can be rewritten in the form of a high-probability bound: with probability at least
1 − δ/2m,

��� ˆppv(f, αk) − E[ ˆppv(f, αk)]
��� ≤ 1

k

s
m log(4m

δ
)

2 . (3.28)

A similar analysis yields: with probability at least 1 − δ/2m,

��� ˆnpv(f, αk) − E[ ˆnpv(f, αk)]
��� ≤ 1

m− k

s
m log(4m

δ
)

2 . (3.29)

Now, by applying Lemma 3.3.1 and the union bound, we get the desired result.

Similar to our treatment of the generalization error of ERM-H via uniform con-
vergence in Section 2.4, Vemuri and Srebro also provide generalization bounds that hold
uniformly over a class of scoring functions F. Concretely, this enables one to analyze the
generalization performance of a data-dependent choice f̂m ∈ F from its training sample to
the population. Before presenting the main result, we introduce two specialized notions
of model complexity. See definitions 3.3.1 and 3.3.2.

Definition 3.3.1 (Order coefficient). Let F be a family of scoring functions, then its
(m, k)-order coefficient is given by

Θ(F,m, k) = max
x∈Xm

#
n
ϕk(f(x)) : f ∈ F

o
, (3.30)

where ϕk : Rm → P([n]) takes a vector to the set of indices of its top k entries. Ties are
resolved using the original order.

Definition 3.3.2 (VC subgraph dimension). Let F be a family of scoring functions,
then its VC subgraph dimension is given by

VC-sub(F) = VC-dim(1S(f)), (3.31)

where S(f) = {(x, t) ∈ X × R : t < f(x)} is the subgraph of f.
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Remark 3.3.2. Vemuri and Srebro show that the (m, k)-order coefficient can be bounded
using the VC subgraph dimension via an argument analogous to Corollary 2.4.3. In par-
ticular, they show that

Θ(F,m, k) ≤
�
em

d

�d

, (3.32)

where d = VC-sub(F) < ∞ and m ≥ d.

We are now ready to state the uniform convergence bound.

Theorem 3.3.2 (Uniform convergence bound [VS20, Theorem 3]). With probability
at least 1 − δ, for k = 1, ...,m− 1 and for all f ∈ F with d = VC-dim(F) < ∞,

��� ˆppv(f, αk) − ppv(f, αk)
��� ≤ 1

k

q
2m · log(8m · Θ(F,m, k)2/δ) + m

2k

s
π

2(m− 1) , (3.33)

��� ˆnpv(f, αk) − npv(f, αk)
��� ≤ 1

m− k

q
2m · log(8m · Θ(F,m,m− k)2/δ) + m

2(m− k)

s
π

2(m− 1) .

(3.34)
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4 Machine learning experiments
The combination of some data
and an aching desire for an
answer does not ensure that a
reasonable answer can be
extracted from a given body of
data

John Tukey

In this chapter, we explore the development of a machine learning model for
addressing the malignancy prediction problem as described in Chapter 3. To facilitate
our discussion, we break-up the modeling process into three phases as outlined in the
comprehensive scoping review “Guidelines and quality criteria for artificial intelligence-
based prediction models in healthcare” by Hond et al. [Hon+22]:

1. Preparation, collection, and checking of the data. This phase consists of data
acquisition and preprocessing. There are many important considerations regarding
this process, such as data quality, representativeness, and dataset size. For more
details, see [Hon+22, Phase 1: Preparation, collection, and checking of the data]
and references therein.

2. Development of a machine learning model. This phase is comprised of model
selection1, training, and internal validation. Here, important considerations are
over-fitting, algorithmic bias, and transparency of the modeling process. For more
details, consult [Hon+22, Phase 2: Development of the AIPM] and references
therein.

3. Validation of the machine learning model. This phase consists in a compre-
hensive assessment of generalization, including an external validation experiment
conducted by an independent research group. For more details, refer to [Hon+22,
Phase 3: Validation of the AIPM] and references therein.

