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RESUMO

Neste trabalho sao considerados alguns problemas de Cauchy em R" associados a novos
modelos de evolugao do tipo ondas baseados em um operador Laplaciano-logaritimico
introduzido por Charao-Tkehata em [6]. Esse operador que é a composicao da fungao
logaritmica com [ — A? 9> 0, é mais fraco para dissipar a energia associada a equacao da
onda com dissipagao estrutural mas produzindo mesmo tipo de estimativas como se observa
nos trabalhos [4,6]. Essa interessante consequéncia do uso desse novo operador também
ocorre nos problemas estudados neste trabalho. Outra vantagem em usar esse tipo de
operador é poder tomar dados iniciais em espagos mais gerais para certos modelos. Para os
modelos considerados sao estudados perfis assintoticos que ajudam a provar taxas étimas
de decaimento ou blow-up em tempo infinito para a norma L? das solucoes dependendo
da dimensao espacial. O problema considerado no Capitulo 3 possui perfil assintético do
tipo oscilatério. Taxa 6tima de decaimento para a solucao quando n > 3 é obtida e nos
casos n = 1,2 mostra-se que a solucao explode em tempo infinito exibindo taxa étima
de crescimento. O segundo problema apresenta propriedade de perda de regularidade e
devido a isso o seu perfil assintético é do tipo difusivo para alta regularidade dos dados
iniciais, do tipo oscilatério para baixa regularidade e é combinacao dos dois tipos para uma
regularidade limiar. Também sao derivadas taxas 6timas de decaimento dependendo da
regularidade imposta nos dados iniciais. O problema considerado no Capitulo 5 apresenta
o fenomeno de dupla difusao e obtém-se taxas 6timas de decaimento para a solucao nos
casos n > 2. Quando n = 1 um parametro critico #* = 1/4 aparece de modo que a solugao
do problema decai com certa taxa 6tima para 6 € (0,0%) e explode em tempo infinito se
0 € [0*,1/2) com taxa 6tima de crescimento. Ao que parece este tipo de resultado para
f > 0* ainda nao tinha sido descoberto em trabalhos de outros autores.

Palavras-chave: Equacoes do tipo ondas. Operador Laplaciano-logaritmico. Dissipacao
logarftmica. Perfil assintético. Taxas de decaimento em L2. Estimativas étimas.



RESUMO EXPANDIDO

Introducao

Neste trabalho consideramos problemas de Cauchy associados a trés novos modelos de

evolucao do tipo ondas em R"™ dados por

ugt + Lu + Luy = 0, (0.1)

ugt + Lu+ (I + L)_lut =0, (0.2)
1

up — Au+ Lpup =0, 0<60< 5, (0.3)

onde Ly é o operador Laplaciano-logaritmico formalmente definido por log(/ + (—A)G) e
L = Ly. O operador para ¢ = 1 foi introduzido inicialmente como termo dissipativo em
uma equagao da onda por Charao-Ikehata em [6]. Em seguida Chardo-D’Abbicco-Tkehata
generalizaram o problema para dissipagao Lyu com 6 > % em [4]. Este operador L estd
definido em espacos mais gerais que os espacos de Sobolev e é mais fraco do que o operador
usual —A no sentido que mantém quase a mesma regularidade de fungées em H*(R"),
s> 0.

Objetivos

O objetivo deste trabalho é provar o comportamento assintotico no sentido L2, quando
t — oo, das solugdes dos Problemas de Cauchy associados as equagoes (0.1), (0.2) e (0.3).
Deseja-se investigar perfis assintoticos para tais solugoes e taxas 6timas de decaimento

e/ou crescimento quando t — co.
Metodologia

Em problemas como os considerados neste trabalho cujos dominios s@ao o espaco R’
podemos considerar um problema associado no chamado espaco de Fourier. Um método
conhecido na literatura para provar comportamento assintotico de solucoes e também
da energia associada a uma equagao chama-se método de multiplicadores. Usamos os
multiplicadores de Tkehata-Natsume [27] (see also [46]) para os problemas associados as
equagoes (0.1) e (0.2). Este método pode ser eficaz para que taxas de decaimento da
solucao nos casos n > 3 e também da energia total do sistema para qualquer dimensao
sejam derivadas. Através deste método, no entanto, nao é possivel verificar se as taxas de

decaimento obtidas sao 6timas.

Nos trés problemas considerados também se pode encontrar uma féormula explicita para

a solucao do problema no espaco de Fourier. Taxas de decaimento podem ser obtidas



considerando-se uma decomposicao adequada para a solucao no espaco de Fourier que é
chamada de expansao assintotica. Um dos termos da expansao assintotica possui a mesma
taxa que a solucao do problema e é chamado de perfil assintdtico para esta solugao. Mostra-
se que a norma L% da diferenca entre a solucao e este perfil assintético converge para zero
quando t — co com determinada taxa de decaimento. Em outras palavras se mostra que a
solucao do problema se comporta como o perfil assintético em tempo infinito. Conhecer um
perfil assintotico em uma forma simples pode ser mais importante que conhecer a prépria
solucao, que pode ter uma forma complicada. Além disso, taxas étimas de decaimento
e/ou crescimento do perfil assintético correspondem a taxas Gtimas de decaimento e de

crescimento para solugao.
Resultados, discussao e consideracoes finais

Assumindo dados iniciais no espaco LQ(R”) nrit (R™) provamos que o problema associado
a (0.1) possui perfil assint6tico do tipo oscilatério. Derivamos taxas étimas de decaimento
da ordem ¢~ T para as solucoes nas dimensoes n > 3. Nos casos unidimensional e
bidimensional mostramos que a solucao explode em tempo infinito com taxas étimas de
crescimento da ordem v/t e \/Iogt, respectivamente. Estas taxas 6timas obtidas j4 eram
conhecidas do problema da onda usual, mas sendo o operador L mais fraco que o operador
—A, podemos dizer que o operador Laplaciano-logaritmico é mais eficiente que o operador

Laplaciano.

Para o problema associado a (0.2), foi necessério impor mais regularidade nos dados
iniciais além de L2(Rn) N Ll’l(R”), a saber (ug,u1) € Y+l % v com | > 0, para
obter taxas de decaimento na regiao de alta frequéncia no espaco de Fourier e, portanto,
dizemos que o problema apresenta perda de regularidade. Para altas regularidades dos
dados iniciais correspondentes a [ > % — 1 obtemos perfil assintético do tipo difusivo,
para baixa regularidade dos dados iniciais com [ < 4§ — 1 o perfil assintético é do tipo
onda, enquanto para a regularidade limiar [ = & — 1 o perfil assintético é a combinacao
dos dois tipos. Também encontramos duas possibilidades de taxas de decaimento para as
solucoes de ordens t_HTl et d que valem dependendo da regularidade dos dados iniciais

e da dimensao considerada.

Estudamos o problema associado a (0.3) para valores de 6 € |0, %) Para dados iniciais em
L*(R™) N L1’29(Rn), mostramos que a equagao apresenta o fenomeno que chamamos de
dupla difusao, pois derivamos um perfil assintético que é a diferenga de duas solugoes de
equacoes de difusao. Nos casos em que n > 46 observamos que o perfil assintético poderia
ser tomado como sendo apenas um dos termos que tem a pior taxa de decaimento dada

n—460

por t 41-9) neste caso a solucao apresenta fenomeno difusivo e tem a mesma taxa Gtima




de decaimento. Estas taxas de decaimento ja eram conhecidas em problemas da onda
usual com dissipagao (—A)Hut. No entanto, no caso n = 1 com %1 <0< % o fenomeno de
dupla difusao é essencial para que taxas de crescimento fossem obtidas. Provamos que a
solucao tem blow-up em tempo infinito com taxa étima de crescimento t% se 21[ <0< %
e /logt para 0 = zllf Tal resultado, até onde sabemos, ainda nao tinha sido descoberto
em outros trabalhos e estas novas estimativas apresentadas também podem ser verificadas

para a equagao da onda com dissipacao usual.

Palavras-chave: Equacoes do tipo ondas. Operador Laplaciano-logaritmico. Dissipacao

logarftmica. Perfil assintético. Taxas de decaimento em L2. Estimativas étimas.



ABSTRACT

In this work, some Cauchy problems in R associated to new wave-like evolution models
based on logarithmic-Laplacian operator, which was introduced by Charao-lIkehata in [64,
are considered. This operator is the composition of the logarithmic function with 7 — AY,
0 > 0, and it is weaker to dissipate the energy associated to wave equation with structural
damping, but it produces estimates of the same type as observed in works [4,6]. This
interesting consequence of using this operator also appears in the problems studied in
this work. Another advantage of using this operator is that initial data in more general
spaces can be taken to certain models. For the considered models, asymptotic profiles
are studied and they help to prove optimal decay or infinite time blow-up rates to the
L2-norm of the solution depending on the spacial dimension. The problem considered in
Chapter 3 has wave-like asymptotic profile. Optimal decay rate to the solution is obtained
when n > 3 and in the cases when n = 1,2 it is shown that the solution blows up in
infinite time and optimal growth estimates are showed. The second problem in Chapter 4
presents regularity-loss property and because of that its asymptotic profile is diffusive-like
for high regularity of initial data, it is wave-like for low regularity and it is combination
of both for a threshold regularity. Optimal decay rates are also derived depending on
the regularity imposed on the initial data. The problem considered in Chapter 5 presents
double diffusion phenomenon and optimal decay rates are obtained if n > 2. When n =1
a critical parameter 8* = 1/4 appears such that the solution decays with certain optimal
estimate for 6 € (0,60*) and blows up in infinite time for § € [#*,1/2) with optimal growth
rate. This type of result for 6 € [#*,1/2) seems to have not been discovered in studies by
other authors.

Keywords: Wave-like equation. Logarithmic-Laplacian operator. Logarithmic damping.
Asymptotic profile. L2-decay. Optimal estimates.
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1 INTRODUCTION

Quite recently Charao-lkehata [6] introduced in a pioneer work a new type of
damping mechanism of a logarithm-Laplacian type L to dissipate energy of solutions of
the wave equation. Later Charao-D’Abbicco-lkehata in [4] consider an operator Ly by
introducing a parameter 6 > 1/2.

In our work we introduce new models of evolution wave equations based on operators

L and Ly as follows

uy + Lu + Luy = 0, (1.1)

ugt + Lu+ (I 4+ L) Lug = 0, (1.2)
1

utt—Au—i—Lgut:(), 0<0< 5, (1.3)

where u = u(t, x) for (t,x) € (0,00) x R". The operator Ly is defined as
Ly : D(Lg) C L*(R™) — L*(R"),

which combines the composition of logarithm function with the Laplace operator. Its

domain is
D(Ly) := {f e L*(R") | /Rn(log(1+ €122 F () )Pde < +oo}, >0  (14)
and it is defined, via Fourier transform, as follows

(Lof)(x) = F~ (log(L+€)/(©)) (1), f € D(Lo) (15)

We note that the operator Ly is a generalization of the original operator L = L7. Here
F(£)(€) denotes the Fourier transform of f(z) and F~! expresses its inverse Fourier
transform. We refer to Ly as logarithmic-Laplacian operator.

The operator Ly is nonnegative and self-adjoint in L2(R”), because it is unitary

equivalent to a multiplication operator in LQ(R?). Therefore the square root
1/2 1/2 2 2
Ly?: p(Ly?) ¢ L2(R") — LA(R")
can be defined and it is also nonnegative and self-adjoint with domain

Dty = {s e @) | [ s+ PR < 4o
We notice that
HY(R") = D(Lg) — D(L}/*) = L2(R")
for any s > 0, because

1 1 20
L log(1 + [¢2)

=0, > 0.
TSI ’



Chapter 1. Introduction 14

We say that the operator logarithmic-Laplacian L, when # = 1, is weaker than
Laplacian operator in the following sense. Let f € H2(R™) C D(L), then (—A)Y2f €
HY(R"), whereas LY/2f € H5(R") for each s € (0,2). In fact, for 0 < s < 2 there exists
M > 0 such that

log(1+[¢%) < [¢[*7%,  |¢] > M.
Then
(L+ €17 log(1 + [EP)I P < CO+ €212, 16 = M,
where C' > 0 is constant. The above inequality implies that LY/2f € H5(R") for each
s€(0,2) and f € H*(R").
The symbol log(1 + [£ |29) appears in Lévy process [33,43], more specifically, in

the process called rotationally invariant geometric strictly a-stable when the so-called

characteristic exponent has the form

(&) = log(1 + [€]%),

with a € (0,2]. The particular case a = 2 is called symmetric variance gamma process,
which has some applications in financial models.
It should be noted that the space D(L) is closely related with the so-called gene-

ralized Bessel potential spaces Hg’b(Rn), one can refer [16], where
b _ "
YR = {1 € SR IF (14 62721+ 1og(1 + [€2)F) Ol < +00}-

Indeed, D(L) — HY'(R™).

Symbolically writing, we may see that
Ly = log(I + (=A)7),

where A is the usual Laplace operator defined on H?(R™).

Formally, we can notice that
log(I + (~2)") ) (x) = “{op[(] + (~2)*)ul(x)

for u € C§°(R"™). This (formal) relation comes from a modified idea of Chen-Weth [10],
where they studied a Dirichlet problem for a logarithmic-Laplacian operator whose symbol
is 2 log[€]).

It seems that an independent study was developed on the same operator L from

another point of view. In [17] the integrodifferential operator defined by

— A)logy(z) = 2
=% = o [

u(z) —u(z +y)
ly|2

K (|yl)dy, (1.6)

where K, is the Bessel modified function of second kind with index v, is presented. The

author prove that the operator (I — A)log is the same that the operator L defined above.
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Indeed, the Fourier transform of this two operators is the same. Definition (1.6) relates
the operator L to Lévy process. Finally, we emphasize that in [17] Dirichlet problems
associated to the operator (I — A)°2 are studied.

We can express Cauchy problems associated to equations (1.1), (1.2) and (1.3) as

the abstract formulation

upt + Aqu + Agur =0 (1.7)
u(0) = ug, w(0) =w (1.8)

where A; : D(Aj) C H— H,j=1,2, are two nonnegative self-adjoint operator in a
Hilbert space H.

The abstract problems as in (1.7) with A1 = Ay =: A was studied by Ikehata-
Todorova-Yordanov [31]. The authors prove that

e—t% (cos(tAl/Q)uo + AL Sin(tAl/Z)lq) (1.9)

is the leading term to its solution by employing an abstract energy method in the Fourier
space combined with the spectral analysis. The especial abstract problem with As = I,
was studied by Chill-Haraux [11] with initial data in D(AY/2) x H and they prove that
the difference, in D(A/2)-sense, between the solution u(t) of the problem (1.7) and the

solution v of the heat problem

v+ Ao =0
v(0) = ug + uy

decay to zero as t — oo. This means that u(t) behaves as v(t) for large ¢ > 0 and we say
that the considered wave equation has diffusion phenomenon [42].

Now we comment on several models associated to the generalized wave equation
ugt + (=8)7u + (=A)%ug = 0, (1.10)

which have an abstract formulation as in (1.7).

The case 0 = 6§ = 1 is the classical wave equation under effects of a strong damping,
and it describes waves with viscoelastic damping. We can cite the two pioneering works
of G. Ponce [41] and Y. Shibata [44] where they study decay estimates of the solution to
the associated Cauchy problem in the general LP-L? sense. In the work [25] an diffusive
wave-like asymptotic profile as in (1.9) to the solution in L2-sense has been derived and
optimal decay rates (for n > 3) are obtained. In the case n = 1,2 there is a strong
singularity in the leading term and it is proved an infinity time blow up for the solution.
Then the optimallity of the growth rates for n = 1,2 is proved in [28].

The case 0 = 1 and 6§ = 0 described waves with external damping and it was

studied in [37]. In this work, Matsumura prove that the solution decay in L?-sense with
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decay rate t 1 under L}(R™)N L%(R™) assumptions on initial data. This result represents
an important “parameter” when we studying decay rates for problems as (1.10) with 6
near 0.

The intermediate case ¢ = 1 and 0 < 6 < 1 is called the wave equation with
structural (or fractional) damping. Applying energy methods, this case was studied in [27]
in L?-sense and the obtained result for 0 < 6 < % was improved in [7]. More generally
LP-L9 estimates, 1 < p,q < oo, was obtained in [38]. The case 0 = 1 with § > 1 was
studied in [26]. The authors obtained a diffusive-like asymptotic profile and optimal decay
estimates, however a reqularity-loss property appears, that is additional regularity on
initial data is required to obtain optimal decay estimates.

A more general model of (1.10) with a super damping, i.e. f > o, was studied in [5].
In this work, energy decay rates and an asymptotic profile and optimal estimates were
obtained. We can also cite [19], where the authors studied an abstract equation similar
to (1.10) with # = 1. They investigate the regularity of solutions to the homogeneous
problem depending on o.

In the recent work [6] above mentioned, which have introduced a new mechanism
of damping based on the logarithm-Laplacian type operator L, Charao-lTkehata studied

the following Cauchy problem to the wave equation

uy — Au+ Lug =0, t>0, x¢€ R" (1.11)
u(0,2) = up(z), w(0,2) =ui(z), x€ R" (1.12)

The authors derived an diffusive wave-like asymptotic profile as ¢ — oo in a simple form:

nuﬂ@m:f_1(1+mﬂr5@ﬂ§9 (1.13)
€]

and they also obtained the same optimal estimates as in [25,28] to the solution of this

problem. To obtain such estimates, the authors found some sharp estimates to integrals as
1
I(t) := /0 (143"t Pdr, t>0

for p > 0.
Integrals as I;,(t) are related to hypergeometric functions and, in [4], it was possible
to find estimates I)(t) for more general case p > —1. In such work, Chardo-D’Abbicco-

Ikehata study the Cauchy problem associated to
ugr — Au + Loup =0 (1.14)

with 6 > 1/2. The case 1/2 < 6 < 1 present the same behavior as the solution of the

problem associated to the wave equation

up — Au — Ay = 0 (1.15)
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studying in [25]. However, they noticed that for > 1 no regularity-loss property appears.
This fact occurs, because
L los(1 + Je)
looe 1817
is finite for any 6 > 0.
On the other hand, if we consider equation (1.14) with § = 0, we obtain the
equation

U — Au+ up =0

as well as the one study abstractly by Chill-Haraux [11]. As already mentioned, this
equation has diffusion phenomenon.

In this sense, we investigate the model (1.14) for 0 < # < 1/2 in order to identify for
which value of 6 the asymptotic behavior changes. Moreover, we also study the asymptotic
behavior of the solution of (1.7) when we work with the operator L instead of the abstracts
operators in equation (1.7).

It is important to note that equation (1.2) is equivalent to
ut + Lugr + L?u+ Lu + ur = 0,
if we consider sufficiently regular initial data. That model is a type of plate equation as
ugt + (—A)us — alu+ BA%u + (—=A)uy =0, (6>0). (1.16)

The equation (1.16) with § =1, a = 0 and § = 0 is known as plate equation under
effects of rotational inertia term Awuy and it has a frictional dissipation u;. This particular
case was studied by Luz-Chardo in [34] and the authors also proved the global existence
of solution and asymptotic behavior to a semilinear problem. In [45] Sugitani-Kawashima
investigated decay rates to the solution of that particular case and they observed that this
equation presents an regularity-loss property. In this connection, such a regularity-loss
structure has been first discovered and named by S. Kawashima through the analysis
for the dissipative Timoshenko system (see e.g. [23]). For the more general case § = 1,
a = 0and 0 < 0 < 1 energy decay rates were obtained by employing the so-called
Haraux-Komornik inequality in [8] and the authors noted that the regularity-loss property
becomes weaker as 6 increases and it disappears when 6 = 1.

The equation (1.16) has also been studied for general parameters § and 6 by
Horbach-Ikehata-Chardo in [22]. In that work the authors obtained decay rates depending
on the parameters of solutions to Cauchy problems based on the multiplier method. They
also got asymptotic profiles and optimal decay rate of the solutions for some cases where
0 > 1/2. However, for the case § < 1/2 (in particular, # = 0), no asymptotic profile or
optimal estimates were obtained.

In this sense, Fukushima-Tkehata-Michihisa [18] investigated the asymptotic profiles
of the solution to (1.16) with § = 1 and 6 = 0. Such profiles are divided into two parts:
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one is the diffusive like for high regularity initial data and the other is the wave-like for
low regularity initial data from the viewpoint of regularity-loss structure.

It should be noted that knowing optimal estimates allows to investigate the so-
called critical exponents for semi-linear equations. These critical exponents have been
studied a lot and we can cite, for example, [15] and [12-14].

The main topic of this work is to introduce an asymptotic profile for the solution
in the L? framework to the Cauchy Problem associated to each equation in (1.1), (1.2)
and (1.3) in a simple form. Then we use this asymptotic profiles to obtain optimal decay
rates to the L2-norm of solutions. Our interest to study these equations is only from a
pure mathematical point of view.

This work is organized as follows. In chapter 2 we state already known results
and we improve the proof based originally on hypergeomtric and Gamma functions of an
asymptotic lemma that appears in [4]. Moreover we also introduce new elementary results
that we used in subsequent chapters. The notations used in this work are also described
at the beginning of Chapter 2. In Chapter 3, we study the Cauchy problem associated to
equation (1.1). The problem associated to equation (1.2) is studied in Chapter 4. Finally,
we study the problem for equation (1.3) in Chapter 5.

The main results obtained in Chapter 3 of this Doctoral Thesis was published
in 2022 in Journal of Mathematical Analysis and Applications (see [2]). The results of
Chapter 4 will be published in May 2022 in Discrete and Continuous Dynamical Systems
(see [3]). The Chapter 5 of this work was published in 2022 in Journal of Differential
Equations (see [40]). These three papers were made with the supervision by Professor Ruy
Coimbra Charao with collaboration of Professor Ryo Ikehata from Hiroshima University,

Japan.
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2 GENERAL BASIC RESULTS

In this chapter we have collected important results that are used in the next
chapters. In the first section we introduce some results that we use to obtain existence and
uniqueness of solutions. In section 2, we remember some facts about the Fourier transform
in L2(R"). The purpose of third section is to ensure that the spaces like D(L) (see (1.4))
have suitable properties in order to apply the results of Section 1. In Section 4 we state
some technical lemmas which are mainly used to estimate the asymptotic profiles. In
the last section we prepare some asymptotic lemmas that we use later to obtain sharp
estimates.

Throughout this paper, || - || stands for the usual LY(R")-norm. For simplicity of
notation, in particular, we use || - || instead of || - ||2. The relation f(t) ~ g(t) as t — oo

means that there exist positive constants C7, Co such that
Crg(t) < f(t) < Cag(t), (> 1).

For Q C R™ we denote f =~ g on  if, and only if, there are constants K, K9 > 0
such that

Kif(y) < gly) < Kaf(y), Vyell
In this case, we say that f is equivalent to g on 2.
Finally, we denote the surface area of the n-dimensional unit ball by wy, := / dw.

jwl=1

2.1 ABSTRACT CAUCHY PROBLEM: EXISTENCE AND UNIQUENESS OF SOLU-
TION

Let X be a Banach space. For a linear operator A : D(A) C X — X, we consider
the abstract Cauchy problem

du(t)
T Au(t), t>0 (2.1)
u(0) = uo, (2.2)

where ug € X.

Definition 2.1. Let u : [0,00) — X be a continuous function. We say that u = u(t) is a
strong solution of (2.1)—(2.2) if it is continuously differentiable for all t > 0, u(t) € D(A)
for all't > 0 and u(t) satisfies the two conditions (2.1) and (2.2).

In this section, we enunciate some definitions and useful results to prove existence
and uniqueness of solution to the above abstract Cauchy problem. We denote by L£(X)
the set of all bounded linear operators S : X — X. These definitions and results appear,

for example, in references [21] and [39].
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Definition 2.2. A semigroup of bounded linear operators on X is a family T = {T(t);t >
0} C L(X) that satisfies:

i. T(0)=1, where I: X — X is the identity operator;
ii. T(s+1t)="T(s)T(t) for all s,t > 0.

If, in addition, lim;_,g+ ||S(t)z — z||x =0, for all x € X, we say that the semigroup T is
strongly continuous or a CY-semigroup. Moreover, if 1Tl gx)y <1 forallt >0, T is

called a CY-semigroup of contractions.

Theorem 2.3. Let T' be a CO-semigroup. For x € X, the function u : [0,00) — X defined

by u(t) = T(t)x is continuous.

Definition 2.4. The infinitesimal generator of the CO-semigroup T is the operator A :
D(A) — X defined as follows:

t—07+

T(t)x —
D(A) = {x € X; lim % e:z:z'sts} ,

and for x € D(A)
Az = lim —T(t)a: Iy
t—0+ t
Theorem 2.5. Let T be a CY-semigroup and A : D(A) — X its infinitesimal generator.
Then A is a closed linear operator and D(A) is dense in X. Furthermore, for x € D(A),
T(t)x € D(A) for allt > 0, the application t — T'(t)x is differentiable

d
&T(t)x = AT (t)x = T(t)Ax.

If A is the infinitesimal generator of a C’O-semigroup T, the above theorem prove
that the function defined by u(t) := S(t)ug is a strong solution to the problem (2.1)-(2.2)
for ug € D(A). Under the same conditions, the uniqueness of solution is guaranteed by

the next theorem.

Theorem 2.6. Suppose A : D(A) — X is the infinitesimal generator of the CO-semigroup
T. Then, for ug € D(A), the problem (2.1)—(2.2) has a unique strong solution which is
given by

u(t) = T(t)ug € C1([0,00), D(A)).

Definition 2.7. Let T be a C0-semigroup and A : D(A) — X its infinitesimal generator.
If the initial data ug € X, we say that the function u(t) := T(t)ugy is a weak solution to
the problema (2.1)—(2.2). In this case,

u € C([0,00), X).
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The next results are sufficient conditions for an linear operator to be an infinitesimal
generator of a C0-semigroup.

Remember that the set X’ represents the (topological) dual of the Banach space
X. For f € X and p € X', we define

(0, ) = @(f)-
We define the duality map of X, J: X — QX/, as

() ={e e Xileli = 171 = (F.0)}
The set J(f) is nonempety, due to Hanh Banach Theorem.

Definition 2.8. Let A : D(A) — X be an linear operator. We say that A is dissipative if
for each f € D(A), there exists p € J(f) such that

Re(A(f), ¢) <0.

Remark 2.9. Let H be a Hilbert space with inner product (-,-)g : H x H — R (or C).
From the Riesz Representation Theorem, we may prove that A : D(A) C H — H is
dissipative if, and only if,

Re(Az,z)g <0

for all z € H.

Theorem 2.10 (Lumer-Phillips). Let A: D(A) — X be a linear operator such that D(A)

1s dense in X.

i. If A is the infinitesimal generator of a CY-semigroup of contractions, then A is
dissipative and Im(AN — A) = X for all X > 0. Furthermore, if f € D(A), then

Re (A(f),¢) <0 for every ¢ € J(f).

ii. If A is dissipative and there exists A\g > 0 such that Im(Agl — A) = X, then A is

the infinitesimal generator of a C0-semigroup of contractions on X .

Theorem 2.11. [Theorem 6.4, [21]] Let A be generator of a CO-semigroup in X and
B € L(X), that is, B : X — X is a bounded linear operator. Then A+ B generates a

CY-semigroup.

Although the Lax-Milgram Theorem is not a result of semigroup theory, it is a very
important tool to solve linear partial elliptic differential equations. It is also useful to prove
that the conditions of the Lumer-Phillips Theorem (see 2.10) are satisfied. Therefore, we
close this section by stating this result whose proof can be found in [1].

Let H be a real Hilbert space. Let a : H x H — R a bilinear form, that is, an
application such that a(-,v) : H — R and a(u,-) : H — R are linear. If there exists a
constant C' > 0 such that

la(u, )| < Cllullgllollg,  Yu,ve H,
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we say that a is continuous. The bilinear form a is said to be coercive, if there is a constant
a > 0 such that
a(u,u) > allul?, Yue H,

Theorem 2.12 (Lax-Milgram). Let H be a real Hilbert space. If a : H x H — R is a
continuous and coercive bilinear form and ¢ € H', then there exists a unique v € H such
that

a(u,v) = (p,v), Yve H.

2.2 THE FOURIER TRANSFORM

In this section, we consider the Schwartz Space S(R') of all C*° functions f :
R" — R(or C) of rapidly decreasing. More details and results about Fourier transform

appear in reference [32].
Let f be a L1(R™) function. We define the Fourier Transform as

F)E) = J(6) = 2m)~% / (), € € R, (2.3)

R
where i := /—1. It is easy to check that f € L°°(R") and that the map Ll(R”) Sf—

f € L°(R") is a continuous linear function satisfying
oo < [luflr-

Since S(R") ¢ LY(R"), the Fourier Transform @ is defined for all u € S(R™). It
is possible to prove that if u € S(R"), then @ € S(R"). Therefore, the function

F: S(R") — S(R")

u— U
is well defined.

Proposition 2.13. The function F : S(R"™) — S(R') is bijective and

F(u)(x) = (27) 8 / e u(€)de.
Rn
Furthermore, if f € S(R"), then
[ull = [[Full = flal,
where || - || is the L?-norm.

Since S(R™) is dense in L?(R™) and the map F : S(R") — S(R") is a L*-isometry,
there exists a unique extension of F to the space LQ(R”), which is also L2-isometry. For

simplicity, we denote such extension by F. We state the following theorem about Fourier
transform in L?(R™).
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Theorem 2.14 (Plancherel). There exists a unique isometry
F:L*(R") — L*(R")
which is bijective and that satisfies
Flu) =1, ueSR").