The first phase was carried out by I. Buzzato in collaboration with four breast
cancer reference centers in Brazil [Buz+23]. Detailed information concerning data acqui-
sition procedures, inclusion/exclusion criteria, and feature selection [GE03] may be found
in the methods section of the paper. The resulting dataset is discussed in Section 4.1.

The second phase is the main concern of our efforts and is described in full
detail in Sections 4.2, 4.3, and 4.4. In particular, in Section 4.2, we justify our gradient
boosting approach and compare it to other alternatives, describe training and validation
1 In the context of the scoping review, model selection refers to choosing a modeling approach.
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procedures, and detail the computational environment used. In Section 4.3, we report
the results of our machine learning experiments. Finally, in Section 4.4, we interpret and
discuss the results of the experiments.

Phase three has not been incorporated into this work. At the time of the writing
this thesis, we have not secured an independent group for external validation of our
experiments. Therefore, we consider this aspect as a potential avenue for future works
and discuss it in Chapter 5.

4.1 The dataset

The dataset of Buzatto et al. [Buz+23] is comprised of m = 1929 data points, di-
vided into training (1236), validation (290), and testing (403). Each data point represents
a lesion of size at most 30mm from a patient aged at least 18 years old related to patholo-
gies originating primarily from the breast. Each patient underwent either percutaneous
core needle biopsy and/or excisional biopsy [Kum+22], from which the dependent vari-
able (result) was determined by means of a pathological analysis [AIS18]. The training
and test datasets are comprised of BI-RADS 3, 4, 5, and 6 lesions, while the validation
dataset only contains BI-RADS 3 and 4 lesions. The dataset’s features are described
in Table 1. For a more thorough explanation of the features, consult the PhD thesis of
Buzatto [Buz24].

In this thesis, we introduce minor modifications to the dataset. Specifically, we
utilize the complete dataset without splitting it. Furthermore, we invert the labels so that
the positive class represents benign lesions. As discussed in Remark 3.1.3, this adjustment
enables us to define the project’s goals in terms of the precision-recall curve.

4.2 Methods

In this section we discuss two learning experiments. The first relies on Theorems
3.3.1 and 3.3.2 for model validation, whereas the second relies on repeated 5-fold cross-
validation (see Appendix A.1). Both experiments are based on gradient-boosted regression
trees and so we begin by motivating this decision.

The choice of learning algorithm

There were many available methodologies for this project, including logistic re-
gression [Cra03], deep learning with convolutional neural networks and image transform-
ers [Dos+20; LeC+89], support vector machines [CV95], and tree-based methods such as
random forests [Bre01] and gradient-boosted trees [Fri01].
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Features
Name Data Type Description
Age Integer Age in years
Size Float Size of the biggest lesion
Palpable Binary 0: not palpable

1: palpable
Vessels Binary 0: not present

1: present
RI Float Resistance index determined by

Doppler spectral analysis
Shape Ordinal 0: oval or round

1: irregular
Margins Ordinal 0: circumscribed

1: microlob./indistinct/angular
2: spiculated

Orientation Ordinal 0: parallel
1: not parallel

Result Binary 0: malignant
1: benign

Table 1 – The dataset’s features.

Given adequate resources, each of these strategies could be made to work well.
Nonetheless, specific requirements of our problem and dataset made gradient-boosted
trees the most compelling choice. In particular, computer vision approaches based on
deep learning can be highly effective for pattern recognition [Ben16], as images contain
much more information than a handset of tabular features. However, such approaches
typically require enormous datasets to work, which clearly ruled them out for our small
dataset2. To illustrate this point, nVidia recently provided a deep learning-based solution
to the problem we are dealing with and their data set comprised roughly 8 million images
of breast ultrasound exams [She+21].

Support vector machine-based modeling3 is perhaps the closest there is to what we
have discussed in Chapter 2. Unfortunately, support vector machines typically require a
great deal of feature engineering through kernel design to be effective [SS18]. Furthermore,
they do not inherently provide probability estimates [Pla+99], which led to their dismissal
for our current purposes4.