Furthermore, Parseval’s identity also holds:
s = [ FO©F@EE

We consider the dual space of S(R"), which is called the space of tempered distri-
butions and denoted by S’(R"). The Fourier transform on &'(R") is defined by duality:
Let T € S'(R"), then

<f, f> - <T, f>, f e S(R).
2.3 THE SPACES Y*

In this work, we study problems based on the logarithmic-Laplacian operator
defined in (1.5). This section is devoted to discuss some results regarding the domain D(L)
(see (1.4)) of this operator.

Definition 2.15. Let s € R. We define the space Y* by

ye - {f e R [ (1+1og(1+[€P)1IFOPde < oo} . (2.4

In this space we define the norm

) 1/2
1 llys = ( /Rnu T log(1+ |€|2))S|f(€)|2d€> . fevr (2.5)

Remark 2.16. Due to the fact that log(1 4 |¢]?) < [€]? for all £ € R™, one notices
H%(R™) C Y* C L>(R") for s > 0.

It is standard to verify that Y is vectorial space and that || - ||ys : Y® — R is

norm. The following lemma allows us to define another equivalent norm in Y%,
Lemma 2.17. Let s > 0 and £ € R, then
i 5(1+1log®(1+[¢]%) < (14 log(1 + [€[%))* < 2°(1 +log®(1 + [€]%));

ii. 275(1+1log* (1 + |¢2)) 71 < (1 +1log(1 + |€2)) 7 < 2(1 + log®(1 + |¢]?)) L.
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Proof. i. For || < /e — 1, we have
1<1+41log"(1+[¢)?) <2, r>0.
Then
%(1 +1log®(1+ [€%) < 1< (1+1og(1 + [¢%)" < 2° < 25(1 + log®(1 + [¢[)).
In the case || > v/e — 1, it holds that
L+ log(1+ [¢%) < 2log(1+ [¢P).
Thus,
S (1 10g* (14 [€%) < Tog®(1 +€%) < (1 +log(1 + |¢))° < (21og(1 + [¢)°
< 2°(1+log*(1+ [¢])).

ii. For [¢] < Ve —1,

1<1+4log"(1+[¢)*) <2, r>0.

Then
275(1+log®(1+ |€2) 7 <275 < (1 +1log(1+ [€)%)™° <1< 2(1 +1og®(1 + [¢]?) L.
For |£] > /e — 1, we first observe that
1+log"(1+[€%) < 2log" (1 + [€[%), r>0.
So, for s > 0

(1+log(1 + [€%))* < 2%1og® (1 + [€]%) < 2°(1 + log®(1 + [¢]?)) < 2%(21og®(1 + [¢]?))
< 2571 (1 4+ log(1 + €))%

Thus,

275(1 +log®*(1+€[%) ™1 < (1 +log(1 + [¢[%)) % < 2(1 + log®(1 + [¢]%)) .

Therefore, we proved that

) 1/2
1llys = ( [ o |£I2))!f(£)l2d£) fev

is equivalent to the norm (2.5).

In particular, we notice that D(L) = Y2. As we have already mentioned in intro-
duction chapter, the operator L is nonnegative and self-adjoint in L2(R"). Therefore, for
s > 0, we may define the operator L5/2 : Y5 — L2(R") as

(L)) = F 1 (log™ (1 + () (@), fev™



Chapter 2. General basic results 25

We may still observe that the norm || f||ys comes from the inner product

(f. 9y = /Rnu T log(1 + |¢[2)) fFde. (2.6)

It is easy to see that Y* is complete and, therefore, Y* is a Hilbert space.

Proposition 2.18. Let r, s be positive real numbers with r < s. Then the inclusion Y C Y"

1s dense.

Proof. 1t is easy to verify that Y¥ C Y. Let f € Y", that is (1 + logT/z(l + €PN f e
L?(R™). Then, the function ¢ given by

_ 1+ logT/Q(l + €%) &

9(é) NN /&)

is an element of H"(R"), due to
| aviera©Pas [ arigPriais e B R,
R R

We know that the space C§°(R") is dense in H"(R") for all » > 0. Then we consider a
sequence {up,} C C§O(R™) such that

[um = gll e — 0.
Since up, € CG°(R") C H"(R") for all m € IN, we have

1+ ¢
(1+log"/2(1+ |€]2))

~ /Rna T log(1+ [€2)°

s/2 2112
/Rnu Flog2(1 + [¢2)

S lam|?dé

(1+1e*)"
(1+log(1 +¢[%))

- /Rna T log(1+ (€))7 (1 + €2)" | 2de

| |2 dg

< / 1+ [EP T+ 6P P
_ /R”(l 1E12)% | am 2dE < .

Then we may define, via Fourier transform, the sequence {v;,} C Y* by

P4 Bl

T S log"2(1 + [€2)

m-

Now, we observe that

2
viERE am—f‘ it

1+ logr/Q(l +1€12)

2
1 20 m — (14 10g"/2(1 + |5|2>>f' de.

lom — I = /Rnu T log™/2(1 + €22

- /R”
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Then,
: |, 1log"20 4 |eP) of”
o = = [ (41620 i = D e
= Hum_gH%p —0, m— oo.
Therefore, Y is dense in Y. H

In (1.2) and also when we study existence and uniqueness of solution of Cauchy
problems associated to (1.1) the operator (I + L)~1 appears. The next result shows that
such operator is well defined in L?(R™).

Lemma 2.19. Let g € L?(R™). Then there exists a unique f € Y2 such that (I + L)f = g.
In particular, we may define (I + L)_lg = f.

Proof. First we consider the linear functional F : Y — R given by

(F ) = (9,9).

We have

[ (B ) [ = (g, D)l < Mlgllllell < Nlglllllly-

Thus, F' is continuous.

Now, we consider the symmetrical bilinear form a : Y! x Y! —» R

a(p, ) = (0, 9) + (LY 20, LV 2y).

We observe that a is continuous, because

la(p, )| < (9, 0)] + [(LY 20, LY 2)]
< llelllwll + 1LY 2l Y2y

< 2[ellyilleflys-

Moreover, a is coercive. Indeed,

a(p, ) = (0, 0) + (L2, L120) = ||o||21.

From the Lax-Milgram Theorem, there exists a unique f € Y1 such that

a(f,¥) = (F ), (2.7)

for all ¢ € YL In particular, (2.7) holds for all ¢ € S(R"™) and we have the following
equality em S’(R"):
f+Lf=g.
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By applying Fourier transform, we obtain
f+log(1+1€*)f =g
and
[ 11081+ NIl = [ talde < o
Therefore, f € Y2 and (2.7) implies that
(fs¥) + (Lf, ) = (9,4), Y € Cg°(R").
From the density of C§°(R") in L?(R"), we have
(T+0)f=g

and the result is proved. O

2.4 TECHNICAL LEMMAS

In this section we introduce some lemmas to derive estimates of several quantities
related to the solution of problems studied in this work.
The first lemma is very important to get estimates in Chapter 4 on the high

frequency zone [¢| > 0, 6 > 0, in the Fourier space. It is similar to Lemma 2.2 in [22].

Lemma 2.20. Let c,v be positive real numbers and a € R. Then, there exists a constant
C > 0 such that

1 e—c1+108(1+E2) < (1 4 log(1 + [¢[2)) .
Proof. We set s := ¢(1 + log(1 + |€]?))%. Then t = ¢~ (1 4 log(1 + [£]?))~%s and
¥ = c7V(1+log(1 + |€[2)"Ws.
The definition of s implies
tye—c(1+1og(1+\§|2))at — V(1 + log(1 + |§|2))—al/sue—s.
Since the function R 3 s+ s”e~* is bounded, there exists C' > 0 such that

1 e—c(1+log(1+E) "t < C(1+log(1 + [€]?) ™.

Lemma 2.21. [t holds that

for x > 0.
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Proof. Let x > 0. From the mean value theorem, there exists ¢ € (0, z) such that

sinh(z) = z cosh(c) < xe® < xe”.

O
The following lemma is used to get sharp estimate in Chapter 3.
Lemma 2.22. The inequalities
2Vt
1< / cosy dy <1
2 Yy
hold for all t > 1.
Proof. Using integration by parts we obtain for ¢t > 1
2‘/lzcosy B 1 . 2Vt 2Vt 1 .
} dy’ = ‘—smy + —5 siny dy|
2 Yy Yy 2 2 Y
|sin(2v/4)]  |sin2) /Nf 1.
< + + — | siny|d
11 i
SN Y
i 2 s 2V
1 n 1 n 1 I 1
i 22 i
which implies the desired estimate. [

Remark 2.23. We note that a more precise estimate than that in Lemma 2.22 is

2Vt
—1</ Yy <0, t>1.
5 Y

However, it is a little more difficult to be proved. For our propose in this work, it is

sufficient to use the rough estimate of Lemma 2.22.

Let f € L'(R™). We may decompose the Fourier transform of f as follows:

A

f(&) = Ap(€) —iB(§) + Py, (2.8)

for all £ € R"™, where i :== /—1 and
¢ Ay(€) = [ (eos(e &) = Df (@),
¢ By(O) = [ sin(e-f(a)da,

o Pp= (x)dx.

o
R
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Let > 0. We define the weighted L!-space, L1*(R™), by

Lkrpny .__ 1/ pny . z|F dx 0o b
L (R)-—{fGL(R)-/Rn(lﬂ|)|f( Jlde < + }

Then we state the next lemma about the decomposition (2.8). It can be proved in a

standard way (see [24]).

Lemma 2.24. i) If f e L' (R™), then for all € € R™ it is true that
(A < Liflipr  and  [Bp(&)] < NI fll 1
i) If 0< k<1 andfe LY (R"), then for all ¢ € R" it is true that

(A < KL fllprw and  [Bp(€)] < M| fll prx

with L, N, K and M positive constants depending only on the dimension n and/or k.

2.5 ASYMPTOTIC LEMMAS

In the final part of this chapter, we discuss about the integrals below, which are

already studied and developed in the works [4, 6].

1
Iy(t) = / (1+r3)"WPdr, p> —1, (2.9)
0
o0
(1) = / (14+r2)"Pdr, peR. (2.10)
1

In [6] Charao-Ikehata found sharp estimates to (2.9) for p > 0 by integral calculus.
Then, after that, Charao-D’Abbicco-Tkehata [4] generalized such results for p > —1. They
used theory of hypergeometric functions associated to the Beta and Gamma functions
combined with the Gautschi inequality (see Watson [47] to definition and properties of
Hypergeometric functions).

The next lemma is important to get estimates on the zone of high frequency for

the problems studied in this work. It implies that J,(t) decays exponentially.

Lemma 2.25. Let p € R. Then it holds that
2—t
Ip(t) ~ ——, t> 1.
p(t) 1 >

Proof. The following proof of this lemma was made by Charao-Ikehata [6].
Due to (1 +72)7t = e—tlog(1+%) e may rewrite Jp(t) as

o0 ] 2
Jp(t) = / e tlog(I+r) gy > 1.
1
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Applying the change of variable u = log(1 + r2), we obtain

1 [ _
Jp(t) = -/ e~ (t=Du(en _ )55 gy, (2.11)
2 log 2
For u > log 2, it holds that
I1<e'—1<e" (2.12)

Assuming p < 1, we have

Using both inequalities, from (2.11) we get

ot 1 [® 1 1 [ 2t
T / e < (1) < / gy — 2 o,
t— log 2 1
o g

Now, for p > 1, from (2.12) we have

Therefore,
9t p-1 271
t_—l_Jp(t)§2 2 s t>1
2
Then the result is proved for all p € R. O

The next step is to get estimates as in [4,6] for I(t). We derive the same estimates

by using the idea from [4, Lemma 2.1], but without using hypergeometric functions.

Lemma 2.26. Let ;1 > 0. Then there exist positive constants C'1,Co depending only on p

such that
00 x,u—l
Cit7F< / td:l? <Cot™H t> 1.
0 (1 + 1’)
Proof. For > 0 and t > u, by combining [8.380] with [8.384] in [20], we have
o grl NN
/ = DI GO} (2.13)
o (I+z) (t)

where I' is the Gamma function:
o
['(2) :/ v le Vdy, 2> 0.
0

In [48], Wendel proved that, for real numbers p and ¢, the limit holds

L= p)
lim t#f ————~ = 1. 2.14
=so T(D) (2.14)
Thus, from (2.13) and (2.14), we have
00 p—l
lim t# ———dx =T(p), pu>0,t>p.

t—oo Jo (1+z)t
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By definition of limit, there exists T" > p such that

1 00 gu—l 3
ST < t”/ T °T(), t>T.
0

L+xz)t " — 2
Therefore,
00 p—l
Oyt H < / —de < Oyt ™M, t> T
0 (1 + ZE)
where C1 and C9 are multiples of I'(u) > 0. O

Lemma 2.27. Let p > —1. There exist positive constants C1,Co depending only on p such
that o
+1 +1
ot < / 1+ "hPdr < Cot~"2, t>1.
0

Proof. We notice that

(o) . ot ny 1 [® xp%l p 1 [® x%—ld
+r rtar = - 4T = Z.
/0 ( ) 2/0 (1+ )t 2/0 (14 )t

_ p+l
- 2

Since p > —1, we may apply Lemma 2.26 for u > (. Therefore,

+1 o0 +1
ot < / (1472 "bPdr < Cot "7,
0

where C'1, Cy are constants depending only on p. n
Lemma 2.28. Let p > —1 be a real number. Then
+1
L(t)~t 7, t>1,

Proof. The non elementary proof of this lemma was also made originally in Charao-
Ikehata [6] to the case p > 0 by using differential and integral calculus.

The upper estimate is immediate from Lemma 2.26, because
! 2\—t > 2\ —t el
/ (1+77) rpdrg/ (1+7r°)"Pdr <Cot™ 2, t>1.
0 0

On the other hand, from Lemmas 2.25 and 2.26, we have

1 2—t 1 00
/ (1+7)""rPdr + Cgt—l > / (1+ 73" Pdr + / (1+ %)~ trPdr
0 - 0 1
1
SO, > 1

Then

1 p+1
t
/ (1412 tPdr > =5 (Cl - cg,ﬁz”f) ;> 1. (2.15)
. _
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By noticing that

t—00

p+1
. 2 4
lim [ C] — C3——2 =1,
t—1
there exists T' > 0 such that

_ptl
t 2—t>ﬁ t>T.

2
C1-C
=981 =20

Using this inequality in (2.15), we conclude

1 C 1
/ (1+ %) "trPdr > 7175_%, t>1
0
[

For later use we prepare the following simple lemma, which implies the exponential

decay estimates of the middle frequency part.

Lemma 2.29. Letp € R, and n € (0,1]. Then there is a constant C' > 0 such that
1
/ (1+r3)"tPdr <CA+7%)"" t>0.
n
Lemma 2.30. Let 0 <0 <1 and g > —1. Then

q+1

1
1 et
/ (14 72720ty ~ T4t T, >l
0 _
In particular, for 0 < 0 <1/2 and q > —1 it holds that
! 2-20 — ooy
/ (I+7r" )_trqdr ~t 20-0 > 1.
0

Proof. Let s = =0 Then

1 1
1 a+6
/ (1+ 7“2_20)_trqd7“ =—— [ (1+ 32)_%?—9 ds.
Since 0 < # < 1 and ¢ > —1, we have % > —1. Thus, we can apply the Lemma 2.28 to
obtain the result. O

Remark 2.31. Actually, for n > 0,0 <60 < 1/2 and ¢ > —1, it holds that
n __gq+1
/ (1472720 tplgr > 07200, ¢ 1
0

for some constant C' > 0 depending on each n > 0.
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Indeed, it suffices to check the case of 0 < 1 < 1. In this case, one notices

n 1 1
/ (1+ 7‘2_29)_trqdr = / (1+ 7’2_29)_trqdr — / (1+ r2_29)_trqdr,
0 0 n

and one has

+4q

Since the last term implies the exponential decay, the desired estimate can be derived

_90\— 1 _90\—
/ (1 4 r220) =ty < 1 (1= gty (1 4 220yt
n

soon via Lemma 2.30. O
Lemma 2.32. Let 0 > 0 and ¢ > —1. Then

1 20\ —t 1 g+1

/ (14 r=7) " "rldr ~ Et_W, > 1.
0

Proof. We consider the change of variable s = ¥, Then

1 1 1 _
/ (1+ 720y~ tpigy = 5/ (1+ 52)_tsq+é “ds
0 0

for ¢t > 0. Finally, qué*g > —1 because of ¢ > —1. From Lemma 2.28 the desired result
follows. o

Lemma 2.33. Let 6 > 0 and q € R. Then
/Oo(l + TQG)_trda ~ lQ—_t, t>1.
1 0t—1
Lemma 2.34. Let 0 <0 <1 and g € R. Then
/100(1 + 2720ty f_;tl, t> 1.

Proof of Lemmas 2.33 and 2.34. From Lemma 2.25 and the change of variables as in
Lemmas 2.32 and 2.30, the result now follows. n
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3 A DISSIPATIVE LOGARITHMIC TYPE EVOLUTION EQUATION

In this chapter we introduce the following Cauchy problem associated to a new

wave-like model with a damping mechanism of logarithmic-Laplacian type
up + Lu+ Lug =0, (t,z) € (0,00) x R", (3.1)
w(0,z) = up(x), u(0,2) =ui(z), z€R", (3.2)

where L is the operator defined in (1.4)-(1.5).
We prove that the problem (3.1)—(3.2) has an unique weak solution in the class

C([0,00), D(LY/?)) 1 €} ([0, 00), L*(R"))
by employing the Lumer-Phillips theorem.
The unique solution of problem (3.1)—(3.2) satisfies the energy identity

d
2 Bu(t) + 1LY 2| = 0, (3.3)

where the total energy is

Bult) = 5 (luelt, V3 + 12 2ult, )22 (3.4)
The inequality (3.3) implies that the total energy is a non increasing function in time,
due to the existence of some kind of dissipative term Lu;. Based on multiplier method of
(cf. [27,46]), we obtain energy decay rates for n > 1. The same method allows to obtain
decay rates of solution for n > 3. However this method is not effective to get estimates
to the solution when n = 1,2, because a strong regularity near the origin appear in these
cases.

We also introduce an asymptotic profile as t — oo to the solution of (3.1)-(3.2) in a
simple form. Then based on this asymptotic profile we prove that the decay rate obtained
via multiplier method for n > 3 is optimal. Through the asymptotic profile we were also
able to get optimal estimates for the cases n = 1,2 and we prove that the solution blows
up in these cases.

Although we obtain the same estimates to the solution as in the classical wave
equation with L = —A, the above problem is a little more effective in the sense that the
operator L is weaker than the Laplacian. Moreover due to the domain of the operator L
contain H?(R™), the initial data in (3.1)(3.2) can be more general.

The results obtained in sections 3.2, 3.3 and 3.4 of this chapter was published in
2022 in Journal of Mathematical Analysis and Applications (see [2]).

This chapter is organized as follows. In Section 3.1 we study the existence and
uniqueness of solution of problem (3.1)—(3.2). In Section 3.2 we employ the energy method
to get some energy and solution estimates. In Section 3.3 we derive the leading term (as
t — o0) of the solution to problem (3.1)-(3.2). The final Section 3.4 is devoted to the
derivation of the optimal decay rate of the L2?-norm of the solution in case of n > 3 and

the infinite time blow-up in L2-sense for solutions in dimension spaces n = 1, 2.
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3.1 EXISTENCE AND UNIQUENESS

In this section, we study the existence and uniqueness of solution to the problem
(3.1)—(3.2) based on Ikehata-Todorova-Yordanov idea [31], where the authors proved the
existence and uniqueness of solutions to an abstract problem as (3.1)—(3.2). The total

energy associated to this problem is

()12 + (LY P, )12
2

E(t)

and it satisfies the energy identity

d
T B0+ 1L 2u(t,))? = 0,

Thus, we define the energy space as
X =Y x L>(R"),

where the space Y is defined in (2.4) and it is the domain of the operator LY/2. We
remember that Y2 is the domain of the operator L and we state the theorem of existence

and uniqueness as follows.

Theorem 3.1. Let n > 1. For wnitial data ug,uy € Y1 that satisfy ug + uy € Y2, the

problem (3.1)—(3.2) admits an unique strong solution u = u(t) such that
(u, up) € C1([0,00), D(B)),
where D(B) = {(u,v) € Y1 x Y:u+4v € Y2}, In particular,
ue CH[0,00), Y1) N C%([0, 00), Y.

Furthermore, for initial data (ug,u1) € Y1 x L2(R™), the problem admits an unique weak

solution in the class

C([0,00), YY)y n ([0, 00), L2(R™)).

Proof of Theorem 3.1

In order to prove Theorem 1, we need some results that we prove below. Our goal
is to apply Lumer-Phillips theorem to some suitable operator. For this we determine this

operator and prove that it satisfies the necessary hypothesis.

We set v =wu, U = (u) and we have

v



Chapter 3. A dissipative logarithmic type evolution equation 36

Then,

where formally

BUz( 0 f)y
—-L—-1 —-L
FU = (O> (3.5)

D(B) ={(u,v) e Y x Y. w+ve¥?},

and

We define the domain D(B) of B as

where Y2 = D(L). We observe that Y2 x Y2 C D(B). Since Y2 x Y2 is dense in X (see
Proposition 2.18), the set D(B) is dense in X.

The choices of B, D(B) and F were made in order to prove that B is dissipative,
I — B is surjective and F' € £(X). Thus we may apply the Lumer-Phillips Theorem to
prove that B is infinitesimal generator of a C¥-semigroup of contractions and then the

perturbation generator Theorem 2.11 can also be applied.

Lemma 3.2. The operator B is dissipative.

Proof. In the space X = Y1 x L2(R"), we consider the following inner product
((u1,01), (u2,v2)) x = (u1,u2)y1r + (v1,v2)

for (uj,v;) € Y x L2(R"), j = 1,2. We remember that (-,-)y1 is given by
(urvuglys = [ (1-+1og(1+ 6T

For (u,v) € D(B), we have

(B(u’ U)? (Uv U))X = ((U7 —u - L(U + U)), (u7 U))X
= (v,u)y1 + (—u — L(u+v),v).
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Then,

(B(u,v), (u,v)) x = /R (L + log(1 + [¢]))vadg ~ /R log(1+ [¢]%) (@ + 0)2de
—/ wode
:/ (1+1og(1+y§\2))@5d5—/ (1 +log(1 + |£]?))adde
R R
= [ o1+ i e
— o / (1 + log(1 + €]2))Im(0E)d¢ — / log(1 + |¢[2)[o[2de
R R

where the notation Imz indicates the imaginary part of z. Thus

Re( (Bluo), (u.0)x ) = [ Tog(1 + gl
and this concludes that B is dissipative from Remark 2.9. O
Lemma 3.3. The operator I — B : D(B) — X is surjective.
Proof. Let (u,v) € D(B). Then

u—veYl
u+v+ L(u+v) e L*(R").
Thus, (I — B)D(B) C X.

On the other hand, let (f, g) € X. Let us prove that there exists a pair (u,v) € D(B)
that satisfies

u—v=f (3.6)
u+v+ Lu+v)=g. (3.7)
From Lemma 2.19,
ut+v=(I+L)tgev?

Then
u=f+(I+L)" g

Applying the Fourier transform, we have

A

g
1+ log(1+ |€]2)

20 = f +

Then,

A

g
V1+log(1+€2)

2y/1+ log(1 + [¢[2)a = /1 + log(1 + [¢[2)f +
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And we may conclude, from Young’s inequality, that

21 (2 2| 712 |g]2
/Rn<1+1og<1+ €2)]afd < /Rn<1+1og<1+ €12)1f12de + / e

R" 1+log(1+[£?)
2 712 )

< [+ logti+ IR+ [ 1o

— 1B+ llgl < oo.

Thus v € Y. Since f € Y1, we have v =u— f € Y.
Therefore we prove that there exists a pair (u,v) € Y1 x ¥ such that u + v € Y2
that satisfies (3.6) and (3.7), that is,

X c (I - B)(D(B)).
O

Theorem 3.4. The operator B : D(B) — X s infinitesimal generator of a CY-semigroup

of contractions.

Proof. We know that D(B) is dense in X, B is dissipative and (I — B)(D(B)) = X. The

result follows from Lumer-Phillips Theorem. O]

In order to prove the existence and uniqueness of solution to the problem (3.1)-

(3.2), we still have to prove a result on the operador F' given in (3.5) whose domain is

X.
Lemma 3.5. F': D(F) — X is a bounded linear operator.

Proof. It is easy to see that the operator F is linear. Let (u,v) € X = D(LY/2) x L2(R™).
Then,

1F(u, )| x = 110, w)llx = l[ull < [lull g2y + ol = l[(u, v)] x-
Therefore, the operator F' is bounded. O

Since B : D(B) — X is infinitesimal generator of a C¥-semigroup of contractions
and F': X — X is a bounded linear operator, we may apply Theorem 2.11 to obtain the

following result.

Theorem 3.6. The operator B + F : D(B) — X is infinitesimal generator of a CV-
semigroup S(t) in X.

Finally, we conclude from Theorem 2.6 that for initial data (ug,u1) € D(B) the
problem (3.1)—(3.2) has a unique strong solution u = u(t) such that

(u, ug) € CL(]0,00), D(B)).
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Furthermore, for initial data (ug,u1) € Y1 x L2(R")

(u, ug)(t) = S(t)(uo, u1)

define the weak solution to the problem. Then Theorem 3.1 is proved.

3.2 ASYMPTOTIC BEHAVIOR VIA MULTIPLIER METHOD

In this section, we obtain estimates of the total energy of the following Fourier
transformed equation together with initial data of the original system (3.1)-(3.2). To do

so we employ the so-called energy method in the Fourier space developed in [46] and [27].

Gyt + log(1 + €[%)a + log(1 + [€[*)ar = 0, (t,€) € (0,00) x R, (3.8)
u(0,8) =1p(§), ur(0,§) =w(§), &€ R" (3.9)
Multiplying the equation (3.8) by 0y one can get the following point wise energy
identity
OLE) 1 tog(1 + et )P =0, (3.10)
where
N I L e 2

for t > 0 and £ € R", is the total density of energy of the system (3.8)-(3.9). Note from
(3.10) that Eg(t,&) is a decreasing function of ¢ for each &.

Now we define the following function of £. The way to choose the best p(§)-function
is showed in the work by Luz-Ikehata-Charao [35]:

Dlog(1+ e iflel < ve—T,

p(€) = (3.11)
z if [£] > Ve —1.
By multiplying the equation (3.8) by p(£)d we obtain the identity
d (@ 0 - d |af?
o€ () — (Ol + 1og(1 + €P)o(O)al? + o(1 + €P)ole) - T — o,

for all t > 0 and & € R"™. Taking the real part on the last identity we arrive at

_ 712
4 {p@Re (67) + ol Tog(1 + W)%} T () log(1 + [EP)]A2 = pOla  (3.12)

which holds for t > 0 and £ € R".

To proceed further we define the following functions on (0,00) x R"™:

B(1.6) = Bo(t.6) + p(€)Re (50(t, (1. ) + 2 log(1 + [¢2)i(e. &)
F(t,€) = log(1+ [¢[*)[ar(t. ) + p(&) log(1 + ) a(t, &), (3.13)

R(t,€) = p(&)[ar(t, )%
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Then, adding (3.10) and (3.12), we get the following identity

%E(t, &)+ F(t,€) = R(t,6), (3.14)

which also holds for ¢ > 0 and £ € R'. Before continuing our argument, we need the next

lemma.

Lemma 3.7. The function p(§) defined in (3.11) satisfies the estimates

1
< —
() =3
for all £ € R™. Moreover,
1
pP(€) < 7 log(1+[¢)
for all £ € R™.
Proof. Indeed, for |¢] < v/e — I we have log(1 4 |£|?)| < 1 which implies
1
log(1+ [¢[) < log2 (1 + [¢]?).

Thus, p?(£) < zlelog(l + €[%) and p(¢) < % according to the definition of p(¢£) in (3.11).
For |¢| > /e — 1T one has log(1 + [¢]%) > 1. Thus, p(¢) = £ < $log(1 +[¢[?). O

Lemma 3.8. [t holds that
1
§Eo(t,§) < E(t,§) <3Ep(t,§), t>0,£{cR"

Proof. Using the inequality p(£)Re <ﬂtﬁ> > — - - p?(€)[0)? and Lemma 3.7, one has

E(.) = Bo(t.) + p(©)Re (7)) + 2 105(1 + (¢?) i
=~ 12

> Ey(r.€) - 5 2P
~ 12 ~2 =2

= O o1 gy 25 - oap
1, log(1 + |¢|? N

= g+ (R - e )
1o log(1+]€?) o 1

> Haf? + B ED e - 2 e,

which holds for t > 0 and £ € R™.

On the other hand, using Lemma 3.7 one has the estimates

B(19) = Bo(t.) + p(©)Re (7)) + 2 1051 + 1¢?)?

~ 12 2
E ey M 0p1 1 e a?