Other methods, including random forests, gradient boosting, and logistic regres-
sion, were already evaluated on this dataset, resulting in similar performance across all 9
method choices [Buz+23]. Given this, we chose to focus exclusively on gradient boosting

2 Less than half of the lesions that comprise our dataset have associated US images. For more informa-
tion, see [Buz24].

3 Note that Vladimir Vapnik was involved in the development of both statistical learning theory and
support vector machines.

4 This requirement is discussed in [Hon+22].
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in this thesis, as the method is widely recognized as being the go-to method for tabular
prediction tasks5 [Car23; GOV22; Nie16] and possesses many good properties such as
robustness against uninformative features [HTF09, Chapter 10].

Learning-theoretic experiment

To evaluate the practical utility of the predictive value generalization bounds
for model validation, we experimented with two sets of models. The first set comprised
XGBoost models trained on different train-test splits: m = 965, m = 643, and m = 386,
corresponding to one-half, one-third, and one-fifth of the full dataset for validation. The
model’s hyperparameters were tuned on the basis of a grid search procedure employing
10 repetitions of 5-fold cross-validation (see Table 2 for the grid used). For each split,
the associated model was refit on the whole training set (m = 964, m = 1286, and
m = 1543) using the hyperparameters found by cross-validation. The refitted models
were then evaluated on the corresponding test sets by recording their predictive value
and precision-recall curves. To obtain generalization bands for the predictive values, we
applied Theorem 3.3.1 with δ = 0.05.

Hyperparameter Values
Learning rate 0.3, 0.1, 0.01
Boosting rounds 10, 100, 1000
Maximum depth 4
Minimum child weight 1
Subsampling 0.8
Column subsampling 0.7

Table 2 – Grid used for hyperparameter search for the first set of models.

The second set of models consisted on XGBoost models trained on the full dataset
(m = 1929) without hyperparameter tuning (see Table 3 for the hyperparameters used).
The models were boosted for T = 10, 100, and 1000 rounds respectively. Each model was
then evaluated on the same dataset with respect to predictive value and precision-recall
curves. To obtain generalization bands for the predictive values, we applied Theorem 3.3.2
with δ = 0.05 and VC-sub(FXGB) = 14(T +1) log2((T +1)e). This approximation is based
on the VC dimension of boosting [MRT18] and on the VC dimension of decision stumps
(trees of depth 1) [LLM20].

Empirical experiment

Building on the recommendations outlined in Appendix A.1, we decided to de-
velop the XGBoost model on the basis of a (semi-) nested 5-fold cross-validation scheme
5 It was also the top performer in [Buz+23].
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Hyperparameter Values
Learning rate 0.01
Boosting rounds 10, 100, 1000
Maximum depth 1
Minimum child weight 1
Subsampling 0.8
Column subsampling 0.7

Table 3 – Hyperparameters used for the second set of models.

over the whole dataset, where the optimal number of boosting rounds was determined
afresh via 5-fold cross-validation each time the model was fitted to new data (i.e., on a
new fold) and the remaining hyperparameters were determined only once at the outer
cross-validation scale. To determine the number of boosting rounds, we followed an ap-
proach similar to Elith et al. [ELH08], where boosting was performed incrementally until
the cross-validation score failed to improve for 200 consecutive rounds6.

As a consequence of using a semi-nested cross-validation scheme, model selection
and validation were performed simultaneously. Specifically, for each choice of hyperpa-
rameters considered during model selection, 10 repetitions of 5-fold cross-validation were
executed and the mean AUPRC7 was computed over the resulting 50 folds. The best
performing combination of hyperparameters was selected as the final one, and the perfor-
mance of the model was estimated by recording the precision-recall and calibration curves
for each test fold of the winning cross-validation run.

The hyperparameter search was performed using optuna’s implementation of the
Tree-structured Parzen Estimator (TPE), a bayesian optimization technique that at-
tempts to reduce the number of unnecessary evaluations by keeping track of the “hot
regions” of the hyperparameter space [Ber+11]. The hyperparameter search space used
is shown in Table 4. To combat overfitting during training, we made sure to include non-
trivial values for the subsampling hyperparameters ‘subsample’ and ‘colsample_bytree’,
to require smaller values of ‘max_depth’, and to determine ‘n_estimators’ each time via
cross-validation with early stopping. It is important to note that the default values for
the other hyperparameters also include an L2 regularization of the tree’s weights (see the
‘lambda’ hyperparameter in the XGBoost documentation8).

Although we did not run a fully nested cross-validation as recommended by Caw-
ley and Talbot [CT10] and as such were unable to flag the occurrence of overfitting
during model selection, we actively took measure to minimize the chance of it happening.
In particular, we reduced the hyperparameter search down to only 3 of the more than 20
hyperparameters available to the tree-based XGBoost model. Moreover, we only ran the
6 The optimal number of boosting rounds was corrected to account for the difference in training set size

from the inner to the outer fold: Tfinal = Tbest/0.8.
7 Computed via scikit-learn’s average_precision_score.
8 https://xgboost.readthedocs.io/en/stable/parameter.html

https://xgboost.readthedocs.io/en/stable/parameter.html.
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search while the cross-validation score increased at least once every 50 rounds.

Hyperparameter Values
Learning rate 0.005
Maximum depth {1, 2, 3, 4}
Subsampling [0.4, 0.75]
Column subsampling [0.4, 0.75]

Table 4 – Hyperparameter search space used for the optuna study.

The computational environment

The experiments were performed in Python utilizing the machine learning li-
braries scikit-learn and xgboost9 [CG16; Ped+11]. For data manipulation, we employed
pandas [McK+11], while visualization was accomplished using the matplotlib and seaborn
libraries [Hun07; Was21]. Additionally, the hyperparameter optimization library optuna
was used for its implementation of the TPE sampler [Aki+19]. To ensure transparency
and reproducibility, we have made the code for all experiments, along with the specific
versions and dependencies of the utilized software packages, available in a GitHub Gist10.

4.3 Results

The predictive value and precision-recall curves of the learning-theoretic exper-
iment are shown in Figures 2 and 3. Both figures show the empirical predictive value
curves along with the 95% confidence bands derived from Theorems 3.3.1 and 3.3.2.

The optuna study ran for 180 trials and achieved a final mean AUPRC of 0.9527.
Figure 4 illustrates the evolution of the model selection criterion over the trials. The final
hyperparameters were: ‘max_depth’ = 2, ‘subsample’ = 0.6454, and ‘colsample_bytree’ =
0.7290. The 50 precision-recall and calibration curves of the winning cross-validation run
are shown in Figure 5, whereas the histogram of AUPRC values over the 50 folds in shown
in Figure 6. The mean precision-recall and calibration curves were computed via linear
interpolation with respect to standardized recall and predicted probability values. The
confidence bands were determined by considering the standard deviation of the inter-
polated precision and true probability values. For completeness, Figure 7 shows all four
classification curves along with their linearly interpolated means and standard deviations,
as discussed in Sections 3.1 and 3.2. Finally, Figure 8 shows the histogram of AUROC
(Area Under the Receiver Operator Characteristic curve) values over the 50 folds.
9 Other similarly good implementations of gradient-boosted trees include LightGBM [Ke+17] and Cat-

Boost [Pro+18]. Notably, the latter offers native support for categorical features.
10 https://gist.github.com/alekfrohlich/11a47ce0d19f846e024c0c5602cf60f0.

https://gist.github.com/alekfrohlich/11a47ce0d19f846e024c0c5602cf60f0
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Figure 2 – On the left: empirical predictive value curves along with their 95% confidence bands from
Theorem 3.3.1. On the right: empirical precision-recall curves. Each row corresponds to a
different train-test split sorted in decreasing order of test set size.
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Figure 3 – On the left: empirical predictive value curves along with their 95% confidence bands from
Theorem 3.3.2. On the right: empirical precision-recall curves. Each row corresponds to a
different number of boosting rounds. From top to bottom: T = 10, T = 100, and T = 1000.
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Figure 4 – Evolution of mean AUPRC over the trials. The orange circle represents the best trial.