2
~ 12 2
uy log(1+ [£]%), ~ 1 N
sl e 1 Shos1 + 6P

< Ey(t,§) + +

< Eo(t, &) +

< 3Ep(t, ),
which also holds for ¢ > 0 and £ € R". O
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Lemma 3.9. Lett > 0 and & € R". Then
d
Ao O,

L e+ " e <
Proof. The expressions (3.14), (3.13) and Lemma 3.8 imply that
0.9+ "m0 = reo) - 0 + A B0
< R(.) ~ F(1,6) + #Eou, 3

= p(©)]ae]* = log(1 + [€*)[a]* — p(€) log(1 + ¢ [al”

1 3ol )r 2 4 224 1og1 4 (¢

( o(1+ 16 ) @l = 3o(6) (1 + €)aP
<0,

where we have just used the fact that

7o) 2 Slog(1+1¢%) i ¢ < ve—T,
T—log(1+|§| )=

§—log(l+[¢f) iffg]>Ve=T,
and the fact that log(1 + |£|) > 1 for [¢| > /e — 1. Therefore,

7 —1
3 —log(1 + |§|2) < Y

for [£] > Ve — 1. O

We note that Lemma 3.9 implies

E(t,€) < B(0,¢)e= 5,

Combining the last estimate with Lemma 3.8 we arrive at the important estimate:

€3]
Eo(t,€) < 6Ey(0,&)e 2 1,

for all t > 0 and £ € R". Therefore using the definition of Ey(t,£) we have obtained the

important pointwise estimates in the Fourier space stated below.

Proposition 3.10. [t holds that

@t &) +log(1 + &Pt &) < 6 (|7 () +log(1 + |€P)Fo(€)2) 2, (3.15)

forallt >0 and £ € R"™, and

00,0 <6 (1o OP + R ) 4 (3.16)

forallt >0 and £ € R", € # 0.
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Then we use the results obtained in Proposition 3.10 to obtain decay rates for the

energy of the system (3.8)—(3.9) and also for the solution of the problem.
Proposition 3.11. Let u(t,x) be the solution to problem (3.1)-(3.2) with initial data
(ug, u1) € (D(Ll/z) ﬂLl(R”)> x <L2(R”) le(Rn)).
Then, the total energy of this system satisfies
g+ |20 )| < 0 (lunlida 8 + uol317°5)
+ 0275 (JlurlF2 + Juoll 32 ) + Ce ™5 Eu(0),
fort > 0, where C' is a positive constant depending only on n.

Proof. To begin with, applying the Plancherel Theorem and integrating the inequality
(3.15) over R™ one has

g (¢, - ||2+HL1/2 )H2_ Gt ”2+H10g1/2 1+|,|2)|a(t’.)H2
= [ (1 ros(1 + e a
<6 [ (1 +log(1 + [¢mP) e Fag
-

. 7p(§) N 79(6)
=6/} @12 %%+6/‘ log(1 + [¢[2)[2g e 5 e
I€I<1 |€1<1

—~ _P(f R _p(ﬁ)
+6/ a2 %%+6/ log(1 + |€12) g e~ 25t de
1<|é|<Ve—1 1<[¢]<Ve—1
_l)(f) _0(5)
+6/ 1% %ﬁ+6/' log(1 + [¢[2) g e 5 ae
|€]>ve—1 [€]>ve—1
— 6(A; + Ag + As), (3.17)

with A; (i = 1,2,3) according to the integrals on low, middle and high frequencies,

respectively.

1) Estimate on the zone |¢| < 1:
At this stage we assume that the initial data ug,u; € L'(R"™) . Then g, 11 €
L>®(R™) and
[aolloe < lluolly and [[unlloe < lfually -
On this zone we have p(£) = & log(1 + |£]2). Then, using the definition of p(&) we

may estimate the integrals on the low frequency region as follows.

N log(1+|£| ~ log(1+/€]%) +|5|
m:/’|m% t@+/ log(1 + ¢]2) |2~ g
1€1<1 |€1<1

:/ hmo+mnﬂﬁ+/ log(1 + 1€2) @o[2(1 + [¢[2)~*
|€]<1 1€|<1
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Thus,
~ 1t ~ _t
Avlall [l e+ wl [ log(+ e+ lg) g
€1<1 §1<1

_1
<lurl} [+l e+ fuolk [
[€l<1 €l<

1 1
= lullf wn / (1+72)7 57" dr + flugl | wn / log(1 + r2)(1 + %)~ 1" Ldr
0 0

Jog(1 1)1+ €%~ de

1 t 1 .
<fualfn [ 0+ a4 ol [ (042

because of the fact that log(1 + r2) < 72 for all > 0. From Lemma 2.28 with (2.9), we

may obtain

Ay < |Jur|[Fwnln_1(t/4) + Juoll3 wnlni1(t/4)

n n+2
< Cn (llutllf % + luolF757) ¢ 1,

where (), is a positive constant depending only on n.

2) Estimate on the middle frequency zone 1 < |{| < /e — 1:
In this middle zone we also have p(§) = %log(l + |€]?) and we may estimate

log(1 + [€[?) by
log2 < log(1+ |¢]%) < 1.

Thus, one has

o _log(1+e?) o log(1+le?)
A= [ g P e [ st e
1<f¢|<Ve—1 1<|¢|<Ve—1
log 2 log 2
</ 2 g+ [ Ao e la
1<[¢[<Ve—1 1<|¢[<Ve~1

_t . _t
<277 |[ay||3 + 277 |[aolf3

_t
=274 (Jlunl3 + llwol3) . ¢ >0.

3) Estimate on the high frequency zone |£| > /e — 1:
On this region we have p(§) = % Thus we obtain the estimate

Ay — / @y e de + / log(1 + [¢[2)[o e de
|€]>ve—1 |€|>Ve—1

_t i~ _1 ~
< tmBret [ o1+ Pl
_1 _1
= ¢ (w3 + 1L 2ugll3) = 2¢ 5 Eu(0), >0,

By combining the estimates for Ay, Ao, A3 with (3.17) the proof is now complete. O
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Remark 3.12. The above proposition says that the total energy of the system decays as
+~1/2_ that is

Bu(t) < Crn (Bu(0) + Juol72 + uolFs + ualF: ) 75, ¢ 1,
with a constant C ;, > 0 depending only on n.

Proposition 3.13. Let n > 3 and u(t,x) be the solution to problem (3.1)-(3.2) with initial
data
up, u1 € L2(R™) N LY(RM).

Then
_n—2
[ult, M2 < Cn (luoll gz + llutllgz + uollpr + urllp) ™+, ¢>1,
with a constant Cy, > 0 depending only on n.

Proof. To estimate the L2-norm of u(t,z), we first observe that

r2
lim ————- = 1.
r—0 log(1 + 72)
Thus, there exists a small § € (0, 1) such that
1 72 3
S A
2~ log(1+72) — 2

for 0 <r <4.
By integrating the inequality (3.16) on R"™ and using the Plancherel theorem we

obtain

_ &)

1
2 ~ 12 ~ 12 t
t, )" <6 —_ d.
=6 —_— d.
/|£|§5 (log(l + |€!2)‘u1’ + [t > ©

1 p(€)
o] ()
€>5 \log(1 + |§|2)| "+ Il
=: 6(B1 + Ba), (3.18)

where By and Bsg are the integrals on the low and high frequency, respectively.
Analogous to the estimates for the energy we may obtain exponential decay to the

integral By on the high frequency zone |£] > §, that is,
By < C (|fuoll3 + lurl3) e, ¢ >0,

2
where k = M.
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On the low frequency region |£] < 0, by using Lemma 2.28 together with (2.9) one
has

1
B :/ _ 1 g
" eg<s log(1+|§|2)‘ 1P

1 log(1+]¢1%)
2 t 2 2\—=
< |lug / e 4 dé + ||ug / 1+ 1(¢

1 1 1
2 21—t n—1 2 21—t n—1
< ||lu1 |5 w ——(14+7°) ar dr + ||lugl|f w / 14+7r7) 4r dr
H 1”1 n/O 10g(1+7”2)( ) ” 0”1 n 0 ( )

2 3wy 1 M-t pn-3 2 1 Nt p1
e R e I R
3w
= [lur |3 2 1 5(t/4) + |Juol|F wnln—1(t/4)

2
9 ,—n=2 9,1
< Cp (flurllit™ 2 +uwollft™2), t>1

for n > 3, where (), > 0 depends only on n. By combining estimates for By, By with
(3.18), we have just proved Proposition 3.13. ]

Remark 3.14. The decay rate of the quantity ||u(¢,-)|| can be derived only for the spatial
dimension n > 3 under the L!-regularity on the initial data. The cases n = 1,2 have a
strong singularity near O-frequency region. In Subsection 3.4.2 we prove that, for n = 1, 2,

the solution blows up on infinite time.

3.3 ASYMPTOTIC PROFILE OF SOLUTIONS

In order to investigate the optimality of decay rate obtained in Proposition 3.13
we do study the asymptotic profile of the solution wu(t,z) as t — oo in L?-sense. The
asymptotic profile helps us to find optimal estimates to the solution of (3.8)—(3.9), which
we cannot control in the cases n = 1,2 using multipliers method (see Proposition 3.13).

To obtain an asymptotic profile we consider, without loss of generality, the case of
initial amplitude ug = 0 (see Remark 3.17). Then, the corresponding Cauchy problem to
problem (3.1)-(3.2) in the Fourier space is given by

mmaﬂmuwn<>+muﬂ$WMFat>a&R% (3.19)

The characteristics roots A4+ and A_ of the characteristic polynomial
A%+ log(1+ €A +log(1 + [¢[}) =0, ¢eR"

associated to the equation (3.19) are given by

W log(1 + [¢]2) + i\/410g2(1 +1€[2) — log?(1 + \5!2)’ (3.20)
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for |¢] < Ve* — 1. The solution formula can be expressed by

A~

(G}
=——¢

b(€)
for small frequency region such that |¢| < Vet — 1, where a(€) and b(€) are the real and

imaginary parts of the characteristics roots, that is

B \/4 log(1 + [€]2) — log?(1 + [¢]2)

o 2
a(€) = M and b(¢) = . L (322)

We note that a(§) and b(¢) are well defined for |{] < 1. In fact, it is easy to see that

at, &) —a(&)t gin (b(£)2) (3.21)

4log(1+ [¢]*) — log*(1 + [¢[*) > 0
for 0 < |¢] < Vel —1.
Remark 3.15. It holds that
log(1 + [¢]?) < 2b(¢) < 24/log(1 + [¢]?)

for || < 1. To see this, we observe that

4log(1 2) —log?(1+ |¢|2 o 2
wo = VAR T IER) 20+ 67 Alog(T T ) _

2 2
for €] < Vet — 1. On the other hand, for |¢] <1 < Ve? — 1, we have

1<|EP+1<ed & 0<log(l+¢&?) <3 log?(1+4 &%) —3log(1+E2) <0
& log(1+ &%) < 4log(1+ &%) —log?(1+ &%),

Thus

o ) Sue, ls1sVEoL

Let us capture a leading term of the solution based on (3.21) and decomposition

of initial data given by (2.8). Assuming that the initial data u; € L'(R™), we may write

i1 (§) = A(§) —iB(&) + 1,
where A(§) := Ay, (€), B(§) := By, (§) and Py := Py, are defined in (2.8).

We may apply the mean value theorem to get

smwm—mGIMH%W}ﬂMMWﬂM%MMOHW* (3.23)

where p(€) = 0b(€) + (1 — 0)/log(1 + |£]2) for some 0 < @ < 1. For this reason, we can

rewrite the solution formula (3.21) as

a(t, &) = %eﬂl(g)t sin(b(§)t) + %e_a(g)t sin (t\ /log(1 + |§|2)>

(v(6) — Viog(1 +1€7))
b(e)

+ P e~ U cos(pu(€)t). (3.24)
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Now, we define the following function

= M e~ ()t gin o 2
61,0 = (11 +16)) (3.25)

which is equivalent to the second term of the right hand side of the above expression on
the zone [£| < 1 according to Remark 3.15. Subtracting ¢(¢, &) from both sides of (3.24),

we have

ﬁ(t,f) - (p(t7€> = I (t>€> + FQ(t7£> + F3<t7 5)7 (326>

where

Fi(t,6) = 2O 7B —a@)t g pieyp),

()
(006 ~ ViosT+IEP) o
Ro(t,€) = Py e e~ cos(u(€)t),

Fi(t,9) = e sin (t\/logu T 15\%) (1,9,

The next step is to get decay estimates in time to the three terms defined above and so
we assume u1 € LBH(R™).

We know that

r2

lim ——— =
r—+0 log(1 + 72)
so0, there exists 0 < 07 < 1 such that

Y

r2

—_—a < 2
log(1 +r2)
for all 0 < r < d1. By using this fact, Remark 3.15, Lemma 2.24 with x = 1, we obtain

2 ‘A(ﬁ)—iB(f)P —2a(&)t . 2
/£|§61 |[F1(t,€)]7dg < 4/|£|§51 log(1 + %) e sin®(b(&)t)dE

(AQ@I+1BEOD? —2a(en,
4/Ifl<<51 log(1 + [£[?) ¢

(K + M[ePllur]?

IN

< 4/ 1+ <2~ tde
cl<s,  log(1+1¢[%) A+l
01 rn—l—l
=4 K M 2 2 / N1 2 —td
wn (K + M)*|luill1 1 A log(HrQ)( + %) tdr
o2

< dwn(K + M) |ua |3, /0 (14 72) "ty

log(1 + 12)

o1
< Swn (K + M) |12 /0 (142t 1y

1
< Suwn (K + M) |2 / (142t gy
0

= Swplur||f 1 (K + M)*L,1(t)
<Cralwlf ™z, t>1, (3.27)
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where we just used Lemma 2.28.
Now, we observe that for 0 < r := [£| < Vel — 1, we have

log?(1472)

2
b(r) — y/log(1 +r2) \/log 1+72) 4log(1+r2

)
log”(14-r2)
1+ \/1 "~ 4log(1+7r?)

Due to the fact that the denominator in the above equality is greater than 1, we have

log2(1 + 7"2)

1 1 AR = S
og(L+7 )410g(1—|—r2)’

‘b(r) —/log(1 +172)| <

for 0 < r < Vet — 1. By combining this fact with Remark 3.15, we obtain

b(r) — /log(1 +r2)‘2
[b(r)[?

for 0 < r < 1. Also, we know that

< log?(1 +17),

10g2(1 + 7“2)

1 = 1.
Ti>11+10 r4
Thus there exists 0 < § < 01 such that
1 log (14+7%) 3
S =R LA 3.28
2 ré -2 ( )

for all 0 < r < §. These informations combined with Lemma 2.28 provide us the following

sequence of estimates.

() — Vioa (T + 1P|

[ mwopa= [ ipp e O o))
€]<8 €]<8 (8]
2
< P22 / ) - Vsl 6P (1+ (¢ dg
> 1
€|<d b(€)|?
2
Yy [0 ‘b(r) _ \/log(l—l—ﬂ)’ N
:|P1|twn/ PO (L+7r=)"" " dr
1) 2 2
< |P1|2t2wn/0 (1 +T2)7t—10g (:4+T )7‘"+3dr
1)
3wn|P |2t2/ (1 +r2)_tr"+3dr
0
1
3wn]P] t2/ (1+T2)_tr"+3dr
0
3wn

|P1| t2 n+3(t)

< 02’n|P1| 78, > 1. (3.29)
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Finally, we estimate the function F3(t,&). First, we observe that

1 1 log(1 + [¢[%)
b(€) \/log(1—|—|£|2) VA —Tlog(1+ [€[2)(2 + /4 —log(1 + [€]2))

Due to 0 < log(1 + [£]?) < log2, for |¢| < 1, we have

1 9 1
- 1 2) .
sloal1 4167 < g = e <K flos i) 30

. 1
for 0 <[¢] <1, where K = ——mss sy

Remembering that log(1 + r2) < 72 for all » > 0 and sin?(a) < 1 for all « € R, we

obtain

/ |F5(t,€))2d¢ < K|Py|? / (1+ [€%) " log(1 + |€[%) sin®(t1/log(1 + |€[2))dé
€< |£]<o

<KIPP [ (e i)
§l<d
1)
= K]P1]2wn/ (1472~ H gy,
0
From Lemma 2.28,

/5|<5 Fy(t,0)2de < C|P 28, 1> 1 (3:31)

Then we have the following result, which implies that the leading term of the
Fourier transformed solution is the very ¢(¢,&). The result holds for all n > 1.

Theorem 3.16. Letn > 1, ug = 0 and uy € (LQ(Rn) ﬂLl’l(Rn)). Then, the unique
solution u(t,x) to problem (3.1)-(3.2) satisfies

B 7£sin( log1—|—|§|
R A [ e

fort > 1, with
= |lug|l + [Juall1,1-

Proof. Let § < 1 be a positive number as in (3.28). From (3.26), (3.27), (3.29) and (3.31),

we may derive

[ lao-ewoPdc<a [ (IREOP+ Pt OF +1F(t0E) de
€]<0 €]<0

_n _n _n+2
< C (Juallf 7% + [PPE 4 [P

<20 (ot~ +1PPCE), e (3.32)

with some generous constant C' > 0.
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In the zone of high frequency {|¢| > 6} we have the following estimates. From
Proposition 3.10, it follows that

i oR <61EOL -t Cga@pet, 1> veoT (3.33)
ST g g ST |
Additionally,
ot €0 < VPP o (1 1) sn 1y log(1 + %)
<|PPA+ER) T, = Ve—T1. (3.34)

Thus, (2.10), (3.33), (3.34) and Lemma 2.25 imply

[a(t,€) — (t, €)|7dE < 2/|£|>ﬁ(|ﬂ(t,€)|2 + [, €)%)de

o
< 12efﬁ|]u1\|2 + 2|P1|2wn/ (1+ T2)7trn71dr
1

/|§|2\/61

_t
= 12674 [lug |* + 2| Py Pwn Jn—1(2)
—t

< 12¢7 1|y 2 +2|PyPun—, t> 1 (3.35)
Similarly to the derivation of (3.35), if § < |£] < /e — 1, then
log(1 + 02) < log(1+ %) <1,
so that from Proposition 3.10 one can get
N 2 N 2 2
€9} log(1+4%)
|ﬁ(t,f)|2 <6 ’u1<€)’ 5 —th <6 ‘ul(f)‘ 5 —gft, (336)
log(1 -+ €]%) log(1 + 6)
e A A
P P
2 1 2\—t 1 2\—t
t, < — (14 <—— (149 , 3.37

for 0 < €| <+Ve—1.
The estimates (3.35), (3.36) and (3.37) in the high and middle frequency zones
€] > ve—1and 6 < |£] < +/e— 1 imply the following exponential decay estimate

/g|>5 la(t, ) — o(t, )¢ < C(l|u|? + [P1*)e ™™, (3.38)

for ¢t > 1 with positive constants C' and 7.
From (3.32), (3.38) and Plancherel Theorem, the result follows. O

Remark 3.17. In addition if we suppose that the initial data ug # 0 with ug € L (R™) N
L*(R™), then ¢(t,-) remains as a leading term. In fact, the part of the solution in the low
frequency region to the problem in the Fourier space (3.8)—(3.9) that corresponds to the
initial data g is given by

u(t, &) == e~ cos(b(&)t)ag + %e—a@)t sin(b(€)t)dg.
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From Remark 3.15, we have that b(¢) ~ /log(1 + |£]?) and the singularity % is remo-

vable. Thus it is easy to obtain
[ e oPd < Cluolut E ¢ 1.
€11

It is exactly the same decay rate as in (3.32).

Remark 3.18. If we apply the general theory developed in [31] to the abstract evolution
equation
up + Au+ Aup = 0, (3.39)

where A is a nonnegative self-adjoint operator in a real Hilbert space, at least one can

observe the asymptotic profile of the solution to problem (3.1)-(3.2) is

oL/ sin(L1/%1)

1172 Uu1. (3.40)

By restricting the initial data further to the class LM(R"), one can obtain the statement
of Theorem 3.16.

3.4 OPTIMAL ESTIMATES: DECAY RATES AND BLOW-UP ON INFINITE TIME

In the previous section, we find the leading term for the solution to the problem
(3.1)—(3.2):

sin (t Tog(1 + |g|2))

-1 I — 21
F et &) = PF ' (4 [e?) —

: (3.41)

where o(t,€) is given by (3.25). Tt is possible to get L%-estimates to the solution u(t,-)
from Theorem 3.16 as long as we know estimates to the leading term (3.41). In this section,

we work to find sharp estimates in ¢ for the following improper integrals

R s log(1 + EP)
L0 = [ log(1 + €%) “ 342

for any dimension n. As a consequence, we were able to find optimal estimates for the

solutions to the problem (3.1)—(3.2) even in cases n = 1,2, which we could not obtain via
the energy method (see Proposition (3.13)).
3.4.1 Optimal decay rate for n > 3

In this subsection, we investigate the precise decay rate of the leading term (3.25)

in L%-sense as t — oco. The case of n > 3 is first treated.
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Lemma 3.19. Let n > 3. Then there exists tog > 0 such that for t > to it holds that

)

s (14 [¢12)~" sin?(t/log(1 1 [€2) 2
Chit 2 < dé < (Cot~ 2
Ln /” log(1 +(£]2) <= Con

where C p, and Co 5, are positive constants depending only on n.

Proof. We first observe that

1“2
lim ———— = 1.
r—0 log(1 + 72)
Then, we can obtain 0 < § < 1 such that
1 2 3
D S
2 " log(1+7r2) — 2

for 0 < r <. We have

(14 [62) " sin2(t/Tog (T TR . [ (142 sin2(ty/log( 7 7)) 1
S log(1 + 1€ df‘/o log(1 +12) o

00 2\—t
S / (1 + r ) 'r’nfldr
o log(l+ r2)

= A1(t) + Aa(t) + As(t), (3.43)

where

6 2\—t
A1(t)=/ Mrn—ldr’
o log(1+72)

1 (1+r2)_t
As(t) = | ——25r"la
2( ) /(; 10g(1+r2)r T?

o0 (1+7°2)_t -1
Aa(t) = -~ ",
3() /1 log(1 —1—7“2)T "

Thus, from Lemma 2.28, we obtain

o r2 N—t. n—3 3 [0 N—t. n—3
Aq(t) = — (147 _T_d’l"<—/ 14+7°)""r" 2dr
0 = [ 1 +0) <5 [ e
3 1 ne
< 5/ (142 0" Bdr < CLpt™ "7, > 1.
0

The estimate on the middle frequency zone [d, 1] also follows from Lemma 2.28.

1 (1_’_r2)7t 1 1
= [ gL
2(1) /(; log(1+7“2)r T_log(1+52) 5( )T "

1 ! 20—t n—1 1 ! 2y—t n—
_log(1+52)/5( + %)ty r_log(1+52)/0( +7r) " r

< C2,n75t_% .
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Finally,
X (1)t L 2\ —t n—1
As(t) :/ e dr < / (1+7*)""" " dr
1 log(1+r?) log2 Jq
2—t
<C3p—, t>1
— 3,nt . 17 > )

due to Lemma 2.25.
The three estimates above combined with (3.43) imply that there exists tg > 0
such that

2 ne
/ (1+r2)~tsin?(¢t lzog(l 1)) g < 0y 1 (3.44)
0 log(1 + r#) 7

for all t > tg.

On the other hand, one notices the following computation

o (1 4+ 72) " sin?(t4/log(1 + 12)) ,,_
e = [ o 1y

_ /Oo (1 +72)7H1 4 r2) sin?(ty/log(1 + 2))r ”_2\/ffrdr

Y e R TR SRR sy
>/ (14 72)"tsin?(t log(1+r))”2\/_r
2 )y ViRt ) ioe D

And also, it is known that 72 > log(1 + 7“2) for r > 0, so that by using the change

of variable y = v/ty/log(1 + 72) we have

%0 (1 4 12)~t sin?(t log( ))(log(1+r2))n;2\/fr
M(t)z/o Vity/log(1 4+ 72) 2)y/log(1 + r2) ar
:/oo e—y2 sin (\/—y)yn 2dy
0

t> 0.

n—2
t5y
n—2 n—2
-5 oo 1~ [
N / e Uy Sy eV y" 3 cos(2V/1y)dy
2 Jo 2 Jo
t_@
:T(A Fu(t))

where

o0 2 o0 2
Ay = / e Y y”_?’dy and Fy(t) := / e Y y”_3 cos(2vV/ty)dy
0 0

Due to the fact e~ y"=3 € LI(R) for n > 3, we can apply the Riemann-Lebesgue Lemma
to get
Fp(t) =0, (t— 00).
Ap
Then there exists t1 > tg such that Fy,(t) < T3 for all ¢t > t1, that is

Ap — Fo(t) >

Ap
> for all ¢t > t;.
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Thus, one has

2
/ (1 +r ) sin (t 120g(1 +r ))rnfldr > ﬁt*% (345)
0 log(1 + %) 4
for t > 4.
Finally, the desired statement can be obtained from (3.44) and (3.45). O

3.4.2 Blow-up on infinite time for n = 1 and n = 2

In this subection we study the optimal blow-up rate in the sense of L2-norm of the
solution to problem (3.1)-(3.2).

We first derive the following lemma to the case of dimension n = 1.

Lemma 3.20. There exists T > 2 such that

(64 4 4972t (1 +1€?) " sin?(t4/log(1 + [€]2))
19672 = /R log(1 + [€]2) de < 12t

forallt >T.

Proof. We have
/ (1 +1€]%) 7t sin?(t4/log(1 + [€]?) df / (1 +72)"sin?(t4/log(1 + r2>>d’r
R log(1 +[¢[%) log(l +72) '
Initially, we obtain a lower bound for this integral as follows. Set
1+ r2)"tsin2(¢t+/log(1 + r2
01) i / (Lt o)~ i1/ log %) |
0 log(l + 74)

/ (1+72)"tsin?(t log(l—i-rZ))dr
1 log(1 +12) '

Qp(t) ==

t

This implies that
Li(t) = Qi) + @n(t),
where Z1(t) is defined in (3.42).

From mean value theorem, we may obtain
t
sin(ty/log(1 + r2)) > Ey/log(l +72),
for0<r< % Thus

B (1 +72)"tsin?(t4/log(1 + r2))
Qult) = /0 log(1 +r2) dr

2 [ (1472~ log(1 4 r2)
4 Jo log(1 +12)
1

P 1(1+ 2y~ta 5 £ 4 _t/td
“a et S

t 1+1 - t>0
! 12 ’ '

dr

v
|
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95

Now, since

1 —t
t—0o0 t

there exist a constant t; > 1 such that

Then
t> 1.

To deal with the integral Qy,(t), we consider

2572 4972
v :=Vew2 —1 and vg := Ve1s2 — 1.

Note that for 1 < r < vy it holds that

sin(ty/log(1 + 7“2))‘ > %

Then, we can estimate

Y2 (1+ 7“2)*1f sin2(t log(1 + 72))
@nt) 2 /,,1 log(1 + r2) dr
. 1/V2 (1+r9)~"

> — r
2 )y, log(1+12)

8t2 [V 2\ —t
— 1 d
= 497_‘_2 /Vl ( +T) T

Note that one knows the fact that

lim ¢ et%—lz\/f_y (v >0).

t—00
Therefore, since one can get

. Lf’ﬂ'z 4972 2572 T
lim te 16t e162 —1 —\VetsrZ —1| = 3

t—00

there exist t9 > 1 such that

8t2 — 4972 4972 2572
= e 16t el6t2 — 1 — e16t2 — 1 1.

— 4972 4972 2572
te 16t e —1—Vew2 —1)>1 t=>tg.

(3.46)
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Therefore,

8t
Qn(t) 2 5o t2t2. (3.47)

By adding (3.46) and (3.47), we conclude that

[ (g sin?(ty/log(1 + [€]2)) t 16t
0= [ 2

for all ¢ > max {t1,t2}. This estimate concludes the proof of lower bound of proposition.

(3.48)

In order to obtain the upper bound, we separate the integral into three parts as

follows:
1
t (1—|—r ) sin (t log(1 4 72))
0 og(1 + 1)
7t (1 +72)7tsin?(t/log(1 + 12))
Ry () ::/ dr,
i 1 log(1 + 72)
o (1+4r ) sin (t log(1 + 72))
Ry (t) = /1 T dr.
Vi
Then

ST(0) = Bi(t) + Rn(t) + Ry,

Now, using the fact |sinz| < 1 for all x > 0, for t > 0 one has
x
1 1 1
t t t
Ry(t) < / (14 72) 2 — t2/ (14 72)tdr = tQ/ dr—t.  (3.49)
0 0 0
In order to estimate the middle part, we first observe that
l i
im ——— =
o—0log(1 + o)
So, there exists dg > 0 such that
o
— <2
log(l +0)
for all 0 < o < dg. Therefore, if % <r< 7, then - 7z < r2 <7 L and for t > 61 , we have
1 2

— < .
log(1 +172) = r2
Therewith, using integration by parts we can get

/f (14 r2)"tsin?(t log(1+r2))dr
log(1 4+ 72)
1

(1 1\ ¢ 1\t
32/ﬁ+—r2)dr:2t(1+—2) —2\/%(1+—)
% T t t

1

- 41%”(1 + )~y
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Since

which implies
Ry (t) <4t, t>t3. (3.50)

Finally, we estimate Rj(t). First, we have

) = [T o [ 0

2 = 24"
L log(1 + %) 1 log(1 + %)

0 (1+T2)_t+1
L (14 72)log(1 +72)

1\ i 1 0
1—|——) / zdr
t log (1—1—%) % L4

(
- (1 + %) o ﬁ <g - tan—l(t—%)) :

1+1

Due to the fact
lim — (1 + —> —_— (Z — tan_l(t_%)> = 1,
t—oo t t log (1 + %) 2 2e

there exist t4 > max{2,t3} such that

e )=
log <1 + g)
for all ¢ > t4, where one has just used the fact that

) 1
lim tlog (1 + E) =1

t—00

Thus one has

Ry(t) <t (3.51)
for all t > t4. By adding (3.49), (3.50) and (3.51) one can obtain the desired upper bound:
0 (1 2\—t ;2 t+/1 1 2
T (t) :/ (14 7r7) 7 sin( ;g( ) g < 12 (3.52)

0 log(1 4+ %)

for all t > t4.
The estimates (3.48) and (3.52) prove the lemma. O
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Next we study the optimal blow-up order as t — oo of Za(t) given by

() sin2(ty/log(1 T D)
2t = /R2 log(1 + €72)

In order to do this we use the Lemma 2.22.

d¢.

Lemma 3.21. There exists T > 1 such that

r (1 -+ |€[2)~" sin?(t/log(1 + [€]%))
@bg“/ : 1og<1+|§r2>

d¢ < 6rmlogt
forallt > T.

Proof. By considering the polar co-ordinate transform, we set

1 (1 +72)"tsin?(ty/log(1 + r2))
322 = /0 log(1 + 72)

rdr.

In order to obtain a lower bound for Zy(t), by using the change of variable w =

tlog(1 + 72) and integration by parts, we observe that

gy = [ e )
2m 0 Vity/log(1 4 72)(1 4 72)/log(1 + r?)
(14 72)"tsin?(t/log(1 + r2))V/tr r
0 \/_\/log(l—i-r2 1+72)\/log(1 + 72)
_/Oo e~" sin (\/_w)dw
0

w
1 n2
t
26_1/ sin (\/_w)dw
i w
vt

Then we have

e / o [,

L w
NG

- 2
:—logt—e2 /1 cos( \/_w)

4 w

Vi

By changing variable we arrive at

1 el el 2*/’Ecosy
—To(t) > — logt — — d
o 2(t) > 4 0og 2/2 " Y
>€_11 t e’
_O —_— —
=Ty BT
671 4
Zylogt, t>e™.

The penultimate inequality above is due to Lemma 2.22.
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Thus, for ¢ > 1, one has the optimal lower bound

B (1 4+ 72)"tsin®(ty/log(1 + r2))
Bt) = QW/O log(1 +r2)

T
dr > — log t. .
rr_4e og (3.53)

The estimate (3.53) implies the desired estimate from below of Lemma 3.21.

Next, in order to get the upper bound for Zo(t) we set

- i (1 4+ 72) " sin?(t4/log(1 + 72))
Qilt) = /0 log(1 +r2) rdr,
. (1 +72) "t sin?(ty/log(1 + r2))
Qm(t) = ) log(1 + 12) rdr,
(1 +72)"tsin?(ty/log(1 + r2))

Qp(t) = rdr

/\}Z log(1 + 12)

Then
1

2 T2(t) = Qi) + Qu(t) + Qn(®).

For ¢t > 1, we first have

B g (1 +72)"tsin?(ty/log(1 + r2))
@ilt) = /0 log(1 + 72) rdr
T (147212 log(1 + r2)

<
- /0 log(1 —1—7‘2)

1

< 12 /t (1+ T2)*trdr
0

rdr

Since

there exists t9 > 1 such that

2 1\
— 1= {14+ = <1
2(t — 1) ( _Ft2> -
for all t > t9. Therefore, for ¢t > to it holds that

Qi(t) < 1. (3.54)

Furthermore, for ¢ > 1 one can get the estimate

/f (1 +72)"tsin?(t4/log(1 + r2))

d
log(l r2) "

7“(1 +r2)t
r
1 log(1 + r2)
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And

vir(l+ )
Qm<t> S/1 Wdr

1 1 1
=3 {log <log <1+¥)> — log <log <1+t—2)>] .
Now, since we have
1 1 1
lim — |1 1 1+-]) -1 1 14+ = =1
i g [ (s (1+7)) e (e () ) -

then there exists t3 > to such that

oo +1)) o+ 2)] <

for all t > t3, where one has just used the facts that

log(log(1 + ¢2))

lim =2,
o—+0 log o
log(log(1

o logllog(1+0) |
o—+0 log o

Therefore, one has just arrived at the estimate:
Qm(t) <logt, t>ts.

Similarly, for ¢ > 1 it follows that

o0 r2)~t gin2 0 r2
Qp(1) :/ (L+r7) (t/log(1 + ))rdr

2
< log(1 + %)

00 2\—t
§/ —(1+T) rdr

2
4 log(1 + %)

1 > 2\t
< — (14 r=)" "rdr
log<1+%> ﬁ

1 1 1—t
:2(t—1)10g<1+%) (HZ) '

We see that

Y

1-t¢

1 1 1

lim (1 + —> -
t=00 (+ — 1) log (1 + %) t €

there exists t4 > t3 > 1 such that

1 1—t
(1 + —) <1
2(t — 1) log (1 + %) t

(3.55)
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for all t > t4. This implies
Qn(t) <1, t>ty (3.56)

By combining (3.54), (3.55) and (3.56), one can derive the crucial estimate

1 ° (1 + r2) "t sin?(t/log(1 + 2
~T(t) :/ (1+77) 7" sin( 2Og( ) i < 31081 (3.57)
2 0 log(1+ r#)
for large t > t4.
The statement of Lemma 3.21 is now proved from (3.53) and (3.57). O

3.4.3 Optimal estimates to the solution

Now that we know the L?-estimates to the leading term (3.25), we may conclude

the following important result.

Theorem 3.22. Letn > 1, ug = 0 and uy € (L2(R") ﬂLl’l(R”)). Then, the unique
solution u(t, ) to problem (3.1)-(3.2) satisfies the following properties:

(i)if n =1, then C1|P|VE < |Ju(t, )|z < C7ovE 1),

(ii) if n =2, then Co|P1|\/Togt < [lu(t, )|l 2 < Cy ' IoV/Togt (t>>1),

(iii) if n >3, then Cp| Pt T < |Ju(t,”)||p2 < CTlIpt™" T (t>1).
Here Iy is a constant defined in Theorem 3.16, and Cy, (n € N ) are constants independent
of t and the initial data.

Proof. We prove the item (iii) and the remainders are obtained analogously.

From Young’s inequality we have

/Rn jat, ) 2de < 2 /Rn At €) — (1, €)dE +2 /Rn o(t,6)|2de
< K25+ KPH "%

<Ot 1. (3.58)

Where we just used Theorem 3.16 and the upper estimate of Lemma 3.19.

In order to obtain the estimate from below, we first observe that
ot )] < [a(t,§) — ¢, )] + |a(t, )]
From Young’s inequality, we have
(¢, )7 < 2la(t,€) — o (t, ) + 2/t €)
and then

la(t, &) > Zlp(t, )7 — |a(t, &) — o(t, )|

DO | —
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Therefore, from Theorem 3.16 and the lower estimate of Lemma 3.19 we have

" 2 1 210 . _ p
[ titeRae =5 [ letoras— [ jaweo - e.oPd
>olp T — K3t s

— <C|P1|2 - Klgt—l) L1, (3.59)

But
lim (C]P1]2 . ngt—l) — ol
t—00

then there exists tg > 0 such that
c\p?-KI3 1> %C\PﬂQ, t> 1.
Thus, from (3.59), we have
)l = [l ORds = SCIRPE, ¢ (3.60)

Combining Plancherel Theorem with (3.58) and (3.60) we have

—2

n n—2
CrlPilt™ 3 <lu(t, )| < Colot™ 5, t>1
where (', (9 are positive constants depending only on n. O

Remark 3.23. Here it is important to observe that the upper bounds can be obtained only

by L' assumption on the initial data u1. Indeed, from (3.21) and (3.23) we have

e—a(f)t _ o 2
a(t,g):a1(§)< D sin(t\/log(l—l—]5\2)—1-75@_“(5)756(5) V;(g”‘f' )cos(m(g))>.

Due to [|i1]|oo < ||u1]1, it is easy to adapt the estimates (3.29), (3.31) and Lemmas 3.19,

3.20 and 3.21 to prove that the solution has the same estimates as in Theorem 3.22, but

with Iy = ||u1||1. However, u; € L1 (R™) seems to be a technical condition to get lower

bounds.

Remark 3.24. As a result, all estimates derived in Theorem 3.22 are overlapped already
known results in [28] and/or [6], and this is quite natural because log(1 + [£]?) ~ |¢]?
for small £ € R", and the main contribution to the above estimates comes from the low
frequency region in £ € R™. However, by replacing the operator A = —A to L = log(I —A)
in the equation (3.39), we encounter a big obstacle when one gets such estimates stated
in Theorem 3.22 and this difficulty comes from the way that how we treat the improper
integral (3.42). A big technical difficulty occurs.

Remark 3.25. We note that due to the structure of our equation (3.1) being similar to

the viscoelastic equation the asymptotic profile of solutions is determined, according to
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the integral (3.42), by a competition between the wave type multiplier Sm&#, w(§) =

2
log(1 + [£]2), and the Gauss kernel exp (—% ). With respect to L'-L? estimates, in
the space dimension n = 1 the wave structure is dominant and at high dimension n > 3
the Gauss type kernel comes into play, whereas n = 2 is in the border line so a log-term

comes into play.

Remark 3.26. We observe that our equation (3.1) is a similar model to the viscoelastic
equation (i.e., (3.39) with A = —A) studied in Y. Shibata [44]. However, the work by
Shibata, different from our Theorem 3.22, gets only the upper bound estimates for all
n > 2. On the dimension n = 1 no any upper and lower bounds can be derived. For n = 2,
only log-order estimate from above to the L2-norm can be obtained, namely log(t + 2),
but it is worse than the rate (log t)1/2 obtained by us. For n > 3 only optimal ¢("—2)/4
order from above can be observed. These estimates are also done in the framework of
(L' N L?)-initial data as in our work. It is important to emphasize that more general LP-L4

estimates of solutions can be studied in detail in [44].
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4 A DISSIPATIVE LOGARITHMIC-LAPLACIAN TYPE OF PLATE
EQUATION

In this chapter we consider a new type of plate equation with the logarithmic-
Laplacian operator under effects of damping mechanism. The associated Cauchy problem

is
ugr + Lu+ (I + L) tuy =0, (t,2) € (0,00) x R, (4.1)
w(0,2) = up(z), w(0,2) =uy(z), x€ R", (4.2)

where L = L is defined in (1.4)-(1.5).
By employing the standard Lumer-Phillips theorem, we prove the existence of an

unique weak solution to the problem (4.1)-(4.2) in the class
C([0,00),Y*) N CH([0,00), L),

where the set Y2 is defined in (2.4) and it is the domain of L.
The associated energy identity to the system (4.1)-(4.2) is

B+ (T + D)) ] =0 (13)

where

Bult) = 5 (luelt, V3 + 12V 2ult, ))32)

The identity (4.3) implies that the total energy is a non increasing function in time
because of the existence of some kind of weak dissipative term (I 4+ L)~ ug. In this sense,
we investigate decay rates to the solution for n > 3 applying the multiplier method in the
Fourier space (cf. [27,46]). It is important emphasize that more regularity is required on
the initial data to obtain decay estimates on the high frequency region || > ¢. This fact
is due to the structure of regularity-loss of this type of plate equation. Such structure is
characterized by

1
lim ReAy = lim =0,
€| —00 |00 2(1 + log(1 + [€]2))

where AL are the associated characteristics roots.

In order to obtain optimal decay estimates of solutions for n > 1, we derived an
asymptotic profile to the solution. We prove that there are three possibilities of asymptotic
profile each of them depends on the regularity of the initial data: for high regularity it
is diffusive-like, for low regularity the asymptotic profile is wave-like and for a threshold
regularity it is the sum of both (see Theorems 4.21, 4.22 and 4.23). The ideas from [18§]
were very important for us to describe the three asymptotic profiles. After getting the
suitable asymptotic profile, we use them to discuss the optimal decay rate of the solution
in terms of the L?-norm (see Theorems 4.24, 4.26 and 4.27). The same comments as in
the introduction of Chapter 3 on the effectiveness of the operator L to get a new model

of plate equation holds.
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The results obtained in this chapter will be published in May 2022 in Discrete
Continuous and Dynamical Systems (see [3]).

This chapter is organized as follows. In Section 4.1 we discuss the unique existence
of solutions to problem (4.1)-(4.2). In Section 4.2 we obtain decay estimates for the L*-
norm of solutions by using the multiplier method for n > 3. The asymptotic profile and
related estimates are obtained in Section 4.3 and, in particular, Theorems 4.21, 4.22 and

4.23 are proved in the final of this section. In the Section 4.4 we prove optimal decay rates.

4.1 EXISTENCE AND UNIQUENESS

In this section we study the existence and uniqueness of solutions to the problem
(3.1)-(3.2). For this purpose, we follow the work by Charao-Horbach [9] (see also [36]).
The Cauchy problem (4.1)-(4.2) rewritten as

(I + L)Utt + L([ + L)u + up = 0,
u(0,2) = uo (), (4.4
ut(0,z) = u(z).
By taking the inner product of the equation in (4.4) by u¢, we obtain
1d
2dt
for t > 0. We define the total energy as

(et DI+ 2 2, )2 + L, 2+ 12l l12) + el )1 =0,

E(t) = [fug(t, > + | L1 Pt P + | L, ) + | LY P, )1

Then, we can observe that F(t) is a non-increasing function and it is well defined for weak
solution of the problem (4.1)-(4.2) according to Theorem 4.6.

Associated to (4.1)-(4.2) one can choose the following energy space
X=v2xyl

In this section, to study the existence of solutions is convenient to adopt the

following norm

e = ( [ (1 1081 168 g0+ 1612) |f<s>\2df)l/2

in the space Y2, which is equivalent to its natural norm defined in (2.5) with § = 2. The

associated inner product to this norm is
(u,v)y2 = /R" (1 +log(1 + |€%) +1og?(1 + |§|2)> avde, u,veY?. (4.5)
Now, at least formally, from (4.4) one can write

upp = —(I+ L) N2+ LDu— I+ L) tuy = —(T+ L) " NL2+ L+Tu—(I+L) Yug—u).
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u
Then if we define v = u; and U(t) = we can reduce the second order equation of
v

(4.4) to a system of the first order as follows:

av ut
dt \—(I+L) "N L2+ L+ Du— (I +L) N — u)

B 0 1 U n 0
U+ N2+ L+1) 0) \v (I+ L) (u—wv)

B 0 I\ [(u n 0
\=4 0/ \w (I+L)Yu—-v)]"

Thus, the first order evolution equation to U can be written as

% — BU + FU, U(0) = (ug,uy), (4.6)

where formally the operator A is given by
A=I+0)y Y2+ L+ D)=L+ +L0) 1

and the operators B, J are given by

0 I 0
B = <—A O) , FU = ((I—i—L)_l(u—v)) , U= (u,v) € D(B).

We need to give a precise definition of the domains of operators A and B. To do

that we set

D(A) = {u e Y?: there exists y = y, € Y'! such that
(L, L) + (L0, LV29) 4 (u, ) = (y,0) + (L2, L120) v o € V),

We observe that 0 € D(A), so D(A) # ¢ and we define
A:D(A) =YY by Au=yy,, ue D(A).

The suitable definition to the domain of B is D(B) := D(A) x Y2, This definition implies
that
B:D(B) = X =Y2xYl

where X is the energy space defined above.

The following result guarantees us that A is well defined.

Lemma 4.1. For u € Y2, there exists at most one y € Y1 that satisfies

(Lu, Lp) + (LY, LY20) + (u, ) = (y, ) + (L2, LV29) v g e Y2 (47)
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Proof. Suppose that y1,y2 € Y1 satisfy the above relation. Then y = y — yo satisfies
(y, ) + (LY2y, LY?4) =0 for each o € Y2, (4.8)

By density of Y2 in Y1, due to Proposition 2.18, there exists a sequence {y,} C Y2 such
that

lyn = yllyr = 0.

This implies ||yn|ly1 — |lylly1 and ||yn — yH%/1 — 0. Thus we have
2 9 2 _ — 2 0
lynllyr = 2(yn, y)yr + lyllyr = llyn —yllyr =0,

which implies
: _ 2
dim (g, y)ys = [[ylly

On the other hand, by (4.8) and the density argument we get

(Y, yn)yr = (g, yn) + (LY 2y, LY 2y,) =0,

which implies lgn (y,yn)y1 = 0. Therefore, we can conclude that ||y|ly1 = 0.
n—oo

Lemma 4.2. D(A) C Y3 and there exists ¢ > 0 such that
[ullys < el Aully,
for allu e D(A).
Proof. Let u € D(A). Then there is y € Y that satisfies
(Lu, L46) + (L2, LV20) o+ (u,0) = (9, 9) + (L2, L120) v € V2
We define F: Y1 — R by

(F ) = (y,0) + (LY2y, LV29), v e YL,

Then F' is well defined, because y, ), L1/2y and L1/2¢ are in L2(R") and F is linear.

Furthermore, F' is a continuous operator. In fact

[(F0) | < |y, o) + (LY 2y, LYV20)| < lylllle] + | LY 2yl L 2|
= [1gll11D] + [l (log (1 + )/ 2g]l[| log(L + |€]3) /2|
< 2/(1 4 log(1+ €)Y 29| 1(1 +log(1 + |€[2) /29

= 2lyllyrl¢llys-

Since S(R™) € Y2 c Y1, we have (Y1) c (Y?) ¢ S/(R"). In other words, F can be
seen as a tempered distribution and for all ¢ € S(R") it holds that

(Lu, L) + (LY 2u, LV 24) + (u,00) = (F, ).
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Thus, the equality
LPu+Lut+u=F

holds in S&’(R™) sense. By applying the Fourier transform, the definition of F' and the

operator L, we arrive at

log?(1+ [¢]?) +log(1 + |¢2) + 1] @ = F = [1+log(1 +1¢)] 5

that is,
o= log? (1 + |el*) +log(1 + e[ +1,
1+ log(1 + |€]?) ’
. log2(1 + [¢[2) + log(1 + |¢[2) + 1
V1 + log(1 + [¢[2)g = =& & .
V1 +1log(1+[¢%)
Then

lolys = [, (1 tox(1 + 1¢%) 19

_/ [141og2(1 + [€2) + log(1 + [¢[2) ?
~ Jrr 1+ log(1 + [€)

From Lemma 2.17, it follows that

0|2 de.

(1 + log(1+ %)~ (1og(1 +16%) +log(1 + |¢) +1)” ~ (1 + log(1 + %),

Then
[yllyr =~ /R”(l +log(1 + [¢[%)3af?de = |Jul}s.

Therefore, u € Y3 and, since y = Au, there exists constant ¢ > 0 such that

[ullys < cl|Aully:.

Lemma 4.3. Y3 C D(A).
Proof. Initially, we observe that Y2 € Y2 ¢ Y1, because
1+ log(1+ [€]?) < (1 +1log(1 + |€%))? < (1 +log(1 + [¢]?))?
+log(1 + [£]7) < (14 log(1 +[¢]7))" < (1 +log(1 + [¢]7))".

Let u € Y3 and note that L3/2u € L2(R™). We first show that there exists y € Y1
such that

(L3 20, LY29) + (LY 2u, LY20) + (u,4) = (y,9) + (LY 2y, LY29), for each ¢ € Y2
We define a: Y x Y1 — R by

a(y, ¢) = (1, ¢) + (L2, LY 2).
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This function is well-defined and it is a symmetric bilinear form. Moreover,

e ¢ is continuous. In fact,

a(. @) < 1@, 0)| +I(L20, LY20)| < gl + | L 20 ILY 29

= [IOl@ll + [ly/log(L + [€2)5 ] [14/log(L + [€[2)d]

< 20y/1+ log(1 + [E[2)B[1/1 + log(1 + [¢])d]
= 2y 6y

e q is coercive, because
a(6,0) = (6,0) + (L'26, L120) = |8]* + 1L 26]1% = [|6]13.
On the other hand, we define F : Y! — R by
() = (L2, LY29) 4 (L2, LYV20) + (u,9).
This map is linear and continuous, in fact

(P | = (L3 20, LV2)| + (LY 2u, LV 20 + | (u, )]
<\ L3P |2 + | L[]+ all 1]
=[l(1og(1 + [€1%))*/%all| (log(1 + €1%) /2 ]|+l log(1 + [¢[®)all Il +all | ]
<[l (log(1 + [¢1%))*/2all | (1 + log(1 + ¢]3) /2|
+llog(1 + [€[2)all[|(1 + log(1 + [€) Y20 + all (1 +log(1 + ¢]%) /2|
— (Il og(1+ [2))*/2a] + 1 10g(1 + |¢[2)all + [al]) (1 + log(1 + %)) /2]

<llullysll¢[lyr-

Thus, we have a continuous linear functional F' and a coercive continuous bilinear form in
the Hilbert Space Y. From the Lax-Milgram Theorem (see Theorem 2.12), there exists a
unique y € Y1 such that

(F ) = a(y,v) forall € vt
Due to Y2 C Y1, this identity is valid for all ©» € Y2 and, in this case, Ly € L?>(R") and
(L32u, LY?4) = (Lu, Lv).
Therefore,
(L, L) + (L2, LV29) o+ (u, ) = (y,0) + (L2, L),

for each ¢ € Y2, It proves that u € D(A). O
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Our goal at this section is to show that B is an infinitesimal generator of a contrac-
tion CY-semigroup. For this, we apply the Lumer-Phillips Theorem. First, we note that
D(B) = Y3 x Y2 is dense in the energy space X = Y2 x Y from Proposition 2.18.

In order to prove that B is dissipative, we consider the Hilbert space X = Y2 xyl

with the following inner product:

((ul,vl), (UQ,UQ))X = (ug,u2)y2 + (v1,v2)y1, uj,ug € YQ, V1,09 € Yl, (4.9)

where (u1,ug)y2 is defined in (4.5) and
(vn.vly = [ 1+ log(1 + |¢yiade
according to the corresponding definition of norm in Y'! given by (2.6).
Lemma 4.4. The operator B : D(B) — X is dissipative.
Proof. For (u,v) € D(B) one can observe that
(B(u,v), (u,0))x = (v, —Au), (u,v)) x = (v,u)y2 + (—Au,v)y1
/ 1+ log(1 4 |€[%) + log?(1 + |£\2)) dudé

o

/n (1+tog(1 + ) Aubde

R
:/R” (1+ toa(1 + 1¢%) + log2(1 + &) ) vide

L +log(1 + [¢[*) +log®(1 + [¢[*) .=

/R" <1 +log(l+1¢ >> 1+ log(1 +[¢]%) s
= [ <1+log 1+ [€]?) + log?(1 + [£] )) (D0 — ad)dé
=2 /R" (1+ Tog(1+ [¢%) + log(1 + [¢]%) ) Tm(0a)de

Thus, Re (B(u,v), (u,v)) x = 0 for all (u,v) € D(B) and B is dissipative. O

Lemma 4.5. (I — B)D(B) = X.

Proof. Clearly (I — B)D(B) C X. In its turn, let (f,¢) € X = Y? x Y'!. Then, we will
prove that there exists (u,v) € D(B) such that (I — B)(u,v) = (f, g).
We define a mapping a : Y2xY2 = Rby

a(p,¥) = (0, ¥)y1 + (0, ¥)y2

Then a is a symmetrical bilinear form, which is

e continuous:

la(e, ) < llellyrlllyr + llelly2lldllyz < 2lely2l¢ ]y,
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e coercive:

a(y,¥) = (U, ¥)y1 + (U, ¥)y2 = [¥]131 + [0 > [[9]3-

Furthermore, we consider the linear functional F : Y2 — R given by

(F,) = (f + 9, ¢y,

which is well-defined because of Y2 c Y'1. Also, one has

[(ES) < W+ gllyal[éllyr < 1+ gllyrldlly,

which just proves the continuity of F.
Thus, we can apply the Lax-Milgram Theorem to get the existence of a unique
u € Y? such that
a(u,v) = F(y) for all ¢ € Y2

In other words,
(u, ) + (L0, LV29) + (u, ) + (LY %0, LV29) + (Lu, L)

= (f +9.9) + (L2(f +9), L)
for all ¢ € Y2, In particular, this equality is valid for all ¢ € S(R™) and we have the
following identity in S'(R"™)

Aut+u=f+g.
Finally, we observe that u € Y3. In fact, by applying the Fourier transform, we
obtain
Au+ia=f+g
and
1+ log(1+ J6) +log? 1+ 16) o 7o

1+ log(1+ [€]?)

which is equivalent to

1 2 1 2 ) )
1+ Og(\;;‘li);(‘:fif;)-i- €| )ﬁ - \/1 + log(1 + ’5‘2)( Y g—q).

From Lemma (2.17), we have

1+ log(1 + [€]?) + log?(1 + |£]%)

~ (1 +log(1 + |€2))3/2.
N ERTIRAE) (1+log(1+[¢]%))

Then,
(1 +log(1 + €)% [af* ~ (1 + log(1 + [¢[*)|f + § — 2.

Now, since f,g,u € V1 we conclude that

[ (1 1081+ €)% (6) P < o
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which proves that u € y3.
Let v = u — f and note that v € Y2, because of f € Y2 and u € Y3. Therefore, we
have obtained (u,v) € D(B) such that

(I = B)(u,v) = (f,9).
Hence, we have proved that (I — B)D(B) = X. O

Therefore, we just have proved that B satisfies the hypothesis of Lumer-Phillips
Theorem. Then B is the infinitesimal generator of a C?-semigroup of contractions.

Next we want to prove that F': X — X given by (4.6), which is well defined from
Lemma 2.19, is a linear bounded operator. The linearity is simple. The boundedness is
given by the following series of inequalities:

2

-0
1+ log(1 + |£|2)

P ol = |1+ toer-+ e

< 2/ jaf* d§+2/ Ll de
S 2 g T log(1 1€ R 1+1og(L+ €%
2 / i + 2 / (1t log(1 + [€]2) 02

R R
< 2l +2lv]2
= 2l|(u,v)| %

From Theorem 2.11, B+F : D(B) — X is infinitesimal generator of a CY-semigroup
{T(t);t > 0} in X, because B : D(B) — X is infinitesimal generator of a C-semigroup
of contractions and F': X — X is a bounded linear operator. For (ug,u1) € D(B)

IN

U(t) = T(t) (“0> (4.10)

is the unique strong solution of the problem

d uQ
aU(t) =(B+F) <u1>

()
u1

and U € C1(]0,00), D(B)) N C([0,00), X) (see Theorem 2.6). For initial data (ug,u) €
X = Y2 x Yl the function given by (4.10) is the weak solution (see Definition 2.7).
Therefore we obtain the following result about the existence and uniqueness of solutions
of Cauchy problem (4.1)—(4.2).

Theorem 4.6. Let n > 1 and (ug,u1) € Y3 x Y2. Then the problem (3.1)~(3.2) admits a

unique strong solution in the class

u e C([0,00), Y3) N CH[0,00), Y?) N C%([0, 00), Y.
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Moreover, for initial data (ug,u1) € Y2 x Y1 the problem (3.1)—(3.2) admits a unique

weak solution in the class
u € C([0,00),Y?) N C([0,00), Y1) N C%([0, 00), L*(R™)).

Remark 4.7. Note that for initial data (ug,u;) € Y3 x Y2 the solution given by Theorem

4.6 is just a weak solution of the plate equation
(I +L)uy + LI+ L)u+u =0
whereas it is a strong solution to the wave equation with a weak dissipation term
up + Lu+ (I + L)_lut =0

with the same initial data.

4.2 ASYMPTOTIC BEHAVIOR VIA MULTIPLIER METHOD

We begin with this section by considering the Cauchy problem in the Fourier space
associated to the problem (4.1)-(4.2) as follows

(1 +log(1 + |§|2))ﬁtt + log(1 + |§|2)(1 + log(1 + |£|2))ﬁ +a; =0, t>0, € R
a(0,&) = (), (4.11)
at<0a§) = ﬁl(f)a 5 € R".

Multiplying the equation in (4.11) by @ one can get the following pointwise energy

identity
d
&Eo(t,f) Tt &P =0, t>0, £€ R" (4.12)

where Ey(t,§) is defined for ¢ > 0 and £ € R™ by

(1 +log(1 + [¢)lasl®  log(1 + [¢[*)(1+ log(1 + [¢]*)) @]
2 2 ’

is the total density of the energy for the system (4.11). From (4.12) we see that Ey(t, &)

is a non-increasing function of ¢ for each &.

Fy (ta g) =

Lemma 4.8. Consider the following three functions

1

P(6) = log(1+ [6*)(1 +log(1 + %) (6 = T emy

$(€) = y/log(1 + [¢[?)

defined for & € R™. Then, there is a unique real number §g € (0,1) such that

(i). [€] < 0o = (&) < ¢(§) and (&) < &(E),
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(it). [§] = 0o = ¥(§) < @(§) and P(§) < ¢().

Proof. Let 0(r) = (14 log(1 4+ 72))y/log(1 4+ r2) — 1 for 7 > 0. We note that 6(0) = —1
and 6(1) = (1 +1log2)y/Tog2 — 1 > 0. The continuity of this function implies there exists
0 < dg < 1 such that 6(dg) = 0. Moreover, 6(r) is a increasing function of > 0 and such
fact implies that dg > 0 is a unique number satisfying —1 < §(r) < 0 for all 0 < r < ¢y
and 0(r) > 0 for r > §p. That is, if 0 < r < §p, then one has

(1+1log(1 + r2))y/log(1 +72) < 1.