Figure 5 – On the left: precision-recall curves for each test fold, with mean curve and confidence bands
computed via linear interpolation. On the right: calibration curves for each test fold, with
mean curve and confidence bands computed via linear interpolation.
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Figure 6 – Histogram of AUPRC values of the winning cross-validation run.

Figure 7 – Predictive value, sensitivity, and specificity curves for each test fold. Mean curves and confi-
dence bands were computed via linear interpolation.
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Figure 8 – Histogram of AUROC values of the winning cross-validation run.

Final model

The final model was obtained by fitting XGBoost with the hyperparameters found
in the optuna study over the whole dataset. The final number of trees, determined with
5-fold cross-validation and early stopping, was 1180. The training precision-recall and
calibration curves are shown in Figure 9, whereas the training predictive value, sensitivity,
and specificity curves are shown in Figure 10. The final model’s training AUROC was
0.9623. Individual feature impact over the final model’s predictions was computed using
TreeExplainer [Lun+20] and is shown in Figure 11 in the form of a density scatter plot
of SHAP values, where features are ranked by the sum of absolute SHAP values.

4.4 Discussion

It is evident from Figures 2 and 3 that there is simply too much uncertainty
present in the confidence bands for them to be useful for model validation. In particular,
the uniform bound is completely vacuous due to the high VC dimension of FXGB. Unfor-
tunately, this situation cannot be ammeliorated as there are no tight estimates for the VC
dimension of gradient-boosted trees in the literature, be it the standard VC dimension or
the subgraph variant [SF12]. In particular, available estimates for the VC dimension of
boosting usually have a linear dependence on the number of boosting rounds T , which is
commonly set to high values such as T = 1000 in practical applications [ELH08]. More-
over, these estimates rely on an upper bound to the VC dimension of the base class, in
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Figure 9 – Final precision-recall and calibration curves computed over the whole dataset.

Figure 10 – Final predictive value, sensitivity, and specificity curves computed over the whole dataset.
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Figure 11 – Density scatter plot of SHAP values computed for the final model over the whole dataset.

our case of VC-dim(HTrees(θ)). Similar to boosting, the problem of computing the VC
dimension of decision trees is still a topic of research, and estimates are typically obtained
via recursive procedures based on the VC dimension of low-depth trees [LLM20]. We were
able to circumvent this last problem by restricting the base class to trees of depth 1, for
which the exact VC dimension is known [LLM20]. Nonetheless, the linear dependence on
T still rendered our bounds trivial11.

Although the bands derived from Theorem 3.3.1 show more promise, they still
suffer from a loss of statistical control within the critical range of values αk ∈ (0, 0.5]. This
inherent trade-off between empirical precision and the width of the confidence bands is
to be expected, given that a decrease in αk signifies fewer instances predicted as positive,
leading to a diminished sample size from which to compute precision. Regrettably, this
scenario forced us to consider validation methods that had a looser connection with the
theory introduced in Chapters 2 and 3.

In contrast to the learning-theoretical experiment, the experiment based on cross-
validation yielded better results. As can be seen by Figure 4, hyperparameter tuning
yielded marginal gains in terms of mean AUPRC. This may be due to the small search
space used or due to the fact that the initial hyperparameter values were already close to
being optimal. Nonetheless, the final choice of hyperparameters yielded stable precision-
recall, ROC, classification, and calibration curves across the 50 folds, as can be seen by
Figures 5, 6, 7, and 8. The model achieved good discrimination (mean AUPRC = 0.9527)
and calibration (mean calibration curve close to y = x). The final model similarly achieved

11 As a matter of fact, for T = 1000, our estimate for the VC dimension is already greater than 150000!
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good discrimination and calibration on its training set, as Figures 9 and 10 show.
Although we were not able to establish statistical control over the positive pre-

dictive value (precision) curve using the predictive value generalization bounds [VS20], we
were able to contribute to Buzatto’s thesis [Buz24]. In particular, by employing different
training and validation procedures to obtain a good model, we strengthen the claim that
machine learning may benefit the management of suspicious breast lesions identified by
ultrasound. Moreover, the SHAP summary plot shown in Figure 11 corroborates to the
importance of multi-modality [Pfo+22], and Doppler features in particular, to the task of
malignancy prediction.