Thus, for 0 < r < dy,

(1+10g(1—|—7“2))10g < 4/log(1 +r2) and 4/log(1 + r2) _1+log1—|—r)

Similarly, if » > dg, then

(1+log(1 +r2))y/log(1 4 r2) > 1,

and one obtains

(1+log(1 +72)) log(1 + r2) log(1 +12) andm 1+1og1+r)

for r > §p. These imply the desired estimates (i) and (ii). O

For g > 0 given in Lemma 4.8, we define the following function of £ € R" such

that
[ Blog(1+ 1621+ log(1 +1€2),  for [¢] < b, .
A= 2(1+1 e for |¢] > dp. (4.13)
og(1+[¢[%))
As a consequence of Lemma 4.8, we have
5(€) = min 4 128+ EF)(A +log(1 + [£]) L log(1 + |¢]%)
2 "2(1 + log(1 + [£]2))’ 2 '

By multiplying the equation (4.11) by p(€)@ we obtain the identity

€)1+ Lo (1 + €2 +(6) o1+ 621+ 1o(1 + P+ 2 L a2 —0 (4.14)

for all t > 0 and £ € R'. Taking the real part on the last identity we arrive at
d .= .
S |00+ o1+ g metard) + 2o
+ (&) log(1 + [E*) (1 + log(1 + [€*)al* = p(€)(1+ log(L + [¢))[ae>.  (4.15)
To proceed further we need to define the following functions on (0, 00) x R" such that
_ 2)\Re(a:8) + P& 12
E(t.€) = Eo(t,€) + p() (1 +log(1 + [¢]%)) Re(@a) + == |4,
F(t,€) = al* + p(€) log(1 + [¢*) (1 + log(1 + [¢*) [af, (4.16)
R(t,€) = p(€) (1 +log(1 + |¢) Il
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Then, by adding (4.12) and (4.15), we get the following identity

d

SB(LE+ F(,O=R(LE), t>0, R (4.17)
Lemma 4.9. It holds that

CE0(1,€) < B(1.€) < 8E(1,6). 1 >0, €€ R"

Proof. By Lemma 4.8 we have for t > 0 and £ € R",

E(1.6) < Bolt.€) + p(€)(1 +log(1 + e )irlja] + 2 jap

2 2 2

2 2 2
< Fye ) + LB g o log(1 461 +log1 16 1

L log(1+ 1€1%)(1 + log(1 + [¢]%))
4

a2
< 3Ey(t, ),

according to the definition of Ey(¢,&) in (4.12).
On the other hand, one has

—p(&)(1 + log(1 + &%) Re(i) < p(&)(1 + log(1 + |€%))|ae]|a]
1 1og<41 +1¢?)
2

+ log(1+ [€)(1 +log(1 + [¢)al,

i[> +p(€)3(1 + log(1 + [¢]*))]af?

fort >0 and £ € R™.

Thus, the last estimate implies

E(t,€) = Ey(t,€) + p(&)(1 + log(1 + |€[*)Re(aa) + —2|a

> Ey(t,€) + p(&)(1 + log(1 + [¢]%)Re(i)
1

> (5-7) 0 dostt + P lanf

¥ (% - i) los(1+ [€%)(1 + loa(1 + [¢[2))|af?

1 1
= (1 +log(1+ €17l + 7los(l+ €1%)(1 + log(1 + [¢]%))]af?

1

= §E0(t7 5)7

for t > 0 and £ € R™. These imply the desired estimates. O]
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Now, we need the next lemma.

Lemma 4.10. [t is true that

%E(z 5)+%) E(t,¢) <0, t>0, £€ R™

Proof. By definitions of E(t,£), F(t,£), R(t,€), p(¢) and (4.17), one obtains a series of

inequalities

Seeo+ et = reo-reg+ e
< R(t,€) — F(t,€) + %Eo(t,f)
= (;lp(é)(l +log(1+ [¢[*)) - 1) g
L) tog(1-+ €)1+ log(1 + eP)aP
< _%W _ }lm &) log(1 + [¢12) (1 + log(1 + [¢[2)) 4]
< 0
for ¢ > 0 and R™. The lemma is proved. O

Now, it follows from Lemma 4.10 that

p&)

E(t,§) < B(0,&)e” 2 1,

for t > 0 and £ € R". By combining the last estimate with Lemma 4.9, one can deduce

the important pointwise estimate,

Eo(t, €) < 6Ey(0, &)e "5t

fort >0 and £ € R™.
The above estimate combined with the definition of Ey(t,&) in (4.12) implies the

following crucial pointwise estimate.

Proposition 4.11. [t holds that

(1+log(1 + [€%)]ae(t, €)1* +log(1 + |€]*) (1 + log(1 + [€]%))[a(t, €)[* <

6(1 +log(1 + [¢[2))e5"

1 (6)[2 + 61og(1 + [€[2)(1 + log(1 + [¢[2))e =5 |ao (&)

forallt >0 and £ € R", and
_ P&y
e~ 2

log( +1¢1%)
forallt >0 and £ € R, £ # 0.

a(t,€)2 < 31 (€)|2 + 6e= "5 g (€) 2
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As a consequence of the second estimate in Proposition 4.11 one can get the

following result.

Proposition 4.12. Let n > 3, and let u(t, &) be the solution to problem (4.1)-(4.2). Suppose
ug € LY(R™) N YHT_Q, up € LY(R™) N Yy, Then, the following estimate holds:

2 —’ﬁ[ 2 2 } —ﬂ[ 2 2 ]
t,2)|2dr < Oyt - t . ,
[ttt 0o < €1t [l + ol age] + Cot™ [lunl e + ol

fort > 0, where C7 and Cy are positive constants depending only on n.

Proof. Let g > 0 be a given real number obtained in Lemma 4.8. To prove the proposition
above one needs to consider separately the zones of low and high frequency.

1) Estimate on the zone |£| < dg

On this region one notices p(§) = %log(l + [€1%)(1 + log(1 + |€]?)). Then, one can
observe that 1 < 1+ log(1 + |¢?) < 1 +1log(1 + 63) for |¢] < dp. Thus we get

1 1+ log(1 + 62
§log(1 +[€1?) < p(é) < é 0) log(1463), €] < do.

Then, by applying the second estimate of Proposition 4.11, one obtains

p(&)
e

_?t p(&)
a|2de < 6/ — g Pde + 6/ e 2 Uag|de
/|£sao €< log (L + [€]?) 1€1<60

710g(1+|5\2)t ) (1+\5\2)
R _log(1+[E[%)y 9
e e e [ g g
/|§§50 log(1 + [¢[?) 1€]<60

2\t 1 N
i— d
6 /|§|§50(”'5' )i

6 / (1+ 1E12)~ g 2de
1£1<do

IN

6

1
log(1 + [¢]%)

T 6lo12 / (14 [¢2)hae

1€]1<d0

_1
SOl [ 01 it
00

r2

n—3
_ d
log(1 + T2)T "

o [0 2\~ L
< Gwpllu][71 A (L47r7)"4

do .
‘|‘6wn||UOH%1 / (1+r2)*1rn71d7‘
0

_t

1)
<C 2 0 142 %m=3,
= O,nwnHUlHLl 0 (I+77)"4r r

_

o [ P 1
+6wn||u0||L1/ (14 r2)"ar"™ 2dr
0

_t

1
gco,nwnuuluﬁl/ (14 r2) =534y
0
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1 t
"‘6(»071““0”%1/ (1 +7’2)_17’n_1d7“
0
<O nHulnth =N +an||u0HL1t t>0

with some constants Cj; > 0 (j = 0,1), where we have just used Lemma 2.28 and the

fact that
o

lim ———
40 log(1+ o)
2) Estimate on the zone || > J

1

In this case, one notices p(§) = :
2(1 + log(1 + [¢]?))

By Proposition 4.11 and the

definition of p(§) we have

12 <12 —2Op 12
ud§§6/ iy d§+6/ e~ 2 || 2de
/|5|250| | 2, Tog(1 + €2 e )

1

e TrosHE®) S S,
=6 |01 |“dE + 6 ¢ TR i Jiig [2de
1€]>60 1€]>d0

log(1 + €2)

. (1+log(L+[€%)” . o

C d
=t /WO gL+ ey
Lo / (11 log(1 + [€12)" Jao|2de

|€]>6d0

a (1+1og(1+[€[%)2 . 9
Ct 2 d
= /|g|>50 log(1 + [¢]2) e

Lot / (1+ log(1 + [6]%) " [ao 2de,
|€]>d0

where we just applied Lemma 2.20 with v = § and a = —1, and V= “5% and a = —1 to
the last two integrals.

Thus we may conclude that

12 _n 1+ log(1 + |£]?) on=2 o
aftdg < Ct 2/ 1+ log(1+ [€]9)) 2 |ag|~d¢
/ﬂz%l | 2 os(1+167) SR

L oot / (1 -+ log(1 + [€[%)"F" |ao|2de
[€]>6d0

< o / (1 + log(1 + [¢[2))"F |y |2de
1£1>d0

b0 [ (L log(L+[62)F o
|£1>00

n n—2
< Ot 2 2 Ot T 2
< O \IU1|!YnTz+ IIUOHYTQ,

where one has just used the property

1+ log(1l+ o)
lim =
o—oo  log(1+ o)
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By adding the two estimates for low and high frequencies and using the Plancherel Theorem,

one can conclude the proof of proposition. O

4.3 ASYMPTOTIC EXPANSION

Applying the Fourier transform on the problem (4.4) one obtain the associated

problem in Fourier space:

(1 + log(1 + [€]%))iy + log(1 + €%)(1 + log(1 + [€[*)a + @ = 0,
a(0,€) = 1p(€), (4.18)
(0, €) = a1(€).

The characteristic roots of the associated polynomial to the equation in (4.18) are given
by

=14 /1 —4log(1+ [€]?)(1 + log(1 + [¢£]?))?
B 2(1 + log(1 + [¢[2)) '

We observe that there exists a unique real number ¢ > 0 such that

A+

>0 forl¢| <6,

(4.19)
<0 forlg| > 4.

1 — 4log(1+ [¢[*)(1 + log(1 + [¢]*))? {
In fact, the function f(r) = 1 — 4log(1 + r2)(1 + log(1 + r?))? is decreasing for r > 0,

continuous and
F0)=1,f(1)=1—4log2- (1+1log2)? < 0.

Therefore, by the mean value theorem there exists a unique number § € (0, 1) that satisfies

(4.19). The same theorem guarantees us the existence of 0 < 7 < § such that

S <1 dlog(1 1 €)1 + log(1 + [€2)? < 1, (4.20)

whenever [¢| < 7.
The next lemma is very important to get sharp estimates. In the following notation

A =~ B means that c;A < B < ¢ A for some positive constants ¢y, 9.
Lemma 4.13. It holds that
(i). Ay~ —log(1+[¢[?),
(i1). A=~ —1,
(iii). Ay +A_ ~ —1,
whenever €| < 8. And, in particular, in the case of |§| < n, one has

(z'v). A — A= 1.
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Remark 4.14. Note that the constants c¢; and co appeared in Lemma 4.13 may depend on

0 or 1. We also note that the four items in Lemma 4.13 simultaneously hold on the zone
{|€] < n} because of n < 4.

Proof.  (i). For a >0 and b > 0, it holds that

(ii).

b—a?
—a+ Vb= .
a—i—\/l—?

This identity implies that

~L4y/1 = dlog(L+ [§2)(1 + log(1 + [¢[2)” =
_ Alog(L+[g%)(1 +log(1 +[¢%)?
L+ /1= dlog(1+ [§P)(1+log(1 + [¢[%)*

since 1 — 4log(1 + |€]?)(1 4 log(1 + |€]?))? > 0 for |¢] < §. Then,

1+ log(1 + [¢]?)
14 /1= 4log(1 + |€2)(1 + log(1 + [€[2)2’

A = —2log(1 + [¢[%) €] <.

Now, for |¢€] < 6 we have 1 < 1 +log(1 + [£]?) < 14 log(1 + §?) =: K and

1< 14 4/1— dlog(1+ |¢2)(1 + log(1 + [¢[2))2 < 2.
Therefore we may conclude that
~2Kglog(1+ [¢*) < Ay < —log(1 +[¢%), |¢] <6

This implies the desired statement of (i).

. Since 0 < /1 —4log(1 + [€]2)(1 + log(1 + |£]2))2 < 1 in the region |¢] < 6,

_1 -l V1 — 4log(1+ [€]2)(1 + log(1 + [€]2))2
1+log(1+€?) = 2(1 + log(1 + [¢]?))

< —1 .

= 2(1 +log(1 + [¢[?))

Therefore,
1 <A <2
- = 2K5'

—1

To prove this item we observe that Ay + A\_ = T og(11E]7)

. Hence,

1
-1 <\ Ao < ——
S A+ + S TRy

for [£] < §. And we obtain the equivalence Af + A ~ —1.
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(iv). We observe that we have chosen 7 > 0 in (4.20) such that

1
5 < /1= dlog(1+ [E2)(1 + log(1+[¢)? < 1
for all || < n. Thus, one can deduce
1 . 1 _ V1 —4log(1 4+ [€]2)(1 + log(1 + [£]2))2
2Ks — 2(1+ log(L + €]2) 1+ log(1 + [¢]2)

< ! 5 L.
1+log(1+ &%)
This estimate shows the desired equivalence Ay — A_ ~ 1 on the region |£| < 7.

]

~—

IN

In the next subsection to use Lemma 4.13 we work on the zone {|¢| < n}, where n

is given in (4.20).

4.3.1 Estimates on the low frequency zone [¢| < §

(i) Estimates on the low frequency zone |¢| < n:

We remember that 7 is defined in (4.20). In this case, the characteristics roots A+

are real-valued and the solution of (4.18) is explicitly given by
A—to(§) = 1(8) gn, | 81(8) = Avlo(€) ox_

at,§) = ———= ~ E—— (4.21)
We observe that
A = —log(1 + [¢[*)(1 +log(1 + [¢]%)) — (1 +log(1 + [£]*)A,
A = —log(1+[£%)(1 +log(1+ [¢[*)) — (1 +log(1 + [¢]*)AZ,
for || < §. Therefore we can rewrite 4(t, ) as follows
a(t,€) = e HosUFHER (UHoeUHER) (11 (1, ¢) + Hy(t,€)), (4.22)
where
_A=9(8) — 01(€) —¢(1-log(14+]€2))A2
Hl(t7§>_ )\__/\+ € +7
_W(€) = A 0(E) _i(1410g(1+1€12))A2
HQ(t7€> - )\7 o >\+ € :

We can also use the Chill-Haraux [11] idea that has also been used in [29] to decompose
Hy <t7 f) as

A=Al Ap—A_
— Hy(t

R A_dg (e—t(1+10g(1+|g\2))v+ _ 1)
V. A=Ay

a1 <e—t(1+log(1+|§|2))>\i (- )\7)>

Ay — A ’

Hy(t,§) = dg + a1 +

= g + U1 0+

+
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By combining the last expression together with the decomposition (&) = A;(§) —iB;(§)+
Pj for initial data given in (2.8) we can get the following expression for (¢, {) which holds

for [¢] < n:
a(t, €) = o1 1BLHER UHoR(HE) (g (6) — By (€) + Py + A1() — iBL(E) + 1)

o tlog(LH[EP)(1log(1He2) M o

A A0
o (o=t +Hlog 1+
1 e tlog(1+[¢[*) (1+log(1+[¢[*)) 0 <€ ' 1>
Ao — Ay
fn (e t(IHog(1+HE[*)AL _ -
n e—tlog(1+|£l2)(1+log(1+|§\2)) ul <6 T A_>>
Ay — A
1 e tlon(L+€R) (1+0s(1HE) pry 4 ). (4.23)

Our main goal in this subsection is to introduce an asymptotic profile of the solution

a(t, &) in the low frequency region as t — oo in a simple form as
01(t,€) == (Py+ Pl)e—tlog(1+|§\2)(1+log(1+|§|2))‘ (4.24)

For this purpose, it is necessary to find suitable estimates for the other six terms of the

expression (4.23) defined by the functions
Fa(t, ) = e 110D Hos(ER) (45(6) — iy 6))
Fy(t,§) = e~ 1o HER (Hos(HER) (4, (6) — i (8))

Fy(t, €) = —e~Hos(+EP) (1Hlog(1+[e?) A+,

v
i (o~ t(+Hog(1+€?)AZ _ 1)

_ _—tlog(1+[¢]?)(1+log(1+[¢?)) 0 <e

F4(t, f) € Ao — At ’
o [ o—t(1+log(14+[€2)AL _ Ay — )\,))

_ —tlog(1+|§|2)(1+10g(1+|§\2))u1 <e i
F5(t7 f) e )\+ — A ’
Fo(t,€) = e o8+ IEP) (1o (+EP) o 1 ),

Therefore, from (4.23) and (4.24), for |£| < n we have
a(t,€) — p1(1,€) = Y Fj(t, ). (4.25)

Jj=1

In order to estimate the difference given by (4.25) on the zone of low frequency
{l¢] < n} we shall develop the next computations based on Lemmas 2.24 and 4.13. In
addition, we also assume ug,u; € LVH(R™).

Now, we first observe that

1< 14+ log(1+ [€2) < 1+log(1+12) = ky, |6 <.
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Then, for 7 = 0,1 by using Lemma 2.24 with x = 1 one has

/|£|< [Fja(t. ) de = /|£|< e HOBLHER e 4(6) — B (6 Pag
n =N
< /|§|< 208 1HEP) | A () — B (¢)|2de
N
- /|§|< (14 1€[2) 1A, () — iB;(6) e
Y

< (L+ MY |12, / (1+ [¢2) 2 e 2de
1€1<n

n
_ wn<L+M>2\|uj||{1/0 (14 r2)~2pntlge

1
<L+ MR IR [ (e 2 e
9 ,_nt2
< COllujllf 1872
for £ > 1 due to Lemma 2.28. Consequently, for ¢ > 1 we have

_nt2 _nt2
/ Fy (1, 6)2de < Cllug|2,t~*F  and / Fy(t, ) 2d€ < Clluy |21
1€1<n 1€]<n

In order to get an estimate on the function F3(t, &), we observe that

2
/ Byt ©)2de = [ e 2los(HER (Hlog(1He) (A )T 5024
E -

1€]<n

<c / e 2t108(1HIE1%) 1002 (1 4 [¢2)]a1g |2,
€[<n

because, for [£| <7, we have

At

—— =~ —log(1 2
SV og(1+ |€]7)

due to items (i) and (iv) of Lemma 4.13. We also observe that log(1 + r2) < r2 for all
r > 0 and we may use this simple inequality to conclude the L2-estimate for F3(t,&) as

follows.
/ Fy(t, €)2de < Clluol? / (1+ 1€2)~ e[ 4de
1€1<n 1€]<n
n
- C’wnHuoH%/ (1+r2) 723y
0
1
< Cuonllugl? / (14 12) 3y
0
< Cwnlluol?t™"2, t>1,

where we also used that |Gg(€)| < ||ugl|1 for all £ € R™ and Lemma 2.28.
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To estimate the function Fy(t,£) we need the elementary inequality
e =1 <a, a>0. (4.26)

We also remember that \
— | =1L [<n
Fuss vt
from Lemma 4.13. Thus, we have
/ Fy(t, €)[2de < C / e~ OB(IHEI)(1Hor(LH€F) (ot Hon(1+E) _ 1)2‘a0|2d5
= ~ i<y

< Ct2/ 6—2t1Og(1+\§|2)(1+10g(1+\§|2))(1 + log(l + |§|2))2)\i|ﬁ0|2d€
[€l<n

<Pl [ 1+ 6P o+ 6
=7

< 2 ug|? / (1+ [€2) =2 ¢ Bde

1€1<n
n+8
< wnCE2|ug |2 F

n+4
= Culluollft—"2, t>1

because of 1+ log(1 + |§\2) < 1+log2, for || <n < 1, where we also used the fact that
IAy| < Clog(1 + |€]?) for |€] < n. The constant Cy, > 0 depends only on n.

In order to get estimates to the remainder function F5(¢,&) on |[£| < 7, we can use
the inequality (a — b)? < 2a? + 2b? to obtain the following estimate.

/ Fy(t,€)2de
1€1<n

<€—t(1+1og(1+\§|2)))\i . ()‘Jr . )\))2

_ —2tlog(14]¢]?)(1+1og(1+]¢|%)) i112d
/|§|§7€7 (A = A-)? e
(e troslefat _1)?
< 2/ o—2tlog(1+[€[?) (1+log(1+[¢[?) AR
€l<n (= 2-)2
2
4 2/ o2t log(1+¢[2) (1-+log(1+¢2) (L= Ay — A;)) |1 | 2de. (4.27)
[€1<n (A =A-)

Now, let D = 1 — 4log(1 + |£]?)(1 + log(1 + |£]?))?. Then we observe that D > 0
for [£] <n and

| (g — A = 2los(1+16]%) +log®(1 + [€]?) + 4log(1L + |€[%)(1 + log(1 + [¢]*))°
A (1 +log(1 + [€12)) (1 + log(1 + [£2) + VD) |

In particular, 1 — (A4 — A_) is positive and there exists a constant C; > 0 such

that
1= (A = A0)| < Cylog(1 + [¢P) (4.28)
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for all || <, where 7 is defined in (4.20). From (4.27), (4.26) and (4.28), we obtain the
next estimate.
2 oy £2(1 4 log(1 + [€]2))24
/ | F5(t, €)|2de < C/ o2t 1og(1+[¢[%) (1+log(1+[¢[%)) : *+ |ag |2dg
€l<n €l<n (At =A-)

+20n/ ¢~ 2t108(1+[E?) (1Ho8(14E) 1662 (1 4 |£[2) |01 [2de
€|<n

<2 / e HoB0HER) 10g (1 + |2 [2de
1€|<n

+20n/ e~ 1002 (1 + [¢]2) a2
1€1<n

< Oy |? / (1+ €2 JelBde + 2Clfus2 / (1+1¢2) e 4de
1€1<1 €|<1

ntd _n+4
< Cpllur 3t +2C)nllm]3t 2, t>1.

)

Finally, by (ii) of Lemma 4.13 one has A— ~ —1 on the region |£| < 7, so that there
exists constants ¢y, co > 0 such that ¢; < 2(1 4 log(1 + |£]?))A? < c9 whenever |£] < 7.
Therefore, it follows that

/K |Fg(t, €)|2de = /|§|<n€—2tlog<1+|£2)(1+log<1+|£l2)> H3(t,€)de

|<n
</ 6—275log(1+|§\2)(1+log(1+|€|2))6—2t(1+10g(1+\§|2))/\2—;|ﬁ1|2d§
~ JIgl<n (== 2)?

2
N / o~ 2t log(1+[¢[%)(1-+log(1+[€[2)) .~ 2t (L+log(1+g[)A2 [ __A+ RS
1€]<n AmT Ak

< Oe“”t/ e 11oa(1HIEP) 4, 24 + Oe‘c”/ e 1OB(HER) 1662(1 1 [¢]2)aip|2de
|£]<n 1€1<n

<Ceurl [ (14 [ef) g+ gl [ e oEHER gjtag
[€l<n [€l<n

< Olw|Pt~2et + Cllug|2t™"F e, ¢ 1.

By combining the above estimates for F};(t,§), j =1,--- ,6, with equation (4.25),
we obtain that the solution (¢, &) given by (4.23) has the following asymptotic property.

Proposition 4.15. Let n > 1 and n > 0 given by (4.20). For (ug,u1) € LYY (R™)x LYY R™)
the solution G(t, &) to problem (4.18) satisfies

2 n—+2 n+4

N _nt2 _ _
/|§|< a(t, ) = 11, €)dg < C(Jluol 1t~ + e 1] 167°F + uo 373
7

4

2

n n n n+4
a3 4 55 4 a3 et 4 g3 eat), s

where p1(t, &) is defined in (4.24) and C' is a positive constant that depends only on n and
n.
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(ii) Estimates on the low-middle frequency zone n < [¢]| < §:

To obtain sharp estimates on the low-middle frequency zone n < || < ¢ it should
be noted that according to (4.19) the characteristics roots A+ are still real-valued.
We can rewrite the solution 4(t, €), for n < |£| < ¢, as follows

a(t 5) = 6_2(1+10g(t1+\5‘2)) Cosh(c(f)t)ﬁo(f) + Mﬁl(f)

c(§)
sinh(c(&)t) A
2(1 + log(1 + [€]2))c(€) ip(§) (4.29)

.t
+ e 20tlog(1TIE?)

where

_ V1 —4log(1 +[¢?)(1 + log(1 + [¢]%))

c(§) 2(1 + log(1 + [£]2))

>0, [¢]<o.

Let
1

Cs = :
07 2(1 + log(1 + 02))
It is important to observe that (4.29) is not defined for || = §, because ¢(£) = 0 in this

case. However, we note that it is a removable singularity of 4(¢, ). Moreover, for £ € R"

such that || = §, the eigenvalues A+ are equal and the solution formula is given by
a(t,€) = e~ “liag () + Cyte™ g (€) + te~ar(€), || = 0. (4.30)

We remember that § is given in (4.19) and our choice for 7 is such that

V1 Hlog(1 4 [€2)(1 +log(1 + 62))2 > 3

when |£] < 7 (see (4.20)) and this is a decreasing function on |£|. Thus, in the case for

n < |¢] <6, one has
1

4(1 + log(1 +[¢]%))’

Lemma 4.16. Let n > 1 and ug,u; € L?(R™). Then the solution i(t,£) to problem (4.18)

satisfies

c(§) <

\/<|£<6 |a(t7€)|2d£ S 46_06t||uO||% + 4Ct26—05t||u()”% + 4t26_06t||11,1”% (431)
N[>

fort >0, where C' is a positive constant that depends on n, and Cs is defined above and
it depends only on §.

Proof. Due to the fact that cosha < e® for all a > 0 we may estimate for ¢ > 0

.t I _ t t
e 1tlog(14IE2) cosh2(c(§)t) <e THog(111E2) o2¢()t < o7 THlog(1+1e2) p 2(1+10g(1+1€12)

t
= 201+ < Gt p < ¢ <0 (4.32)
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Similarly, by using Lemma 2.21, we may obtain

2
e—m sinh“(c(&)t)

<2 Gl < <. (4.33)

c(§)? ’

From the two solution formula (4.29), (4.30) and estimates (4.32), (4.33) combining

with Young’s inequality we have
[a(t. &) < de” (&) + ACyte™ M lag(©) + ate” Wlar(©)F,  (434)

for n < |€] <9, where
1

C, = .
T 9(1 4+ log(1 4 n?2))

Therefore, we may obtain the desired estimate

[ laoPas et [ jagePRae03ee ot [ jage)Pas
n<|§|<é n<|€]<é

n<[€|<d
1 42Ot / 1 (6) [2de
n<[€]1<o

= 4~ DM |lug|[3 + 4CT 12~ ug 3 + 4% Ot luy |3, > 1.

4.3.2 Estimates on the high frequency zone [£| > §

On the zone of high frequency the characteristics roots are complex-valued (see

(4.19)) and are given by
A = —a(§) £ ib(¢),

where

1 _ V/4log(1 + [§[*)(1 +log(1 + [¢]%))? — 1

20T loe( £ gy 4 b = . (4.35)

a(§) = 2(1 + log(1 + [€]2))

Then the solution u(t, £) to problem (4.18) in the high frequency zone is explicitly given
by

a(t, &) = e~ cos(b(&)t)ag + %ea@t sin(b(€)t)ag + %ea@t sin(b(€)t)ay. (4.36)

(i) Estimate on the high-middle frequency zone § < |¢| < /e — 1.

In this region, the function a(§) is equivalent to a constant, that is %1 <a(§) < %

1 .
Moreover, we can see that —— converges to +oo when |[¢| — §1 according to

b(¢)

(4.19). However, we remember that sina < a for all @ > 0. Thus

sin(b(£)t) < b(E)t
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for all ¢ € R™ and t > 0. By combining these properties together with the solution formula
(4.36) one can obtain the following estimate for ¢ > 0, which implies the exponential decay

in such region.

. _t 1o ¢ _t
/ [a(t, €)% de < e 2 |lugll3 + <2 2 |ugl|3 + t%e 2 ||uq ||3. (4.37)
d<lg|<ve1 4

(ii) Estimate on the high frequency zone [£| > e — 1

The estimates on this zone are more delicate and the derivation is one of essential
contributions in this chapter. We first need to rewrite the solution formula given by (4.36)

into a more suitable expression.
First we observe that for || > 0, in particular, for |£| > v/e — 1, it holds that

b(€) < y/log(1 +[¢]?).

Then the mean value theorem implies, for || > v/e — 1, that

cos(b(§)t) = cos(y/log(1 + [§]*)t) — sin(0(2,)) [b(f) — /log(1 + Iflz)} t,

with (¢, &) = ab(é)t + (1 — a)/log(1 + |£]2)t for some o € (0,1). Similarly,

sin(b()1) = sin(1/log(1 + [E[2)1) + cos((t,€)) [b(g) s+ \a?)} :

with (t, &) = vb(E)t + (1 — v)/log(1 + [£]?)t for some v € (0, 1).

Thus, one can rewrite 4(t, &) as follows:

a(t, €)= e Ol cos(y/log(1 + |€|2)t) i +te Ot sin(0(¢, 1) [,/mgu +€12) —b(f)} i

alg) e
b(¢) b(¢)

17O costn(€, ) |16) - o1+ 162 . (1.33)

We introduce an important function to be the asymptotic profile on the zone of high

+ e—al(é)t sin(b(&)t)ug + —alo)t sin(y/log(1 + [£]2)t)a

frequency for the solution u(t, £) given by (4.38) as follows

———t ____ [ sin o) 2
ool €) m & TR ( B €010 cost o + |§|2)t)@0(€)> .
(4.39)

In the following part, one will prove that the function pao(t,£) is asymptotic profile for the
solution #(t,€) in the high frequency region || > v/e — 1. Then we obtain the following

difference between the solution and the profile

at, ) — pa(t,€) = (e—a@t - e‘2log<f+f2)) cos(y/log(1 + [€[2)t)ag
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T te O sin(oe, t))[ log<1+|§\2>—b<a>] aw%e—a(@fsm(bwmo
e—alé)t 1 — 1 sin(1/1o )4
N (b(g) 1og<1+|g|2>> (Jlos(1 + 1))
! e_a(g)t—e_m sin(4/lo M)
log(1 + |€]?) ( (el )) (1/log(1 + [£|%)t)tq
7O cos(ns.0) [06) ~ o1+ 6] . (1.40)

We consider the following six functions

t

Gi(t,§) = <ea(5)t — e_2log(1+|£|2)) cos(y/log(1 + |€|2)t)dp,
G(t,€) = te~ O sin(0(&, 1) { log(1 1 €2) - b(g)} f,
Gs(t,€) = U8 =al®)t in(b(e)1)ag,

)
Gyt &) =eo® (L1 sin(y/log(1 + [€)t)i.

b(§) log(1 + |€]2)

1 —a —m ) .
Galt) = s ( (& — ™ 7t “)sm< log(1 + [¢[2)¢) a1,
Gi(t,€) =t~ cos(, ) [b@ ~ Jog(1+ \sr%] i,

which are the remainder terms that appear in (4.40). From now, let us estimates these
6-remainders in the following lines. To obtain these estimates, we assume that the initial
data (ug,u1) € Y x Y with 1 > 0.

We note that on the region such that |¢| > /e — 1 one has 1 + log(1 + |£]?) <
2log(1 + |€]?). Also, by Lemma 2.20 with ¢ = 1 and a = —1 one has

—t
e 1+log(1+[£[?)

(1+log(1 +[¢]2))”

for a fixed v > 0. The above two inequalities will be used to get the next series of estimates
for the functions G(t,§), j =1,--- ,6.

The first estimate is concerned with the function G1(t, ) and it can be obtained
from (4.26).

‘ 2
Gi(t,€)[7dg = (e—a@t - e‘ﬂoguﬂfl%) cos?(y/log(1 + [£[2)t)] o [*d¢
/|s|z¢e%1 ' 2T "
< / (e—a(f)t — ¢ 2log( 1+£2)) |U0’ d¢
ENC=

2
7715 —t
:/ e 1Hlog(1+1¢[%) (1 —e210g(1+£2)(1+1og(1+52))) |ﬁo|2d§
|€]>ve—1

<Ct™7V, t>0, £€ R", (4.41)
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=t
e 1+log(1+¢[2)

2
= /mzm T1082(1 + 1¢P)(1 1 log(L + )

5l [*de

e 1+log(1+[¢[2)

2
= /|s|zm (1 +log(1 +1¢[%))

Using (4.41) and the fact that

4 |@0|2d§.

¢ THo(TED) o THosG T -
= 1+ log(1 1 t>0¢e R
(1+log(1+ %)) (1+1og(1+|€|2))5+z( +log(L+[¢]%)™, t>0,¢ ,

we obtain the next estimate to the function G1(¢,¢).

=t
e 1+log(1+[¢[2)

G 2d¢ < 42 1+ log(1 2yyl+1 o124
/|£|z et ofac < /Ifz (0 log(1 4+ 162 el

< O 1+9) / (1+log(1 + ¢]2) o[ 2de
|€]>Ve—1

<t |21,

for all ¢ > 0 and [ > 0, where we have used the inequalities (4.26), (4.41) and the fact
that log(1 4 |£|%) > 1 on the high frequency zone.
For |£] > 0, we introduce the auxiliary function R(&) defined by

1
R(§) = \/1 o 41og(1 + |§|2)(1 + log(1 + |§|2))2’

which is well defined due to (4.19). Additionally, one notes that for |£| > /e — 1 we have

the following estimate

(4.42)

1
‘ log(1 + [¢]%) — 5(5)‘ " 41+ log(1+ €12))2/Tog(L 1 |€P) (1 + R(€))
1

= 4(1 + log(1 + [€]2))2/1og (1 + [€]?)

Then, for t > 0 and [ > 0, we get

2
2 = 2 €_2a(€)tsin2 o 2\ _ i 2
/mwgg(t,f)\ d§ =t /|£z (0(§,t))[ log(1 + [€]2) b(g)} o |2de

Ve

.t
e 1+log(1+[¢]2)

2
= /I£|>m 16(1 + log(1 + [¢[?))* log(1 + [¢[?)

ot
e l+log(1+[¢]?)

2
= /|g|zm S(1L+ log(1 + |€]2))

1| d¢

SRS

.t
e l+log(1+[¢[2)

<2 /|g 1+ log(1 + [¢[2))+! 2¢

g
sk S0+ Tog(1 + eP))o 20
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_ 2 (6+D) / (1 + log(1 + [¢]2)" [aag[2de
|€|>Vve—1

< Ot~ fug124,

where one has just used the fact that 1+ log(1 + [£]?) > 2 for [¢] > /e — 1 and (4.41).
1

Another important property is that is a decreas-
4log(1 + [€%)(1 +log(1 + [¢]%))?

ing function of ||, and it converges to zero as |{| — +oo. Hence, it follows that

1 1 16
=i 1 R(E? = 15 -
4log(1+€]?) (1+1og(1+]£[%))?

for €] > Ve — 1.

From the above inequality one can obtain estimates of the L2-norms of each func-
tions G3(t,-), G4(t,-) and G5(t,-) for t > 0. In fact, (4.43) implies that

2
G (t,6)2de = /|§IZ — (%) =200 in? (b(€)t) g 2

¢ TR sin? (b(€)1)] 1|2
/|§|zm 4log(1+ [€[?)(1 + log(1 +[£[2))2R(¢)
< E 6_1+log(§+|£|2)

= 15 Jjgp> /o= 4log(1 + [€[2)(1 + log(1 + [€]%))

74

5|tio| 2.

Further, for [¢] > /e — I, we have 1 < log(1 + |£]?) and then 1+ log(1 + [£[?) < 2log(1 +
£|). Therefore,

1 < 2 ’
log(1+[£]2) — 1+ 1log(1+ [¢]?)

€l = Ve -1

and we may conclude the estimate for G3(¢,¢) as follows.

t

/ Gt 5)’2615 . ] / e l+log(1+[¢[2) 1 ]2d£
3\, = TF 0
€[> /e1 15 Jj¢|>ve=1 (14 log(1 + [£]2))3
. ¢ THoRH )

2\\I+1~ |2
T 15 Jigzvemt (1+ log(1 + |§!2))4+z(1+10g(1+|€| ) aolode

< o~ (+9) / 1+ log(1 + [€]%) 1 |ag)?de
\s|zm< (L+[€1%) |ao|

<t ugl3n, > 1.
To get an estimate for the L2-norm of G4(t, -) we first observe the following identity:
1 1 1
bE)  log(T+[EP)  41ogh2(1+[€R)(1 + log(1 + [¢2)2R(1,€) (1 + R(©))
for [£] > 9, where R(€) is given by (4.42).
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By using the above identity, the estimate (4.43) and the fact that 1+log(1+ ]§|2) <
2log(1 + |£]?) for |€] < v/e — 1, we can arrive at the L?-estimate to the function Gy(t,-):

2
)2 —2a(¢ _ 1 .2 VNPT
Jo Gt oPae = [ o2 (b 5 10g<1+|§‘2>>s‘“( log(1+ [¢[2)0) g

t
1 e (+log(1t1€2)) 5 5
<— sin?(y/log(1 + [€]2)) ay [2de
15 Jje|>v/e=T log3(1 + [¢[2)(1 + log(1 + [¢[2))*

t
8 e (1+log(1+[¢2))
€|>ve=T (14 log(1 + [£]2))7
< ot~ (+7) ||u1||2

[ |*de

Similarly to the previous estimate for G1(t, -) one obtains

G (t,€)[?dg
/|5>\/ﬁ| 9
2 .92 2
:/ (6_2(1+10g(tl+§2)) _6_21og(1t+£2)) sin”(y/log(1 +2|£| )t)|ﬁ1|2d§
€>/e—1 log(1 + [£]%)
t
EEEEEpy TP 2
S / w (1 _ 6210g(1+£2)(f+10g(1+§2))) |a1|2d§
le>e—1 log(1 + [¢]%)
t
 1tlog(1+€]2)
§t2/ 3 : 2 : Froglinlds
€>v/e—1 41og”(1 + [€]2)(1 + log(1 + [£]?))
t
T 1+log(1+]€12)
< 92 / ¢ a1|2de
et L+ Tog(L 1 )

< Ot~ Jug 3.

Finally, we observe that
(e) — /o ) _ -1
b(¢) Alog(1 + [¢12)(1 +log(1 + [£[2))2R(€)(1 + R(€))

for |£] > 0, where R(€) is given by (4.42). Thus, for |£| > v/e — 1 it holds that

1
= 15log2(1 + |€]2)(1 + log(1 + [¢[2))4

b(e) — g1 1 €7 [
be)

Hence, from the definition of Gg(t,§), we have

T TR cos2
Cot o< L o TR cos¥(n(€, 1)
Gt P < 58 [ s T 6T ot

.t
e lt+log(1+[¢]2)

/ g |2de
|€|>Ve—1

4 9
g—t/ 2)\6
15" Jigj>ve=T (1 +log(1 + [¢[?))

| |*de
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<ot |ug |2, > 0.

The estimates for G;(t,§) (j =1,---,6) together with the identity (4.40) provide

the following result.

Proposition 4.17. Let n > 1,1 > 0 and (ug,uy) € YL x Y. Then there exists a positive

constant C', which is independent of t,ug and uy, such that

/€|>m |(t, &) — pa(t,&)[>d¢ < C (||u0||%/l+1 + ||U1||%/z) 4 (1+3)

fort >0, where pa(t,§) is given by (4.39).

4.3.3 Estimates on the whole space R"

In this subsection, we consider three special functions: ¢1(¢, &), wa(t, ), which are
given by (4.24) and (4.39), and

defined for £ € R".

We will prove that, under certain conditions, each of them is an asymptotic profile

as t — oo of the solution (¢, &) in R™.

Lemma 4.18. Let n > 1 and (ug,u1) € (LYL(R™) N YY) x (LLY(R™) N Y. Then there
exists a constant C' > 0, which is independent of t,ug,u1 such that
2

/Rn [t €) — p(t,&)Pdé < C (t‘% - t_(l+3)> 2

fort > 1, where

log = \/HUOH%J +lullf 1 + ol + luallq. (4.45)

Proof. On the region |¢| < v/e — 1, the function log(1 + |¢|?) is positive and bounded by

1, then it holds that ;

log(1 +[¢[?)
for t > 0. We also have sina < a for all @ > 0. Having this in mind we can get, for t > 0,

S _ta

the estimates

—+__sin?(y/log(1 + [€]2)t)
t,6)%d <2/ e S (v/log
LISy g lo2(1+ P

-t
s / e mTE) cos?(y/log(1 + [€[2)¢) g |2de
€<1

gzt%—t/ |ﬁ1|2d§+26_t/ lag|2de
€]<ve—1 1€]<1

| |*de

/Iﬁlsm



Chapter 4. A dissipative logarithmic-Laplacian type of plate equation 94

< 262" |uy |3 + 2¢ " |lug 3. (4.46)
On the other hand, one knows that

¢~ 2t10g(1+[€")(1-+log(1+[¢) < ~2tlog(1+[¢]?).

because of 1+ log(1 + |£|?) > 1. Then

/ lp1(t,€)[2de = | Py + P1|2/ e—%10g(1+|€|2)(1+1og(1+\§|2))dg
1€]>n

£|>n
<R+ PP [ (e ag
1€]>n
=Py + Pi? / (1+ (€% 2 dg + Py + P1J? / (14 [¢]%)~*de
n<léI<1 €]>1
1 0
:wn|P0+P1|2/ (1+7’2)_2tr"_1dr+wn[Po+P1|2/ 1+ 7%~ 2 Ly
n 1
P ot , 27"
§O|P()+P1| ((1—|—77 )_ +t——1>
27t
<0 (Juol} + ) (427 25 ) o, (4.47

with a generous constant C' > 0, due to Lemmas 2.25 and 2.29. We also note that both
above estimates are of exponential type.
Under these preparations we can get the desired estimate in the statement. At first,

one notices that

|ﬁ’(t7§) - gﬁ(t,§)| = |ﬁ(t7§) - 901<t7§) - 902(t7£)| < |ﬂ(t,f) - @1(t,§>| + |<102(t7§)‘

From Young’s inequality, it holds that

[at,€) — (1, ©)1* < 20alt, &) — 1t I + 2palt, €. (4.48)

Similarly,

[at,€) — (1, ©)1* < 20alt, &) — pa(t, ) + 21 (2, €. (4.49)

Also, one has

|a(t, &) — (£, )] < lat, &)+ le1(t, )] + lp2(t, €]

And we obtain

[at,€) = @(t, )7 < 20a(t, &) + 41 (1, €)1 + 4lpa(t, €)1 (4.50)

Let us apply the estimates (4.48) on the region [{| < 7, (4.49) on the region

€] > /e —1 and (4.50) on the middle frequency region n < |£| < y/e — 1, respectively.
Then one can proceed the estimates as follows.

/an(t, 6 — ot O2de = [ |a(t.€) - olt,€)2de +

a(t, &) — pl(t, €)|2de
I€]<n /nsmsm'“( )~ el6e)
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. B 2
i /|§|z 1109 — ot e

N B 2 2
<9 /mgn (1, €) — 1 (£,€)|2dE +2 / oo, €) e

1€]<n

jat, €)[2de + 4 / o1 (t,6) e

n<[§l<ve—1

+ 2

/77<|€|<\/ﬁ
4 2d 9 . B Qd

; /ngasm'm(t’@‘ £ /|§|2\/€Tl\u(t,§) (1, )it

: o1 (¢, €)|2de

+
e~
v
ﬁ

2 i _ 2 5 . - y
- /|§|§n|u(t’£) P1(t €) e+ /|£|z PERUCORSEOl

2 2
+4/|5 _ et d§+4/|§| et o

>e—1

jat, €)[2de + 4 / or(t.6) e

n<lé|<ve—1

t,6)|%d
§|£|Sm!@2( §)|7d§

(1.6) — o1 (1,€) 26 +2 / (8, €) — palt, €)2de

€]>V/e—1

+4 t,6)2d¢ + 4 t,6)2d
/|£|< et 0P /|§>n|901( ) [2d

la(t, €)|de. (4.51)

|t
£1<n

+
[\

ot
Propositions 4.15 and 4.17 tell us that

[ 1o - et o) < i
€1<n ’

i(t, &) — pa(t, €)2de < 12 ¢~ (1H3)
/|£2 L (0.6~ ot O < O

for t > 1. According to (4.46) and (4.47), the L?>-norm for ¢1(t,-) on the zone [£] > 7
and for ¢s(t,+) on the zone |(] < /e —1 decay with exponential rate. Furthermore,
from Lemma 4.16 and estimate (4.37) the L?norm of 4(t,-) on the middle frequency
zone 1 < |¢| < v/e — 1 also has exponential decay. By combining (4.51) with the above

informations we conclude the desired estimate

n+2

/Rn a(t,€) — olt, ©)Pde < CIZ, (™ +47043) 51,
[]

Lemma 4.19. Let ug,u; € L'(R™) and the function o1(t,&) is defined in (4.24). Then

there exists positive constants C1,Ca, depending only on dimension n, such that

Ci|Py+ Pit73 < /Rn lo1(t, €)[2de < CoJuollF + llur||F)t 2 (4.52)
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fort>1.

Proof. The function ¢1(t, &) satisfies
o1(t, O] < [Py + Prl(1+[¢1%)

for £ € R", since 1+ log(1 + |£[?) > 1. By using Lemmas 2.28 and 2.25, we immediately
concluded that

2d P P 2 2 —Qtd
/Rnw,s)r ¢ <P+ Pl /R,L<1+ra> ¢

3
1 00

:wn|P0+P1\2/ (1+r2)_2tr”_1dr+wn|]3@+P1]2/ (1+72) 20 Ly

0 1

2 (n 27
SC’wn|P0+P1] <t2+m>
< Cwn(lluollt + flualif)t 2
< Ceon(|luglf + [lu [[F)e ™2

for t > 1.
On the other hand, for |¢] < 7, we have 1 + log(1 + [£[?) < 1+ log(1 + |n|?) = k.
Thus,
oLt 6] > [Py + Prl(1+ ()"

for || < n. First, we choose ty > 0 such that, for all t > ¢y it holds that 2 <mn, and

—2k,t
1 1 n
1k, < (1 + ;) <1

(&

Such t( exists, because one has

li 1+ 1y !
1m - = .
t—00 t e2kn

For this choice, we can compute as follows:

n
/ o (t,€)2de > / 011, €)[2d > wn| Py + Py / (14 r2)~2hatyn=L gy
R" €|<n 0

1
t 2
an\P0+P1]2/O (1+72) " 2katyn =Ly

_1
-2kt ,t72
P 1 K n—-1
>wp|Po+Prl* [ 1+ = / T dr
0

— 2oyt
= w—n|PQ+P1|2 (1+—) t 2
n

—_

t
—4k

n n
> Nip P2
n

for t > tg. O]
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Lemma 4.20. Let n > 1,1 > 0 and (ug,u1) € YT x Y1 Then there exists a constant
C > 0, which is independent of ug,u1 and t, such that

[ttt e)de < Crpe

Rn )

for all't >0, where Iy is given in (4.45).

Proof. By definition of pa(t, ) in (4.39), we have

| sin(y/log(1 + [¢]2)1)]

log(1 + [¢]?)

ot

+ e TR cos(ylog(1 + [€2)0) ol

-t
|o2(t,§)| < e 2loxOHER)

|1 |

Hence, the Young’s inequality enable us to get

sin®(y/log(1 + [¢]?)t)
log(1 +[¢]%)

_ t
+ 2¢ log(1+[¢l?) cos2( log(1 + |§|2)t)|ﬁ0|2- (4.53)

_ t
|902(t7€)|2 < 2e log(1+[£[2) m |2

It follows from (4.46), we get
[pa(t, )¢ < 2% [lun 3 +2¢ " |lugll3, ¢ > 0. (4.54)
e
On the high frequency zone || > y/e — 1 it holds that
1 1 2

2 S 2 = 2\°

L+log(1+[€]%) ~ log(1 +[€]%) = 1+ log(1 + [£]%)
By using the inequality (4.55) and the estimates (4.41) and (4.53), one can obtain

b sin? (y/log (1 + [€2)1)
t,€)|2d¢ < 2/ o (1+1E1%) S (Vlos
|902( €)| § < |£‘> *6 log(l ‘5|2)

2/ e ~ e (eI cos?(1/log(1 + [€]2)t) |ag|2de
|€]>Ve—1
<4 e ~ oD L 5 R

+2/ e 1+10g(1+\£\2)|ﬁ0|2d£

(4.55)

/ | |*de
|€|>Ve—1

+

t/‘f}
H

e 1Hlos(1+[e?) e
- 4/|§|>ﬁ (1 + log(1 + [¢[2))i+1 (1 +log(1+ [€]%))"|a1|"dg

e 1+10g(1+\5\2 T
! 2/|§|>\/7 (1+log(1+ ’£|2))l+1 (1 +log(1 + [£]7))"" |ag|“d€

<40t~ |12, + 20 D |fug |20, > 0. (4.56)

By combining estimates (4.54) and (4.56) one can conclude

/Rn [pa(t, O)Pdg < Ct= D ((fug 34 + uoll3rin), 3> 1

for some generous constant C' > 0, independent of ug, u1 and ¢. n
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4.3.4 The asymptotic profile formulas

In this subsection we compile the results obtained in previous subsections. We
observe that each of the functions ¢1(¢,€), w2(t, &) and ¢(t, &) given by (4.24), (4.39) and
(4.44) is asymptotic profile to the solution of the problem (4.1)—(4.2) in the Fourier space
depending on the regularity of the initial data.

First, from Lemma 4.18 we have the estimate
/ it &) — ot €)2de < CI, (t—%” + t_(l+3)) —: Py(t), (4.57)

where I is defined by (4.45).

Since we can write as 4(t,£) — p1(t,&) = a(t, &) — @(t,€) + pa2(t,€), and u(t, &) —
wa(t, &) = u(t, &) — o(t, &) + v1(t, &), from Lemmas 4.20 and 4.19 one has

/Rn a1, €) — o1 (1, 6)2de < 2 /Rn At ) — (8, €)[2de +2 /Rn oa(t €)|2de
<2013, (t*”TQ ¢ (F3) 4 t*(l“))
(t—7 + t—<l+1>> —: Mp(t), (4.58)
and
/Rn (1, €) — ot ) 2de < 2 /Rn (1, €) — (8, €)[2de +2 /Rn o1 (t.6)|2de
<208, (5 ) )
<4ci, (t—(l+3> + t—%> = Qn(t). (4.59)

By an asymptotic profile we mean the term of 4(t, ) that decays with the slowest

time rate. According to Lemmas 4.19 and 4.20 we know that
/ et oP <cigpe, /R" [pa(t,€)* < C1g =),
/ el 9 < 01375@—5 (D),
R
Therefore, the asymptotic profile of the solution 4(t,&) as t — 400 is
(). ¢1(t,€) if 5 <1+ 1 (compare with (4.58)),
(ii). @(t,&) if 5 =1+ 1 (compare with (4.57)),
(iii). o(t,&) if § > 1+ 1 (compare with (4.59)).

Next, we state three results on the asymptotic profile. To prove them it is still

necessary to discuss the decay rate of Py (t), My, (t) and Qn(t) related to the differences
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between the solution @(t,€) and the suitable asymptotic profiles. For this purpose we

introduce a value [*(n) on the regularity [ > 1 of the initial data such that
n

I*(n) := 5 1.

This value expresses a kind of critical number on the regularity [ > 1, which divides the
property of the solution u(t, z) into three types: one is diffusive-like (Theorem 4.21), the
other is wave-like (Theorem 4.22) and the remaining is both of them (Theorem 4.23).

In the following results we require [ > 1 since it is necessary for the existence and
uniqueness of the solution (see Theorem 4.6). We also remember that the constant Iy
depends on initial data (ug,u1) € (LYY (R Ny x (LB(R™) YY) and it is given by
(4.45).

Theorem 4.21. Let n > 1 and I > 1. If (ug,uq) € (LMY (R™) n YY) x (LVY(R™) Ny,
then there exists a constant C' > 0, which is independent of t,ug,u1 such that

lu(t, ) = FH 1 (6, ()12

< O[(%lt_nTJr2 ifl>1andn <2; ifn>3 andl > n/2,
B Cfglt_HTl ifn>4andn/2—-1<1<n/2; ifn=3 and 1 <1 <3/2,
fort > 1, where

o1(1,€) i e~110R0HIER) 1021+ (1 py ).

Proof. In discussions below, we justify that the asymptotic profile in the Fourier space is
01(t,€), if I*(n) < I. We analyse the decay rate for the difference between the solution
and its asymptotic profile, that is, for the term My, (t) given by (4.58).

First, we consider [ = 1. In this case, ¢1(¢, &) is asymptotic profile for n < 4.

o If n <2, then ”TH <2=1+41,and so My(t) < 8C’I§Jt_nT+2.

o Ifn =3, then 2 =1+1< %2 = 5. Thus My(t) < 8CIZ,t~ () = 8C T2 172,

Now let us consider the case [ > 1.

e In this case, the rate t~(+1) is better than ¢~ 2. Therefore, if n < 2, we have My(t) <
SCIR 5

o Ifn>2and 5 <, then!>1and My(t) < 8C’I§Jt_n7+2.

elfn>4and 5 —1<1< %, weobtain I > 1 and M;(t) < 8C’I&Zt_(l+1).

eForn =3, weneed 1 <[ < %, in order that My, (t) < 80[3’115_(”1).

These observations together with the Plancherel Theorem imply the desired statement of
Theorem 4.21. O]

Theorem 4.22. Let n > 5 and | > 1. If (ug,uq) € (LMY (R™) n YY) x (LYY (R Ny,

then there exists a constant C' > 0, which is independent of t,ug,u1 such that

lu(t, ) = F~Hpa(t,€)()ll2
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+3

< Ofgﬂi% if1<l<n/2—1and5<n<8; ifn>8andn/2-3<l<n/2-1,
- C’Iglt*T ifn>8and1<1<n/2-3,

fort > 1, where

a(t,€) = ¢ TR0 2L 110§§%£72j1j)t)@1<§>-+e“2wguﬁ+ﬂz>cos<\/10g<1 +€P)) (€.
0g

Proof. Similarly to the proof of the previous theorem, we observe that 9 (t, £) is asymptotic

profile (in the Fourier space) when [*(n) > .

If I =1, pa(t,§) is asymptotic profile for n > 4.

o Ifd<n <8 then <4=1+3 SoQu(t) <8CIZt 2.

e For n > 8, we have § >4 =143 and Qp(t) < 80[37lt_(l+3) = 8C’I§Jt_4.

By assuming [ > 1, it is necessary that n > 2] + 2 > 4.

o If 4 <n <8, then 5 <4 <[+ 3. Therefore, Qp(t) < SC’I(%Jt_g.

eForn>8and § -3 <<% —1, wehavel>1and Qu(t) < 80[3’115_%.
elfn>8and 1 <l <75 —3, we obtain Qp(t) < SC[g’lt_(HS).

This analysis and the Plancherel Theorem prove the result. ]

Theorem 4.23. Letn > 4 and | = % —1. If (ug,u1) € (LM (RM)NYH1) x (LB (RM) YY),
then there exists a constant C' > 0, which is independent of t,ug,u1 such that

lu(t,) = F 7 (p(t, ) (2 < C1 %

fort > 1, where
p(t,§) == ¢1(t,€) + ¢2(t, ).

Proof. In this case, we have [*(n) = [. This condition implies that nTH =l+2<1+3
Then we have P, (t) < 20[3175_”7“. Due to [ > 1, this estimate holds only for n > 4. The

result follows based on this analysis and from the Plancherel Theorem. O]

4.4 OPTIMAL DECAY RATES OF THE SOLUTION

From the discussions to get Theorems 4.21, 4.22 and 4.23, we still can get crucial
results regarding decay rates of the solution u(¢, z) to problem (4.1)—(4.2). Moreover, it is
also possible to prove the optimality of this decay rates.

We have already used the decomposition such as
at, &) = a(t, &) — ¢(t. &) + ¢1(t. &) + p2(t. €),

where ¢(t,£) = ¢1(t, &) + pa(t,§) with ¢1(t,£) and pa(t,£) are given by (4.24), (4.39).
Since ug and u; have the required regularity in Lemmas 4.18, 4.19 and 4.20, one can get

/R” a(t,€)2dw < 4 /Rn a(t,€) — (t, )P + 4 /Rn 1t )P + 4 /Rn ot )P
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<40 (" ) 1478 (D) g1
< K13 (172 +1 D) = Ry, (1) (4.60)

with some constant K > 0.
n
In the same way as we did in the previous subsection, we compare 5 and (I + 1)

in order to obtain the decay rate of the solution.

(i). If{>1and n <3, then g <2<1+41.50 Ry(t) < QKIglt_%.
.. n _n
(ii). Ifn>4andl> 5 1, we have Ry, (t) < 2K[§’lt 2.

i), Ifn>4and1<1< 2 —1, thenl+1< . Thus Rp(t) < 2K12,t~0+1),
2 2 0,

The last item (iii) combined with the expression (4.60) and Plancherel Theorem
completes the proof of the following Theorem 4.24.

Theorem 4.24. Letn >4 and1 < < 3—1. If (ug, u1) € (LYY (R NYHH < (LYY RN
Y1), then the solution u(t,z) to problem (4.1)~(4.2) satisfies
41
Ju(t,)lle < Cly t™ 2

fort > 1, where C is a positive constant which depends only on n.

OJ

Remark 4.25. The decay rate obtained in Theorem 4.24 seems exactly optimal, however,

one cannot obtain the lower bound of time-decay rate. This is still open.

Items (i) and (ii) give us conditions for the decay rate of the solution to be better
thant~ 3. Furthermore, we may prove that this rate is optimal under these same conditions.
Recalling the fact that the condition (ug,u1) € Y2 x Y is necessary for the existence
and uniqueness of the solution wu(t,z) to problem (4.1)—(4.2) according to Theorem 4.6,
we state Theorems 4.26 and 4.27.

Theorem 4.26. Let 1 < n < 3. If (ug,u1) € (LMY(R™) NnY?) x (LYYRY) nY1), then
there exists constants C1,Co > 0 independent of t such that

C1| Py + Pift™% < JJu(t, )l|2 < Coloat ™7
for all t > 1 provided that Py + Py # 0.