In our experiments, we tackled the issue of choosing f̂m ∈ F with good precision-
recall, classification, and calibration curves. Contrary to Buzatto et al., we used all
the available data for model development and did not commit to any particular trade-
off (threshold/positive rate) between the classification metrics. In [Buz+23], a detailed
assessment of the final model was performed by evaluating it on a hold-out test set,
stratifying by BI-RADS sub-type. The model was able to significantly reduce the number
of unnecessary biopsies and had a precision of 98.1%12. At this stage, we cannot claim
any particular metric values for our model. Nonetheless, it is clear from Figures 5-10 that
our model would significantly reduce the number of unnecessary biopsies for multiple
threshold levels, including a good part of the critical range αk ∈ (0, 0.5] associated with
high precision.

12 The paper doesn’t flip the labels, and so by precision we mean negative predictive value.
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5 Conclusions
In this thesis we studied elements of the mathematical theory of learning. In

particular, we reviewed classical concentration inequalities (Chernoff-Hoeffding and Mc-
Diarmid), formalizations of the intuitive notion of model complexity (VC dimension and
Rademacher complexity), and studied the empirical risk minimization principle from an
algorithmic perspective. Following this, we formulated the malignancy prediction prob-
lem in terms of scoring functions, predictive values (ppv/precision and npv), sensitivity
(recall), and specificity, and presented the learning-theoretic results of Vemuri and Srebro
[VS20] on the generalization of predictive value curves.

Building upon foundational matters, we proceeded to experiment with the breast
lesion dataset collected Buzatto et al. [Buz+23]. In this thesis, we investigated two
approaches for developing a gradient boosting model for the prediction of malignancy of
breast lesions. The first approach consisted on applying the predictive value generalization
bounds to estimate the generalization error of XGBoost models developed on the basis
of train-test splits and the whole dataset. Both experiments based on this approach fell
short due to insufficient sample sizes and lack of tightness in current estimates for the VC
subgraph dimension of gradient-boosted regression trees. The second approach consisted
on applying repeated 5-fold cross-validation to select and validate an XGBoost model.
This approach worked better and stably yielded models with high discrimination (mean
AUPRC = 0.95) and calibration across different cross-validation folds.

There are many possible continuations of this work. First it would be inter-
esting to explore data-dependent generalization bounds for the predictive values and to
delve deeper into the issue of estimating the model complexity of boosting in a way that
doesn’t depend so strongly on the number of boosting rounds, which is typically high
for practical applications of boosting. From the perspective of the application, a natural
extension of this thesis would be to evaluate the performance of the final model on an
external validation set, stratifying by BI-RADS, institution type, age, etc. At this stage,
it would also be interesting to analyze individual model predictions more carefully with
respect to SHAP values and also within the framework of conformal prediction [AB22],
which, although not directly comparable to the learning-theoretic experiments of Chap-
ter 4 [ZYS24], has gained significant traction as a tool for providing distribution-free and
model-agnostic uncertainty quantification in high-stakes applications such as healthcare
[Csi+23; Lu+22; Sre+24]. Finally, it would be exciting to explore whether a multi-modal
(or stacked/ensemble-based) model built using both clinical and image-based features
(say, by combining tree ensembles with convolutional neural networks) could outperform
our current tabular-based solution.
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Final remarks

We conclude this thesis by highlighting the importance of interdisciplinary re-
search in advancing the current state of healthcare. The field of medicine is full of ripe
opportunities for data-driven approaches such as machine learning and inferential statis-
tics. Yet, addressing these challenges requires solutions that incorporate knowledge from
multiple domains. In particular, diseases such as cancer display an incredible amount of
heterogeneity (viz. [Caj+20]) and so one needs to be very careful with the issues of repre-
sentativeness and sample size when developing prognostic and diagnostic models for them.
Furthermore, one cannot dispense with statistics, and specially mathematical statistics,
when considering such intricate problems. This is beatifully put by Bradley Efron [Efr05]:

A new generation of scientific devices, typified by microarrays,
produce data on a gargantuan scale – with millions of data
points and thousands of parameters to consider at the same
time. These experiments are “deeply statistical”. Common
sense, and even good scientific intuition, won’t do the job by
themselves. Careful statistical reasoning is the only way to see
through the haze of randomness to the structure underneath.
Massive data collection, in astronomy, psychology, biology,
medicine, and commerce, is a fact of 21st Century science,
and a good reason to buy statistics futures if they are ever
offered on the NASDAQ.

At last, one cannot ignore the increased availability of image, text, and video
data in the medical field and the increasingly important role played by computer vision,
natural language processing, and other deep learning methodologies in dealing with such
complex data types (viz. [Pic+21]).
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A Appendix

A.1 Empirical studies on model selection and valida-
tion

Perhaps the simplest strategy for model selection and validation would be to
train multiple models on the full dataset and then select and report the metrics of the
model with the best training performance. However, such an approach is known to lead
to overoptimistic results [Ste+01]. Recommended solutions involve either penalizing the
training metric by the complexity of the solution found [MRT18, Chapter 4] or by its
estimated optimism [HTF09, Chapter 7]. As is shown in Section 4.3, the first approach
is not compatible with our chosen methodology, given that current estimates for the VC
dimension of gradient-boosted trees have too strong of a dependence on the number of
boosting rounds and our dataset size is too small for the available generalization bounds
to be useful.

A commonly offered alternative solution from the statistical community is to
estimate the optimism through bootstrapping, resulting in a procedure known as the
optimism-corrected bootstrap [HTF09; Ste+01]. The procedure consists in resampling
the dataset with replacement, then training a model on this bootstrapped sample, and
finally recording the performance of the bootstrapped model on both the bootstrapped
sample and the full dataset. The difference in performance between the two samples is
considered an estimate of the optimism. This procedure is usually repeated multiple times
and then averaged for increased stability.

Although a powerful tool for simple models such as linear regression, optimism-
corrected bootstrap may be ineffective when combined with modern machine learning
methods such neural networks1, ensembles of trees (see Figure 12), and support vector
machines. For instance, Jacobucci et al. [Jac+21] shows that such technique may be
specially dangerous when combined with random forests or gradient boosting and puts
into question the reliability of the results obtained using this strategy in the context of
suicide research in psychology.

A second intuitive strategy is the train-test split. It consists in randomly parti-
tioning the dataset into two subsets: a training and a testing set. In this scenario, model
selection could be performed by training multiple models on the training set and then
choosing the best performing model on the test set. Model validation would then be
performed by recording the metrics of the chosen model on the test set.

This approach may also lead to overoptimistic results, as one is implicitly re-

1 For an interesting example of a convolutional neural network being able to interpolate a dataset of
roughly one million images distributed across a thousand distinct classes, see [Zha+16].
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Figure 12 – Behavior of the train and test error curves of different XGBoost models trained on 80% of
the breast lesion dataset (m = 1543) as a function of their complexity. The models were
each trained using the default hyperparameters, except for ‘n_estimators’ and ‘max_depth’
which were respectively set to 10x and x for x ∈ [20].

lying on random fluctuations in the performance of different models as evidence for in-
creased generalizability. See the following quote from The Elements of Statistical Learning
[HTF09, p. 222]

Ideally, the test set should be kept in a “vault”, and be
brought out only at the end of the data analysis. Suppose in-
stead that we use the test-set repeatedly, choosing the model
with smallest test-set error. Then the test set error of the fi-
nal chosen model will underestimate the true test error, some-
times substantially.