Theorem 4.27. Let n > 4 and ¢ > 0. If (ug,u1) € (LVHRY) NY278) x (LLYR™) N
Yn772+5), then there exists constants Cp,Co > 0 independent of t such that

CilPy+ Prft™ 1 < fJu(t, ]2 < Colgn e gt 1

for all t > 1, provided that Py + Py # 0.
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Proof of Theorems 4.26 and 4.27. We first observe the case of (ug,u1) € Y+ v with

[ > - . On the one hand,
a(t, €)% < (Ja(t, &) — o(t, &)| + lo(t,€)])
S 2|ﬁ(t,f) - (p(t7€>’2 + 2|(P(t7€>’2
< 4la(t, &) — o(t, €)1* + 41 (L, €)|* + 4 a(t, )%,
So,

at P <4 [ 1ate) ~ ot OPdE+4 [ o1t OPdE+4 [ oot O
/Rnl( )| Rn!( ) — ¢(t,6)] R"| (£,6)] R”’ (29l
<CI3, (t*"T+2 17T+ t*(”l))
<CIgt 2,
since [ +1 > g, due to Lemmas 4.19, 4.20 and 4.18. Thus, the upper bound estimates in

-2
Theorems 4.26 and 4.27 can be proved by choosing [ = 1 and [ = nT + ¢, respectively.
On the other hand, since one has |p(t,&)| < |p(t,§) — a(t,&)] + |a(t,€)| and

[p1(t, )] < [w1(t,€) + wa(t, €] + |p2(t, §)], by using Young’s inequality, we obtain

ot O = lo(t,€) — a(t. &)
et OF — Slea(t O ~ 16, ) — tt, &)

at, &) >

>—l[\:)|t—\

From the estimates just obtained in Lemmas 4.19, 4.20 and 4.18, one can obtain the

following expression:

1 1
ottt fie> 7 [ e fas—3 [ leattoPde = [ 1009 - ol 0)ae

> C1|Py+ Py|*t7 % — 13 ¢~ - cr, S CI2t —(1+3)
=% (C1|Po+ PP~ It

20— n+2

Rt ot "+6). (4.61)

If § <1+ 1, then 2l—++2 > 0 and 2l—++6 > 0, because of [ + 1 < [ + 3. Hence, one has

lim (Clgt* Aps

t—00

1 9, 2= n+2 B
+ I+ I3t =0,

so that there exists ¢1 > 1 such that

2l—n+6

2l—n+2
2

C
CI3t™ v ot v 13t < 71|P0 + P2

for all t > 1 in the case of |P| + Py| # 0. That is, for ¢t > ¢ it holds that

21— n+6 20— n+

C1|Py+ P1)? — CI3t™ —cit - >—]P0+P1\2
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Therefore, one can arrive at the crucial estimate

C n
/Rn ja(t, §)Pdg = ¥ Py + Pyt (4.62)
€

-2
for t > t1 because of (4.61). By choosing [ = 1 in Theorem 4.26, and [ = nT +¢in

Theorem 4.27, one can get the desired estimates. O

Remark 4.28. It should be noted that the problem associated to equation
up + Lugr + Lu + L2u + Laut =0,

with 0 < 6 < 1/2 can still be studied for both operators L = —A and the logarithmic-
Laplacian operator. As mentioned in introduction chapter, in [22] Horbach-Tkehata-Charao
derived optimal asymptotic properties for § > 1/2 and the optimality of the intermediate
case 0 < 6 < 1/2 it seems to be open.
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5 THE WAVE EQUATION WITH LOGARITHMIC TYPE DAMPING
DEPENDING ON SMALL PARAMETER

In this chapter we study the Cauchy problem associated to the wave equation with

a damping term of logarithmic type depending on small parameter 0 < 6 < % as follows

u — Au+ Logup =0, (t,z) € (0,00) x R", (5.1)
U(O, ZL‘) = uO(x)7 ut<0a IE) = Ul(l‘), r e R" (52)

The operator Ly is given by (1.4)—(1.5) and Lyuy is the dissipative term of the system.
This research is a counter part of that was initiated by Charao-D’Abbicco-Ikehata

considered in [4] for the large parameter case 6 > % The case 0 = % seems to be open.
By a similar argument used in Section 3.1 to prove existence and uniqueness of

solution to the problem (3.1)—(3.2), one can prove that the problem (5.1)-(5.2) has a

unique weak solution
u € C([0,00); H'(R™)) N C*([0, 00); L*(R™))

for each (ug,u1) € H(R™) x L*(R").
We notice that we also may apply the multipliers method already used in Sections

3.2 and 4.2 to obtain estimates to the solution and to the total energy of the system:

1

Bu(t) =5 (et )2 + 1Vutt, )32

However, it is expected that this method will not produce optimal estimates, due to
log(1 + [€]2%) ~ [€2Y in the low frequency region || < 1 and Ikehata-Natsume have
studied the problem associated to the symbol [£ |29 in [27]. Therefore, the multiplier
method by Chardo-da Luz-Tkehata as [7] should be more suitable to this problem resulting
in the so-called almost optimal decay estimates.

We derived a double diffusion-like asymptotic profile as t — oo and optimal esti-
mates in time of solutions as ¢ — co in L2-sense. An important discovery in this research
is that in the case when n = 1, we present a threshold #* = & of the parameter 6 € (0, %)
such that the solution of the Cauchy problem decays with some optimal rate for 6 € (0, 0*)
as t — oo, while the LZ-norm of the corresponding solution never decays for 6 € 0", %)
and it blows up in infinite time. The case € (0,60*) indicates an usual diffusion phe-
nomenon, while when 6 € [6*, %) the double diffusion phenomenon is crucial to estimate
the solution in L%-sense. Such a double diffusion in the one dimensional case is a quite
novel phenomenon discovered through our new model produced by logarithmic damping
with a small parameter #. It might be prepared in the usual structural damping case such
as (—A)%u; with 0 € (0,1/2), however it seems that nobody ever pointed out even in the
case of structural damping.

The results obtained in this chapter was published in Journal of Differential Equa-
tions (see [40]).
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In Section 5.1 we find an asymptotic profile of solutions in the L2-framework to the
problem (5.1)-(5.2) in the case when (ideally speaking) 0 < 6 < % After that, in Section
5.2 we use such asymptotic profile to investigate the optimal decay rates, depending on
the dimension n and the parameter 6, of solutions to problem (5.1)-(5.2). Without loss of
generality we can assume that the initial amplitude ug = 0 when one concentrates only

on capturing the leading term as time goes to infinity.

5.1 ASYMPTOTIC EXPANSION

The purpose of this section is to find an asymptotic profile to the solution of the
problem (5.1)—(5.2) for 0 < 6 < % Through a leading term, we can find optimal decay
and /or growth rates.

The associated problem to (5.1)-(5.2) in Fourier space is

gt +log(1+ |2 as + |€Pa =0, t>0, ¢ecR", (5.3)
ﬂ(07§) = Oa ﬁt(oaf) = ﬂl(f)? 5 € Rna (54)

where the associated characteristic polynomial is
N+ log(1+ €PN+ €2 = 0.

The characteristics roots are expressed as

“og(1 20y 4 Nloe2(1 20y _ 4)¢|2
\,_ los+1e) v;g< R - -

Lemma 5.1. There exists 6 = 6(0), 0 < § < 1 such that

log?(1 + [€*%) — 4|¢|? > 0 for [¢] <, (5.6)
log?(1+ [€]2%) — 4|¢12 < 0 for |¢| > 6. (5.7)

Proof. Working with r = |£|, we first observe that log(1 + r2) < 2r for all r > 0. Also,

1
720 <r2forr> 1, since 6 < 1. Therefore, in the case 0 < 5 one has

log(1 + %) < log(1 + %) < 2r (5.8)

for all > 1. Thus we may conclude that the function f(r) := log(1+72%) — 2r is negative
for all » > 1. However, the similar phenomena does not happen near the origin. In fact,

we first notice that

_ log(1 + %)
lim —— = o0,
r—+0 T

for 0 € (0, %) Therefore, there exists rg = r9(¢) < 1 such that

log(1 + 72%)
r

> 2
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for all r € R" satisfying 0 < r < rg. Then, f(r) = log(1 + 7“29) —2r >0 for 0 <r < rg.
Furthermore, for » > 0 one can get
20022 (20— 1)(1+ %) — 20:% | 20r20-2 20— 1 — ]

(1 +1720)2 B (1+720)2

() =

1
Since 0 < 0 < 2 the function f : [0,00) — R satisfies f”(r) < 0. Due to f(0) = 0 and
(5.8) one can conclude that there exists a unique number § = §(#), 0 < § < 1, such that
f(ry>0forall 0 <r <¢dand f(r) <0 for all » > 4. Finally, one can write

log?(1+ [¢127) — alél? = f(lel) (tog(1 + [¢[*?) + 2lel)

Therefore, using the properties of the function f(r) = f(|¢|) one can obtain the desired

statement. ]

By Lemma 5.1, we see that that the characteristics roots (5.5) are real-valued for
|€] < § and complex-valued for || > §. This is a crucial different point from that observed
in the case of 6 > 1/2.

5.1.1 Estimates on the region || < 0

First part of this section we analyze the behavior of the characteristics roots near

the origin £ = 0. To do that we need some remarks and lemmas.

Remark 5.2. For ¢ > 0 it is easy to check the inequality %rq < log(1 + r%) < r7 for
r € [0,1]. In particular, for 0 < 6 < % we have

1627 < log(1 +16/%) < S, 5.9
SIEf? < log(1 + [¢%) < el (510)
SIE 2 < log(1 + €2 < Dje (511)

for [¢] < 1.

We note that for 0 < 6 < 1/2 it holds that

7,4—49
lim 57— =0.
r—+0 r
Thus, there exists 1 = d1(6) > 0 that satisfies
|§|4—49 1
ks (5.12)

whenever 0 < |£| < §1. Moreover, we can prove that 07 < . In fact, from (5.12) one has

25]¢[% < |¢[*
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for 0 < |€| < 61. In this region it also holds |£]%¢ < 41og?(1 + [£[27), due to (5.9). Thus
25 16
log?(1+ () = T1e* > S l¢f* > 4l¢)” (5.13)

for || < 61. Comparing (5.13) with (5.6)—(5.7), we may conclude that §; < 4. From (5.13)
we also obtain

log?(1 + [¢[*) > el
whenever [¢| < d7.

Now we define a new number:

€440

1
< — for 0 < [¢] < a}. (5.14)

= 0;
n = sup{a > 0; 2 <%

We note that n is positive and is well defined, because the set

|€]4—40

1
< — for [¢] < a}

> 0; ——5—
@ r g =5

is not empty (J1 is a member of this set) and is bounded from above. In fact, for example,
0 is an upper bound for this set and n < ¢ with ¢ defined in Lemma 5.1. In particular, the

following two properties are true for || < n:

> log?(1 +1612%) > afel”. (515)
2511 < el (5.16)

Lemma 5.3. Let n be the number defined by (5.14). Then, for |§| < n it holds that
(i) A — A= =~ log(1 + [£[*);

(i), As ~ —log(1 + 6272) ~ e,

(iii). A_ ~ —log(1 + |¢|29).

Proof. (i) The upper estimate is simple because for |£| < n < § it holds that

A=A = log2(1 + [¢[20) — 4lef? < 1/log2(1 + [129) = log(1 + &),

On the other hand, by (5.15) we have
1
4
For this reason, in the zone || < 7 it holds that

log?(1+ |€]%) < log?(1 + [¢%%) — 4l¢%, ¢ <.

1
S log(1+[€12%) < \/log?(1 + [¢20) — 4j¢[2
(ii). The inequality (5.16) provides us

0> 25[¢|4710 — 51¢? 1 4)¢|? = 25[¢[*4 — 5|¢|2)€|220 + 4¢)2. (5.17)
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The lower inequality in (5.9) implies that —101log(1 + [£[20) < —5[¢[20 for |¢] < 1 and, in
particular, for || < 7. By combining this fact with (5.17), we obtain

251¢[ "~ — 101og(1 + [¢*) 67> + 4l <0, [¢ <.
Adding log?(1 + |€/2) on both sides we may obtain

(1o(1+ [€P7) — 51€[>7)" = 1og2(1 + |£*) — 1010m(1 + |£*) €~ + 25|~

<log?(1 + [¢%) — 4[¢|2.

Hence, for [¢] < n, log(1 + [¢%) — 5[¢[220 <y /log2(1 + [¢[2¢) — 4|¢]2 and

“1oe(1 20 loe2(1 20y _ 41¢2
og(1 + ¢ >+¢20g< + ) -

O . 12-20
—§+ﬂ < +
Furthermore, we also concludes that

_ 9, 19—
—5log(1+[¢*7) < —J |7 < ap (5.18)

on the zone [£| < n, due to (5.11).

In order to prove the upper estimate part of (ii) we first observe that
0 < [¢f% +1¢[*1 = 4lel + 11"~ — 31¢* 1~
In the zone |£] < 7 it holds that —3[¢[20 < —21log(1 + |€]27) by (5.9), which implies that
3161 1¢*% < —2log(1 + [¢*) I~
By using the inequality just above we may obtain that
0 < 4Ig” + [€1* 4 — 210g(1 + )¢, (5.19)

We add log?(1 + [£]2?) in both side of (5.19) in order to get the following estimate:

log? (1 + [¢*7) — 4l¢[” < log®(1 + [¢]**) — 2log(1 + [¢**) ¢~ + ¢

= (tos(1 +1%) ~ 162"

This implies

~loo(1 20 log2(1 20y — 4|¢|2
N >+¢20g< + [€[2) — 4¢] <L, (5.20)

When one derives (5.20), one must check the fact that log(1 + |€]2%) — [£]272¢ > 0 on
|€] < n. Indeed, this can be easily observed by a combination of (5.15) and (5.16).
Now, by combining inequalities (5.20) and (5.11) one obtain

1 0_ 1 _
A< =516 < —Zlog(1 + ¢
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because of || < n. The inequalities just above and (5.18) imply the desired statement of

item (ii).

(iii). In the course of the proof of item (i) in the region |£| < 7, we also have

~log(1+ [¢*) < —/l0g?(1 + [¢[20) — 4l¢f2 <~ log(1 + [¢*).

Therefore, one can easily conclude that

—log(1 + [¢[20) — | /log2(1 + [¢[26) — 4]¢|?
og(1+ |€29) ¢Qog< €]26) — )¢ S_§10g<1+|§|29>,

for |¢] < n. This implies the desired statement of item (iii). O

—log(1 +¢[*) <

5.1.1.1 Estimates on the low-frequency zone |£| < n®

We first remember the number 1 € (0,9) defined in (5.9)-(5.16). Also, since 0 <
n < 1, we have ° < 7. In the zone of low frequency |¢| < 53 < 5, the characteristics roots
A+ are real and the solution of (5.3)-(5.4) is explicitly given by
tA tA_
et —e
— . 5.21
e (5.21)

The purpose in this section is to get an asymptotic profile to the solution #(t, £)

a(t,§) =

and, in order to do that, we need to obtain useful estimates. For this reason, we define
a function ¢ : [0,0] — R inspired by an idea from [18], as follows. A discovery of this

function g¢(s) is one of decisive points in our proof.

B 46 .
1+ \/1 Tog2(1.155%) ifo0<s<d (5.22)

2 if s =0.

g(s) =

Note that for 0 < 6 < 1/2,

s6

lim —5——-
s—0+ log?(1 + 569)
Remark 5.4. Let ¢ > 0 and £ € R"™, 0 < || <, be fixed. We recall that n < 6 < 1. Let

us consider the function h(s) defined on [0, 7] as follows:

tlog(1+]€|2?
h(S) = o g( 2\§| )g(s).

We see that h(s) is differentiable on (0,7). Then, it should be noted that one can apply

the mean value theorem in the interval [0, s| for each s € (0,7] to get

20 20
7t10g(1;r\5\ )g(s) 7t10g(1;r\£\ )g(O)

h(s) —h(0) e
S S
tlog(1 + |€[29) _ tlog(141¢*)
= — e
2

— €

g(o‘s)g/(as) (5.23)

with some a = a(s, t,[¢]) € (0,1).
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We observe that on the low frequency zone 0 < [¢] < 53 it holds that

log(1 +[¢*)

A== 9

g(V1€D).

By applying (5.23) for t > 0 and s = ¢/[¢[, 0 < |¢] < 1, we have

o 26 :
,%g(a 3 |£D

efh- = g~ tlog(LHEP) _ %log(l +1€1%) ¥/ 1€le g (av/Ig)  (5.24)

with a := a(s, t, [§]) = al(t, [€]) € (0,1).

From the Chill-Haraux [11] idea, we also observe that

-
log(1 + [¢]29)
so that one has
e A
M — o Tog(HE) o Tor(HE) (5.25)

On the other hand, because of (5.5) we see that

1 1
N log(L+ (%)

+ R(I¢])

where
42

3 20 . 4r2 . 472 .
log (1 +r )\/1 10g2(1—|—7"20_) <1 —+ \/1 10g2(1+7,29))

Now we assume that the initial data u; € L*(R™) to use the decomposition

R(r) = (5.26)

@1(5) = Au1 (5) - iBm (f) + Pm = Al(f) - Z.Bl(g) + P

as in (2.8). By combining (5.24), (5.25) and (5.26) with this decomposition of initial data,
we can write the solution of (5.3)-(5.4) given by (5.21), for |£| < 73, as follows.

g
o Tos(LE) o—tlog(1+[¢[*%) 2

_ €]
Py + R(|€])e” mat+@®™ 4y (€)

alt, &) = P —
GO = o I Tog + 16
N ) %,
e log(1+]¢20) (Ay(6) — iBy(€)) ﬂ(ﬁ%w log(1+6]20) " — 1 ©
+ 55 (A1(§) —1D1 +e log (5]
log(1 + [€]2) A — A

o—tlog(1+1¢[2)
~ log(1 + [€]29)

log (1 -+ |¢[2%) §/Ie] —HesHe™y (el [ oy
LLTO W W S ( )9 (04 |§|) a1(8)- (5.27)

(A1(€) — iB1(€)) — R(¢))e s+ g ()
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We introduce an asymptotic profile as t — 400 of the solution (¢, &) in the low

frequency region |¢] < 773 < 7 in the simple form

o le?
e log(1+\£\29)t e 10g(1+‘€|26)t

os(L+ E20) 1 Tog(L+ [20) (5.28)

o(t,€) =
Thus, we need to prove that

with a better decay rate than the components in the right hand side of (5.28). To prove
this result, we consider the following six remainder functions.

&2
Fi(t,€) = R(gl)e” =P iy (€),

Fo(t,€) = —R(|¢])e 1 o81+EM) gy (¢),

S 5
e loe(1+[¢%%)

F3(t, &) = m(z‘h(f) —1iB1(¢)),
2 fbg;\iﬁt _
Fy(t.€) = ¢ T A(:@ A)_ Lal(o),

o—tlog(1+¢[*%)

F5(t,8) = —m(z‘h(ﬁ) —iB1(€)),
o 207 3 _ tlog(1+]¢%%) o3
Falt ) = 1280 EED VI =50 o) (0 /) ),

From (5.27) and (5.28), for |[£| <7, we have

6
0(t,8) = p(t.6) = ) _Fy(t.¢

Jj=1

In order to obtain decay rates in time to these functions we assume the additional

condition on the initial data such that
up € LYY (R™), 0<6<1/2.

To begin with, we estimate the function F3(¢,&). Indeed, by using the estimates in (5.11),
Lemma 2.24 with x := 60 € (0,1/2) (this is our crucial idea) and the inequalities (5.9) and

(5.11) one can estimate

__ 2
e log(1+[¢[?0)

F 24¢ = A(E) — B ()2
/|§|§773<1| 3( e €| <n? 10g2(1+|§|29)’ 1(§) —iB1(§)]7d¢

< / I ) B e
= D Tog?L 1P Y
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o2 log(1+¢~)

<AM + Kt | 2120 / €[ e

gl<n? log?(1 + |€]20)

_ _ 2t
SOM4+KVmuMAw/‘ (14 [6P2-2) % de
|€|<n?
3

n 2t
=C(M + K)anﬂuluime /0 (1+ r2—29)—§rn—1dr
< Cllu|2 a0t 209, 3> 1. (5.29)

In the third line of the sequence of estimates (5.29), we observe that

) o
lim —— =

o—+0 log(1l + o)

which justifies the constant C' > 0 in the subsequent line. The last inequality is due to

Lemma 2.30.

Similarly, we can also estimate

/ s (t, €)|2de 2R 6 — B e
, = —i
¢ <’ ° €< log?(1 + |¢]20) ! !

_ / (1 + ¢~ |
el<np log?(1 + [€[%)
< O+ Mo [ (0w 6P

<n
3

n
= Cun (K + M)?|lur %120 /0 (1 + 720)=2tn=1gy

A1 (€) — By (€)2de

C n
S EHU’IH%L?@t_@v t> 17 (530)

where the last inequality is due to Lemma 2.32.

On the next estimates to the functions F}(t,£) we also rely on Lemma 2.30 or
Lemma 2.32.

In order to estimate Fy(t, &) we use the fact that [e”% — 1| < a for all @ > 0. Then,
Lemma 5.3 and inequality (5.11) imply the existence of a constant C' > 0 such that

a2 2
) elosre®’ | el 5
[ iaote- | ¢ Ty () e
REG gl | A A

__2e®
A o log(1+[e2%)

2 2
< luli [
"< 1og2(1+ [€20) (s = A2)?

< C’t2Hu1H%/ 4|§|8_89 50
¢ < log™ (1 + [€]°%)

_ _ 2t _
< Oy |? / (1+ |22~ | 100 e
[€]<n?

e—%log(1+\€|2_29)d5
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3
n 2
= Cwnt*[ug || /0 (14 r2720)=5,T-1604ng,

_ 8—1660+n
< Cffur |73 200
9 _ 4-1204n
=C|lug||jt 20=0 | ¢t>1. (5.31)

Remark 5.5. Note that in the above estimate (5.31) to apply Lemma 2.30 it is necessary to
check 7—1660+n > —1, but this holds for 0 < 6 < 1/2. Moreover, according to our compu-
tations above, we have to prove that all L2-norm of the six functions Fj (t, &), -, Fg(t,&)
decay to zero in time. However, to get such decay estimates in (5.31), we need additional

restriction such that 0 < 0 < 1% < % in the case n = 1. For n > 2 this restriction is not
_ 4-120+n
necessary, because t  20-9) — () when ¢ — oo for any 6 € (0, %)

Now we want to obtain an estimate for F(t,-) on the region |¢| < n3. Initially,

from (5.9) we may see that

21¢|2

/ |F1(8,6)Pdg = e TR | R(E) Plan (€) Pdg
€[<n? €|<n?
w [ e o R Pl ()P
€l<n?
<hulf [ OHE R Pas (532)
€|<n?
Here, the function R(r) is bounded on the low frequency zone for 0 < 6 < %, because of

lim R(r) =

0 for 0<6<i
{ o 37 (5.33)
r——+0

4 for 0=3.

Therefore, for 0 < 6 < % and n > 1, from (5.32) and (5.33), we may conclude the existence

of a positive constant C' such that

/ ‘Fl(ta €)|2d§ < CHUIH%/ 6_10g(1+|f|2_29)td€
cl=r §l<n?
3

n
= C’||u1||%wn/ (1+ 2720 tpn=1gp
0
N e R § (5.34)

Furthermore, in the case of 0 < 0 < 15—2 we also notice that the function R(r)+/r is
bounded in the region |¢| < 13, because

0 f0r0<9<%,
4 for 0:%.

=

Thus, if n > 2, we can get other estimate to F (t,-) for 0 < 0 < 1%, from (5.32), as follows.

3

n
/ I|F1(t75>|2dfﬁwnllu1||%/ (1 + 12 20) 1 R(r) 2" Ly
€l<n® 0
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3

n
<Cllulf [ (147222

< Ol |27 707, > 1. (5.35)

_ 40

In Section 5.2, we prove that the asymptotic profile decays with the rate t 2(1-9)

for n > 2 (see Lemma 5.14). For this reason, we only consider the estimate (5.34), which
holds for n > 2, when 6 > 1.

Similarly to the way used to obtain estimates for Fi(t,-) one can arrive at the

following estimates for Fy(t, -):

%Hul”%t_% forn>1and 0 <6< 31;, t>1,

Fy(t,&)|Pd¢ < . 5.36
/§|§773| 5, de {%Huln%t_?el forn22and21[<0§1—5§, t>1. (5.36)

Let us estimate the L?-norm of Fg(t,&) at the final stage in this subsection. To do
that we need to analyse the function g(s) given by (5.22). Note that it is easy to see that

1<g(s) <2 (5.37)
for s < ¢. Its derivative is given by
/(s) 1 480560+5 2459
s) = - :
I 456 (14 s09)log3(1 4 s69)  log?(1 4 s9)
201 = =5
log=(1+557)

Then, for 0 € [0, —157], the function ¢’(s) is bounded on the interval 0 < s < 7. In fact, the
limits
. 869+5 g0
lim 3 and
s—=+0 (1 + 569) log? (1 + s69)

lim —5—¥
s—-+0 log? (1 4 s69)

are finite because of 0 < 6 < 1‘:’2 It should be mentioned that the same does note happen

on the zone 1 < s < § because

-1
446
lim 1 - 2; = +00
s—0—0 log(1 + s6)

(see (5.6)—(5.7) ). Recall again that for 6 € (0,1/2)

$6

lim —5— = 0.
s—+0 log?(1 4 s09)

By summarizing above facts, there exists a constant K > 0 depending on 6 € [0, %] and
n > 0 such that for all s € [0, 7] it holds that

9'(s)] < K.
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In particular, for || € [0,7%], we have {/]¢] € [0,7] and a(t, &) ¥/|€] € [0,7]. Thus
g (aVIEDI < K, Je] <0 (5.38)

From (5.37) and (5.38), for 0 < 0 < 1‘:’2 and n > 1 we can estimate the L?-norm of Fg(t,-)

as follows:

[P -

€] <n?

1y / —oteslte™ (o 3/76]) log? (1 + |¢[2)lg
1€]<n

1 Sl (o) Plase)Pag

_ 20 2

< Oy |2 / et oB(LHE™) g 3 g
|€|<n?

n® L

:cwnt2||u1||%/ (1+r2) "t adr
0

1 _nti
NmeHt%

n4+2

1
- 5||u1||% W, > L (5.39)

As a result one can conclude the following Propositions. In that case, it is essential

whether the factor 1/6 can be included or not in the final estimates as the coefficient.

Proposition 5.6. Letn=1,0 <60 < %, and o(t,€) be given by (5.28). If uy € LV (R),
then

/ at,€) — olt, €)de
[€]<n3

1 1 1 )
Clhur? + utl2,) (t L )  o<o<l
<

I 1 L
Cllurl + s o) (7509 4+ 5557 ) g <0<}
fort>1.

Proof. The proof is obtained by choosing the slowest estimates as ¢ — oo among (5.29),

(5.30), (5.31), (5.34), (5.36) and (5.39). Note that the case 1/6 < 6 < 1/3 is coming from
5_

the relation such that fTM < % with n = 1. O

Proposition 5.7. Letn >2,0< 6 < % and @(t,€) be given by (5.28). If up € LYM20(R™),
then

/ At €) — (1. €)|2de
1€1<n3

;

Cﬁ

__n__ 1 =
Ul + ) (77 4 5emfr). - io<os,

(VAN
IN
C»JIH

9 9 9 ]_ _n— 49+§
Clllurll} + llur 310 (20 )+ 5t ifg <0

__n=1_ 1 n-1
Cllhnl} + halan) (775 + 577 ), wh<o<
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fort>1.

Proof. We may conclude this result by comparing the estimates (5.29), (5.30), (5.31),
(5.34), (5.35), (5.36) and (5.39). Note that the case 1/6 < 6 < 1/3 is coming from the

. —46+2 .
relation such that % < % with n > 2. O

5.1.1.2 Estimates on the middle-frequency zone 1 < €] < §

We call the zone 13 < €] < ¢ the middle frequency. On this zone the characteristics
roots given by (5.5) are real and therefore the solution of (5.3)-(5.4) is given by

_tIOg(lglflze) sinh(C'(§)t)

e = 20(¢)

a1(§),

where

. VIog?(1+ |¢20) — e

c( )

4—460
We remember that 7 is defined in (5.14). Since the function [£| — K\‘ﬁ—IQ is increas-

ing for 0 < 6 < %, we may observe that

|€’4—49

1
< — for 0 < [¢] < a}. (5.40)

3 _ .
n —sup{a>0,W_ 553

Lemma 5.8. There exists = (5(0), 0 < 5 < n3, such that

2
ﬁlog?(l + |f\29) > 4l for €] < B
2

573 108" (L4 [€6) < ¢ for J¢] 2 5.

Proof. The argument used to prove the existence of § as in Lemma 5.1 can be also used
to prove the existence of § = (6) € (0, 1), which satisfies both conclusions of this lemma.
So, it suffices to check that g < n3.

From Remark 5.2, we know that log?(1+ |¢20) < |¢]40, for |€] < 1. Thus, if |¢] < 3,
we have

2 2
5ol > o log® (L + [€1%%) > 4l¢

This implies
2% 25314710 < g2, e < .

and the condition BE < % is satisfied for |¢| < (. Therefore, one has § < n® from

(5.40). O
In other words, Lemma 5.8 tells us that

253 — 2
log?(1 + [¢[**) — 4f¢” < g~ log(L+[¢[*)  for €[> 5
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and in particular, the definition of C'(¢) implies that

/953 _
s+ [ o A< <o

0 < 20(6) = \/1og(1 + [¢]#) — 4f¢]? <

Therefore, if 73 < |¢| < § one has

V255 — 2
V253

with 0 < ¢ < 1 a constant, due to the fact that 3 < n3.

—log(1+[¢) +20(¢) < ( 1) log(1+ [¢) = —clog(1 + [¢*)  (5.41)

Now, from Lemma 2.21 and inequality (5.41) we can prove the exponential decay

for the L2-norm of 4(t,-) on the middle frequency zone as follows:

s 2
a(t, €)|2de = —tlog(1-+[¢2) SIh(CE)D) - v
/n?’s|§|<5’u( e /773s|£|<58 4(C(€))? RAES

2
< ﬁtz/ ¢ ~H1o8(1HEP) 420 4 (£ 24¢
4 Ip<ig=o

< K242 / e~ctlo8(1HE) 14 () 2dg (e > 0)
3<[€]<o

:Kw/' (1+ [€20) <ty (€) P
3<[E<o

§

gK2wnt2||u1||%/ (1+ )=ty
773

<A+ M), t>1, (5.42)

with C a positive constant depending on the space dimension n and ¢ > 0 a constant
given in (5.41).
5.1.2 Estimates on the high-frequency zone |£| > ¢

On the high frequency zone |£| > § the characteristics roots are complex and the

solution of (5.3)-(5.4) is given by

ﬂ@£%=§%é”@%m®@ﬁmﬂo

where

1 20 412 —log?(1 + [¢]%)
ofe) = TR ) = v 2 |

(b(&)t)

We know that |sina| < a for all @ > 0. Then |smb(€) | <t for all t > 0 and so one has

a 2d¢ = 20 _tw i 2
/|§>5| (t7§)’ d = /§|>5<1+|§| ) b(§)2 ’ 1(§)| d§
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<efulf [ ey
[€1=0

1 0
:wnt2||u1||%/5 (1+r29)—trn—1dr+wnt2||u1||%/1 (1+r2) =Ly

2—t
~ ||u1||%t2(<1 4620yt 4 t——1> > 1. (5.43)

The last inequality is obtained by using Lemma (2.33).