This issue may be corrected by either performing a triple split into training,
validation, and test sets, or by performing model selection on the training set. For the
second approach, one might use either the penalized training performance or the mean
cross-validated (or bootstrapped) score as a model selection criterion. Nonetheless, the
usage of the split is frowned upon by some statisticians working in the development of
clinical prediction models. According to Steyerberg [Ste18], the procedure is at best
wasteful, given that data splitting only uses part of the available data for model develop-
ment. Moreover, he argues that the procedure might lead to weak validation studies in
scenarios involving very small datasets. Harrell [Har15] maintains that data splitting is
wasteful, but adds that the procedure masks the inherent variability present in modeling
with small datasets, which are very common in biomedical research (see Figure 13). In
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Figure 13 – Distribution of the test AUPRC for 500 refits of an XGBoost model with default hyperpa-
rameters following 500 80-20 train-test splits on the breast lesion dataset.

particular, he holds that data splitting hides the large instability associated with many
feature selection algorithms.

A third approach lies in using resampling methods that simulate the acquisition
of new data. The two most commonly discussed methods are cross-validation2 [LM68;
MT68; Sto74] and the bootstrap [Efr79; Efr83]. In this thesis we focus on cross-validation,
however the bootstrap is equally applicable. In our context, cross-validation consists in
partitioning the dataset into k folds of roughly the same size and then, for each fold,
performing the following: training a model on all folds except the one given and then
testing the obtained model on the given fold. The cross-validated score is then the average
of the scores obtained across the k tests.

k-fold cross-validation can be used for model selection and validation in two
ways. The first involves performing cross-validation for each model, and then choosing
and reporting the metrics of the best performing model. The final model is then trained
on the whole dataset. Alternatively, one might use a nested cross-validation approach,
where model selection (and specially tuning) is seen as an integral part of model fitting.
In this approach, an outer cross-validation loop is performed for model validation while an
inner cross-validation is performed for selecting the model to be tested on each test fold.
Similarly to simple cross-validation, when the best hyperparameter choice for a given fold
is found, the model is refitted to the whole (k − 1) folds. Then, the refitted model is
evaluated on the testing fold of the given iteration of the outer cross-validation. In the

2 The reference to Tukey is accessible through his collected works [IMS02].
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end, a simple cross-validation is performed on the full dataset and the reported scores are
those from the simple cross-validation.

Cawley and Talbot [CT10] empirically motivate the usage of the second, more
compute-intesive, approach to cross-validation as a way to test for overfitting to the
model selection criterion. In particular, they demonstrate that one is able to perform
hyperparameter tuning on kernel ridge regression to the point that test performance
stops increasing, and instead decreases significantly, while the model selection criterion
continues to improve. It is important to note that nested cross-validation doesn’t solve
the overfitting issue, it only tests for it. To actively take measure to prevent overfitting
during model selection, one might either penalize for complexity or establish some early
stopping criterion.

The standard recommendations for k-fold cross-validation are to use either k = 5
or k = 10 [HTF09; Koh95], and to perform multiple repetitions of the procedure by
randomly shuffling the dataset into new folds [Har15]. It is commonly recommended that
100 repetitions be performed for 5-fold cross-validation and 50 repetitions be performed
for 10-fold cross-validation [Har15].

It is important to note that train-test split and repeated k-fold cross-validation
estimate different things [HTF09, Section 7.12]. Using the notation of the last chapter,
the split estimates R(ĥm), whereas cross-validation estimates E

(x1,y1),...,(xm,ym)iid∼P
[R(ĥm)].

In essence, the split validates a model, while cross-validation validates the entire model-
building procedure. In particular, when validating a model that hasn’t undergone hy-
perparameter tuning or feature selection, repeated k-fold cross-validation validates the
learning algorithm itself. For instance, in our scenario, it serves to confirm the effective-
ness of the XGBoost algorithm in using (k − 1)m/k training points to predict m/k test
points.

It should at last be mentioned that, in the absence of a mathematical model for
the nature of the observed data, the previously outlined suggestions are to be interpreted
as rules of thumb. Indeed, most of these recommendations stem from empirical experi-
ments over a handful of specific datasets, and are not necessarily applicable to a particular
problem found in practice. For a detailed discussion on what is empirical knowledge and
what comes with a mathematical proof attached, see the comprehensive survey “A survey
of cross-validation procedures for model selection” [AC10].
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