5.1.3 The asymptotic profile

From the estimates obtained in Propositions 5.6, 5.7 and inequalities (5.42) and
(5.43), we can conclude that the the inverse transform of the function (¢, ) given in (5.28)
is the asymptotic profile as ¢ — oo to the solution u(¢, x) of the problem (5.1)-(5.2). Such

a result is stated in the next theorem.

1
Theorem 5.9. (i). Letn=1,0<6 < 2, anduy € LY29(RYNL2(R). Then it holds that
lu(t,) = F (ot ) ()l 2
Cllurlh + rllaae) (7707 + 6% ) . o<o<h
24 0
), if§<0<3

fort > 1, where u(t,x) is a unique solution to problem (5.1)-(5.2) with ug = 0.

<
Cllunlly + et | 2o (t i 4 ﬁt

5
(ii). Letn >2,0 <0< —, andu € LY20(R™) 0 L2(R™). Then it holds that

lu(t, ) = F Mot )0l 2

o 1 .
Cllurl + lallaa0) (7757 4+ ) Fo<o<h

IN
IN
W

I

C([Jur] [Jud| ) 09 _1 - 49+3> fl 0
ut|ln + ||utll7i20) (£ + t , ifz <
Lt NG 6

1 —1
C(Jlurllr + w7 1.20) (t -0 9 ) + —t~ ) , Zf § 5
\ L \/5 3 < 12

for t > 1, where u(t,z) is a unique solution to problem (5.1)-(5.2) with ug = 0.
Proof. We first note that log(1 + [€[20) < |€]2¢ for all £ € R™, which implies

€%
log(1 + [¢[20) ~

Then, one can get the next estimate for ¢t > 1 on the zone of high frequency |£| > 773 as
follows:

21¢2

/ (1, €)Pdé < 2P2/ TR de + 2/ e~ 2log(1+[¢[*)
’ !
<= 2 log>(1 +[€[20) 2 logZ(1+ [€[20)

dg
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_20¢12%1¢12—20

2818 g
e log(1+[¢[29) 1+ €20yt
€[>n? log=(1 + [§]) j€|>n? log®(1 + []*Y)

o 2t1EP7% 1+ |€]20) -t
j¢|>n3 log= (1 + [€]*7) j¢|>n3 log=(1 + [¢]*7)

P2 3 P2 1
< 50— 1 7 / 2t 20d§ TR bl / (1+ T29)_tr”_1dr
log?(1 + %) Jyg[>np ) Jn

Prw o0
+ 1—712/ <1+T29)_t7”n_1d7'
1

2 2 1
< —5 A 7 6_7“76_60/ e_|f|2_29d§ + —2P1 “n 7 / (1+ Tze)_tr”_ldr
log®(1 + %) €| log®(1 4+ n%%) Jys

P 00
+ 1wn2 / (1 —|—T20)_t7’n_1d7’
1

Q

_ ot
<COPR(e™™ 4 (1)t 4 t——1> > 1. (5.44)

Now, it follows from the Plancherel Theorem that

~1 2, . _ 2
/Rn|u<t,x>—f (o (t,€)) () P = /Rn|u<t,§> o(t,6)2de

for t > 0. Furthermore, one has

~ 2 ~ 2 ~ 2
/R” |a(t, &) — @(t,€)[7dE S/ |a(t, &) — (¢, ) d§+/ |a(t, &)[dg

[§l<n? §1=n?

" / o(t,6)|2de (5.45)
|E|>n3

for ¢t > 0.

From (5.42) and (5.43), we know that the L?-estimates on the zone |¢| > 7 to
a(t, &) are of exponential type. The estimate to o(t,€) on |¢] > 7 obtained in (5.44) is
also faster than those obtained in Propositions 5.6 and 5.7. The result of Theorem 5.9
follows by combining Propositions 5.6 and 5.7, with inequalities (5.42), (5.43), (5.44) and
(5.45). O

Remark 5.10. In the results of Theorem 5.9, one can notice the coefficient 1/v/6 in front
of each final estimates. By observing this coefficient, one may conclude that we have
captured the unique nature for the log-damping (or fractional damping) with parameter
0 > 0. This property can be found by searching the leading term more precisely than

previous researches .

Remark 5.11. It follows from Theorem 5.9 that a(t,&) ~ Py (p1(t,€) — v2(t,€)) in LQ(R?)
as t — oo. It is important to notice that ¢1(t,€) and wa(t, £) are exact solutions of the

first order in time equations in the Fourier space, respectively:

—Av + Lgvy = 0,
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and
Lov + v = 0.

In some sense, the solution to problem (5.1)-(5.2) with small parameters 6 € (0,1/2) has
a double diffusion phenomenon. This kind of important double diffusion phenomenon has
been first discovered by D’Abbicco-Ebert [12] to the equation

up — Au + (—A)eut =0 (5.46)

with 0 € (0,1/2). Theorem 5.9 corresponds to that of [12, Theorem 2]. We find that
(5.1)-(5.2) has a similar property to it. While, in the case when n > 2 and 6 € (0,1/2) an
asymptotic profile of the solution to (5.46) is captured as

e_t‘£|2(1_0)

in [30, Theorem 1.5]. In some sense, (5.47) is similar to o1 (¢, £) because of log(1+720) ~ 720
for small » > 0.

_ 1 )
Remark 5.12. A restriction 6 € (0, §] or 0 € (0, —

]
12
in the course of proof of Theorem 5.9 one has frequently used the following fact

is just a technical condition, however,

1 1 260
g s +rT) (5.48)
r—+0 T
(5.48) is also true in a more wider range 6 € (0, %) So, reconsidering, the case of § € (31;, %)

forn=1or6 e (%, %) for n > 2 is still open.

Remark 5.13. The condition u1 € L?(R™) in Theorem 5.9 is used to make sure the
unique existence of the mild solution wu(t,z). However, it does not affect directly on the
L2-estimate of the solution, even in the high-frequency estimates although the estimate

(5.44) in the high frequency zone can be easily estimated in terms of ||u1|| instead of

[lul]1-

5.2 OPTIMALITY OF THE DECAY RATES

Our goal in this section is to prove two theorems about asymptotic behavior of the
solution of the problem (5.1)-(5.2). Assuming certain conditions under the dimension n
and parameter 6, namely, if n =1 and 0 < 0 < }1 orifn>2and 0 <6 < %, we obtain
the optimal decay rate to the solution (see Theorem 5.17). On the other hand, when n =1
and zlg <0< 31); we show that the solution to the problem (5.1)-(5.2) blows-up as t — oo

(see Theorem 5.21).

In order to prove such results, we prepare some lemmas. From (5.28), we have

@(t,f) = Sol(taf) - (102(7575)7 t >0, g € Rna (549>
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where

P
o Toa(1+i20)" o~ log(1+[¢[*)t
P, po(t,€)

¢1(t7§) : = W.Pl

" log(1 + [¢%)

Lemma 5.14. Letn =1 with 0 < 6 < le andn > 2 with 0 <0 < 1—52 Ifup € LY(R™), then

9, — n—460 9 9 _ n—46 1  n—40
ChPft 20-09 < - lo(t,&)|%dé < CoPp |t 2070 4 5t 20 ), t>1,
where the constants C1,Co depend only on 6 and n.

Proof. First we note that
24 24 24
/;Jﬂt8|€§2AWWMt®|§+?AywaQI§
=2 t,6)2de + 2 t,6)[2d¢
léngu ) léknwu )
w2 o [ m@oPd t>0.  (550)
€l<n =

By using the equivalences obtained in Remark 5.2, we have

—tlog(1+¢|?>2%) 14 |¢[2—20)~t
[ tetepasrt [ o aeert [ S
€l<n lel<n log=(1 + []*7) l€|<n log=(1 + [£]*Y)

n(1 2—20\—t
—wnp]?/ %rn—ldr
0 log“(1+1r2%)

n (1 2—20\—t
- wnPf/ —( —;r )9 p—1-40,.49 g,
0 log“(1+ 1r2%)

< 4o, P / ( . ) n—1-46, 460 5
0 r

n
= 4wnP12/ (14 2720y 7tpn=1-46,
0
9,— n—460
<OPHATD, > 1, (5.51)

The last decay estimate is obtained from Lemma 2.30 since n — 46 > 0. In the same way,

by using Lemma 2.32 for n — 40 > 0, we have the next estimate.

—2tlog(1+[¢[*) n 20\ —t
/ [pa(t, €)Pde = Pf/ — dé < wnpf/ ﬂ;";)rn—ldr
€l<n ¢l<n log”(1 + [€]29) o log2(1 +r20)
n—460

n 1
< 4wnP12/ (1 + 20y 7tpn=1=40 g < (JEPth_T, t>1. (552)
0

Further, from (5.44), the L2-estimate to ©(t,€) on the zone [£| > 7 is of exponential type,
because |£| > 7 implies that |¢] > n3. Therefore, there exists a constant C' > 0 such that

_ n—46 1 n—
L#wwaﬁksoﬁ<tw%+ﬁr2ﬁ),t>L
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due to (5.50), (5.51) and (5.52).
In order to prove the estimate from bellow, from Remark 5.2 we have

e~ tlog(1+[¢>~%)

t, 2d > t, 2d %PQ d
Jlreorie 2 [ iaworaspt [ S

2—20)

n ,—tlog(l4+r
= wnP12/ ¢ 5 "L
0 log®(1+ r20)

o [7 6—t10g(1—|—7’2*29) 1
> Cwp P r'' dr
LA 40

n
= C’wnPf/ (1 4 p2720)=tpn=1-46 .
0
9,— n—460
> Cp2 T, (5.53)

because of n — 46 > 0, due to Remark 2.31, where C' > 0 is a generous constant. We

also notice that |¢q(t, €)| < |@(t, )|+ |pa(t, €)] and, from Young’s inequality, |¢1(t, €)|? <

20p(t, ) + 2|2(t, €)[?. Thus,
o(t, €12 > S 1 (8, ) — [2(t, €)I*,t > 0,€ € R™

Then, from (5.53) and (5.52), we have

/ (. 6)[2de > / o1 (¢, 6)|2de — / oot ©)[2de
1€1<n 1€1<n \ n

49

l\'JIH

1
> Ky P K26P1

1 _802—20n4n—46
—Plt 20 (K1 Kgat 20(1-0) ) (5.54)

Since 0 < 0 < 5 L and n — 46 > 0, one can conclude that 8% — 20n +n — 46 > 0. Therefore,
it follows from (5.54) that

K
t,6)2d¢ > t,6)|Pd¢ > P2t 2(-0) 0) t> 1.
/Rm( 3 é_/m?r (t.€)[*de > >

These arguments imply the desired estimate for ¢(t,§). O]

The above arguments do not hold for n = 1 and 21{ <6< 31)7, because the integrals

O ey L E e
5 T dr, 5 TN dr
0 log?(1+r20) 0 log*(1+r4Y)

are divergent for all ¢ > 0. For this reason, we need to estimate the L2-norm of the function

©(t,€) itself:

l¢|2
¢ Tos(HEZ) ! o~ log(1+¢*%)t

A8 = i) g+ )
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Lemma 5.15. Let n =1 and 6 > %1 If uy € Ll(R), there exist constants C1,Co > 0 such

that
1

40 — 1

9,40—1 ) 9,40—1
C1Pit 20 < Ry<p(t,§)| d¢ < Co Pt t>1.

Proof. We first note that from (5.44) the L?-norm of ¢(t, £) decays exponentially on the
high frequency region |£| > 1 > 7. So, in this proof it suffices to consider the integral
only in the low frequency zone 0 < [£] < 7.

Now, we notice that

29) B r2 — log2(1 + 7”29) r2
 log(1 +r20) log(1 + 120y’

—log(1+r

so that one has

e
log(1 + [¢[**)p(t,€) = P1 (e og 1+ 1E20)| — elog<1+|5l2">t>

__ ey glePoog®are®h g
=P | e los(+EP)" — " log(1+1¢]%) log(1+[¢[20)

S _plog? (e )le)”
= Pie los(+eP)" [ 1 —¢ * los(1+[el?) : (5.55)

Due to the fact that for 0 < r <1 we have %7“29 < log(1+ 7“29) < 7“29, thus one has

4246 2 20y .2
729(1 4r )<log (I+7r) —r

< 2p20(1 — 2749y, 5.56
4 = log(1+720)  — = ) (5.56)

Moreover, since 0 < % we have 2 — 40 > 0. Therefore, there exists 5 = 3(0) > 0, with
B < n such that

for 0 < r < . Thus,
<1—4p?4 <1274 < (5.57)

DN | —

for 0 <r < . From (5.56) and (5.57) one can get

1o _ log*(1+r20) —r? o
-7 S T S o 7
8 log(1 + <)
for 0 < r < 3. This implies
- @_%trw <l-—e log(1+720) <1-— e—2t7"29
and 2 20 2
_log?(14r™)—r?
1 - 6_%”29 1—e log(1+r2%) 1— e—2tr29

r20 - log(1 + 7’23) - r20 ’ (5.58)
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for 0 < r < 3. Since

o 1—e°
lim =1,
o—0 o

there exists o > 0 such that o < § and

1—e ¢

o

1 3
- < < - 5.59
;< <% (559

for all 0 < 0 < . Based on these preparations let us prove the desired estimate for ¢(¢, ).

(1) The lower estimate of lemma:

1
For 0 <r < <870‘> ** it holds that 0 < o = %trw < a. Applying estimate (5.59) we

get
1 — e str”

3
< <3 (5.60)

DN | —

1,20
8t7“
1

From (5.58) and (5.60), for 0 < r < (%) *” it holds that

B log2 (1+r29)7r2

1—e¢ log(14120) t

> —. 0.61
log(1 + r29) — 16 (5.61)

1
Let tp > 0 be such that (%) ** < a, and consider t > ty. By combining (5.49) with (5.55)
and (5.61), since o < § < 7, we obtain

e, 2
/ olt. £)2de P2/ o loa(1+1g20)" _ o~ log(1+[£[*%)t "
@\, = 1
€1<n €1<n log(1 4 1£[29)
9 o log2(1+7“29)—7"2 2
n o _ 2r _ lo (1+r29)
—w1P12/ ¢ Tog(1+20)" L-e - 20 dr
0 log(1 + r4%)
¥ (S)2 2
> “L P2 / e 10802 dr > tg. (5.62)
16 0
We also notice that
272

2log(1+r2720) < 22720 < < 4r?720 < 8log(14+1272%) 0 <r < 1. (5.63)

~ log(1+ r29)

Thus, from (5.62) and (5.63) one has

|~

Q) 2

8a
/ |g0(t,§)|2d£ Z %P%tz /( t ) 6_8t10g(1+r2729)dr
€l<n 0

Bs

o
S

(0%

(%)
:%Pfﬁ/ (148t
0
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2—20

o\ 20 8t (*8"“)219

w1 2,2 (6% t

> —Pit 1+ — d t > to. 5.64
=162 ! ( ( t ) ) /o " =0 (5.6

Now we observe that 1 < % < 3 for zlg <0< % Then there exists T' > tg such that

2-20\ 1
1 < (14 S\ 20 <
2~ t -

for all £ > T, because of the fact that

1 —t
li 14+ — =1
t—>1-ir{loo ( + tq)

provided that ¢ > 1. By combining estimates (5.64) and (5.65) one can arrive at the

(5.65)

[\CR V]

desired estimate from below such that

2—-20 —t 804%
3 0 (%)
/ (¢, )| 2d > 1 P2 1+(—“> / dr
1€1<n 16 t 0
1
(8704)@
225262P12t2/t o
0

with some constant C' = Cy > 0.

(2) The upper estimate of lemma:
From (5.55), we have

5 _ l()g2(1-1-7“29)—7"2 2
no___2rF —_ lo 120
/ ‘%0@,5)‘2035 ZW1P12/ e 1og(1+r29)t 1 e g(1;-0 ) dr
l€|<n 0 log(1 + 7<)
= A1<t7 9) + A2<t7 9)7
where
2
e SR <
Aq(t,0) = w; P? / T [ 2 7° - dr,  (5.66)
0 log(1 4 r4?)
) _ 10g2(1+r20)—r2 2
n o 2r" — log (14120
As(t,0) == w; P2 / eyt [Lze Ul g (5.67)
(2) log(1 + r20)
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which holds for ¢ > t.
Now, for 0 < r < (%)2

gl

by using inequality (5.59) we have that

1— e—2t7“20

— g <3t (5.68)

1
Thus for 0 < r < (§)?2°, by combining (5.58) with (5.68) it holds that

. log2(1-|-r29)—7“2

1—e 10g(1+r26)

<6t, t>t. 5.69
log(1 + 7"29) 0 ( )

The definition of Aq(t,0) and the inequality (5.69) imply that

_t10g2(1+r20)—r2 2
_ _ lo (1+7‘20)
Aq(t,0) = W1P12/ e log(14:20) ! 1—e g - 0
0 log(1 + r4%)

1
)20 2
2 2r

8=

1

SR ) L 2 52 )

< 36t°wy P} e los(+r%) dr < 36t°w1 P dr
0 0

—~
Qe

1
= 3612w P? (%) ¥ _opim

9,40—1
—CPM o, t>1 (5.70)

with some generous constant C' > 0. Note that the estimate given by (5.70) is also holds
for § = 1.

In order to estimate Aa(t, 6), we use (5.58) for # > 1/4 to get the following estimate

2 _log?(14r20) 2 2
1 o — lo, (1+r29)
Ao(t,0) = wle/ e oa(11:20) 1—e g - "
(5)% log(1 -+ r27)
n __2? = 24r?0 2
< 4w P e mannt (LT T )
(51)27 720
K 1
< dwn Pf / , —dr
()20
= 4w P 7! 49_(3)1539
L1406 5%
1 401
=on Lt 5.71

10
with C' = 4wy (%)T It is important to emphasize that the above estimate holds only
for 0 # zll and we have just used it for 1 — 46 < 0 to obtain (5.71). The estimates for A;

and Ag prove the desired estimate from below of lemma. n
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As a special case one can introduce the following log-order blowup result for the

1
case of § = I

Lemma 5.16. Let n =1 and 6 = zll For uy € LY(R) the following optimal estimate holds.

C1PElogt < /R lp(t,€)|?de < CoPElogt, t>>1,
with some constants Cq,Cy > 0.

Proof. We consider the functions A1 (t, zle) and As(t, le) given by (5.66) and (5.67) with
0= zlg The estimate (5.70) also holds for 0 = zll and it tells us the fact that

1
Ayt ) < CPE, t>1. (5.72)
While, by definition (5.67) and (5.58) we have

_log? (/) —r?
1 9 /77 it 1—e log(1++/7)

, e log(1++/7) dr

log(1 + /)

\/F

U SR 2
< 4w P /( e et (220 ) g

= 4w P§ (logn— 210ga+210g2+210gt>
g

< CP?logt, t>1. (5.73)
The estimates (5.72) and (5.73) allow us to conclude the upper estimate

/R lo(t, €)|PdE < Calogt, 3> 1, (5.74)

with some constant C'9 > 0.

On the other hand, by

—~

5.49) one can get

o1, > — lp2(t, ©)]*, t>0, E€R.

DN | —

lp(t, €)% >

Thus, for t > 0,

= = 3
2d 2de > = 2de — 2d
Joletwora= [ leopas =5 [ aali- [ ook

—1

= P{ (%Kl (t) - K2<t>) , (5.75)
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where

21¢2

/t e log(1+\ﬁ)t
-1 log?( 9 )

t~ 3 —210g 1+\/_
/tl log (1++/[¢

We remember that

€] < log(1++/]€)) < Ve, el <1 (5.76)

Thus one has

212

" ( ) t_% e log(1+\/>) i t_% e—4|£§td€
1(t =/ >
=1 log?(1+ +/|€]) -1 €]

2 3
t73 _—4r2t t 3
e _ 1
:wl/ dr > wie 4/ —dr
t+—1 T t—1 T

= w16_4( - glogt + logt)

6_4

Similarly, in the case when large ¢ > 1 such that =3 < 1 it follows from (5.76) that

3 7210g1+\/_ =3 /It
Kg(t):/t 4/ € e

-1 1og (1++/|¢ [3
—/rt 3 1
= 4w / ¢ dr < lele_\/IE —dr
t—1 T t—1 T
4
1e_‘/’?logt, t> 1. (5.78)

Therefore, from (5.75), (5.77) and (5.78) one has
2 2 (1
[0k = P (R0 - Kal0)

—4
4
> P12w1 e—logt — —e_\/ilogt
6 3
74
4 _

which implies the desired estimate from below to the case # = 1/4 and n = 1:
/R o(t,€)[2de > CPRlogt, t> 1 (5.79)

with some constant C' > 0. The estimates (5.74) and (5.79) complete the proof of lemma.
[
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As an application of Theorem 5.9 one can derive the following sharp decay estimates,
which imply the optimal decay rates of the L2-norm of the solution to the problem (5.1)-
(5.2).

Theorem 5.17. Let n = 1 with 0 < 8 < 21[ andn > 2 with 0 < 0 < 157 For u; €
LY20(R™) N L2(R™), it holds that
) 1

with some constant K1, Ko > 0 depending only on n and 6, where u(t,z) is a unique
solution to problem (5.1)-(5.2) with ug = 0.

_ n—40
KR < e )l < KallP1] + sl (1955 4+ o

Proof. One first observes that

/Rn at, ) 2de < 2 /Rn Ut €) — p(t,€)dE +2 /Rn PO (580

By combining Lemma 5.14 and Theorem 5.9 with (5.80), we have

_ n—46 1 n—
/R” ja(t, &)*de < C(P + [lur]| 1.06) (t 20-0) + 51&‘2946) ot 1. (5.81)

We can also observe that for 0 < # < 1/2 it holds that 20 < 2 — 20. Therefore

n48 < 1A Thys the decay rate ¢ "2 is faster than £ 320 It results the followi
290 yra e 1S raster an . results e 10 OWlIlg

upper bound to the L?-norm of the Fourier transformed solution (t, -) such that
) 1 n—460
[P < O + a1+ T, 51

By the Plancherel Theorem and from (5.81) the upper bound estimate of the statement

of Theorem 5.17 follows with a generous constant C' > 0.

In order to obtain the lower bound, we observe that

ot )| < |a(t, &) — o(t,§)] + [a(t, ).

By Young’s inequality, we may obtain

Therefore,
1

SletOF —[at &) — et ", t>0, R

[t €)% =

Thus,

Y 1 2. Slr ey 2
o liwefie>5 [ e o= [ i -eto0PE 682
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First, we consider the case n > 1 and 0 < 0 < % By combining (5.82) with the

lower estimate of Lemma 5.14 and estimate of Theorem 5.9, we obtain
~ C —_n 1 _»n
fa(t. )l > Cppath cMmmﬂmhm(t””+y”)
_n—460 [} 40 1 _ nt462—2n6
— ¢ 2(1-0) (%Pf — OQ(“U]_H% + ||u1||%1729) (t 51-0) Et 20(1-0) )) 7
(5.83)

for ¢t > 1 and positive constants C7, Cy. But for 0 < 6 < % we notice that n+462—2nf > 0,

so that one can get

[ C1 59 2 9 __46 ] _nta6—2mp o
i (7 = Collnl -+ o) (17565 4 o5 ) ) — T

S

Therefore, there exists t; > 0 such that

C C __40 _n+462—2n0
PP < PP = Collfulf + | o) (z D ot B0 ) <OPE >t
From (5.83) it follows that
C _ n—40
late, )II? = ZFPPe 200, (5.84)

for t > 1.

The estimate (5.84) implies the desired estimate for lower bound in ¢ in the case
Whenn21and0<9§%.

Analogously, we may obtain the results for n = 1 with % <0< zll? and for n > 2
Wlth < 0 < 15 based on the results of Theorem 5.9 for these values of # and Lemma
5.14.

This completes the proof of Theorem 5.17. O

Remark 5.18. A similar LP-LY type “decay” estimates only from above has been already
studied precisely in [13] and [14, Corollary 2.2] to the solution of the equation (5.46) for
n=1and 0 <6 <1/4, orn>2and 0 <@ < 1/2. The lower bound itself in Theorem

5.17 seems new.

Remark 5.19. As a result of Theorem 5.17, one can observe that ||u(t,-)|| ~ ¢ a0
(t — 00). Thus, as for an ultimate situation when § — 07 formally, the optimal decay
order will approach t*%, which is the Gauss kernel. This is quite natural because in
the case when 6 = 0, the equation corresponds to the frequently studied damped wave
equation. In this sense, all results in this chapter reflect a diffusive aspect of the equation
(5.1) with small . This property is quite different from those studied in [4] for large 6 > %

In [4], a wave like property is captured.
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n—460

Remark 5.20. The optimal decay order ¢ 10-0 obtained in Theorem 5.17 has a close
relation to that studied in [14], [7] and [30, (1.13) with [ = k& = 0] for the equation
(5.46). In particular, the (almost) optimal decay rate of the “energy” and L2-norm of the
solutions are studied by developing a new energy method in the Fourier space in [7]. So,
the structure of the equation (5.1) is quite similar to (5.46) with 6 € (0,1/2).

Contrary to the decay results as in Theorem 5.17, one can observe the following
surprising property, which shows infinite time blowup results of the solution to problem
(5.1)—(5.2) in the one dimensional case. We believe this is the first discovery in the damped
wave equation community. In [15] and [13], when they apply the decay estimates of the
solution for the equation (5.46) to the nonlinear problems, they necessarily avoid to treat
the case of n = 1 with and 1/4 < 6 < 1/2. The following crucial result makes their

mechanism clear because of log(1 + 7“29) ~ 120 for small r > 0.

Theorem 5.21. Let n = 1 with 21I <9< % Foruy € LY20(R)NL2(R), there exists positive
constants K1, Ko, which depend only on 6, such that

K112 < Jult, )| < K (—1 P+ Jug || preo)t @, 3> 1 (5.85)
40 . 40 .
11471 = ||ult, = 2 \/497_1 1 Ui 1,20 9
for 21I <0< 31; and
Ki|Pi|\/logt < [Ju(t,-)|| < Ko(|P1] + [Ju1||f1.20) V/1ogt, ¢>1 (5.86)

for the case 0 = 21[

Proof of Theorem 5.21. The proof of Theorem 5.21 can be obtained in the same way as
in Theorem 5.17, but using Lemmas 5.15 and 5.16 instead of Lemma 5.14 and observing
that the estimates to ||¢(t, -)||? in Lemmas 5.15 and 5.16 are also worse than the estimates
to ||a(t,-) — o(t,-)||* in Theorem 5.9. O

Remark 5.22. We find the number 6* = i as a critical value in the one dimensional case
because 6* divides the structure of the corresponding solution u(t, ) into two parts: one is
decay property for 0 < # < 6*, while the other is the infinite time blow-up results in the
case of 9% < 0 < % Moreover, we note that in Theorem (5.21) there is not a contradiction
between the estimate (5.85) when 6§ — (1/4)" and the estimate (5.86) for § = 1/4 because
of the singularity ﬁ at 0 =1/4.

Remark 5.23. The statement of Theorems 5.17 and 5.21 present the restrictions 6 < % for
n=1and < 1% for n > 2. By combining the solution formula (5.21), with Lemma 5.3
and the asymptotic estimates in Lemmas 2.30, 2.32, 5.15 and 5.16, the missing estimates
to the solution for 6 < % can be derived and are of the order t% forn =1 and tf‘fz%g)
for n = 2. However, the optimality in these cases is still open, but we believe that they

are optimal.
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Remark 5.24. We emphasize that the problem (5.1)—(5.2) with § = 1/2 seems to be open

until now. It may be in some sense another critical value to that problem and it will be

important to study such case.
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6 FINAL REMARKS

In this work, we study three new models of evolution equation based on the
logarithmic-Laplacian operators Lg. In each one of the three problems we proved de-
cay and/or blow-up in infinite time estimates to solutions as in the wave problems with
the usual Laplacian operator. This property of operator L to produce the same estimates
as the Laplacian operator, even though it is a weaker operator, indicates that it is a more
efficient than the Laplacian operator.

We emphasize that we also prove new blow-up estimates to the solution of problem
up — Au + Lour =0 (6.1)

when n = 1 with 21[ <0< % These optimal blow-up estimates to the solutions of wave
problems with usual dissipation (—A)out, le <0< %, in one dimension seem have not yet
been discovered in works by other authors. Since log(1 + |€[27) ~ |¢]20 for |¢] < 1, the
same optimal estimates to the solution of usual wave problems can be obtained.
There are some open problems that can still be studied. The problem associated
to equation
ugr + Lugr + Lu + L2u + Lgut =0,

with 0 < 6 < 1/2 also presents the regularity loss property. One can to investigate
asymptotic profile to the solution and using it to derived optimal decay rates for problems
with 0 < 6 < 1/2.

We wish to study the problem (6.1) with § = %, due to it is another critical
value which divides the asymptotic profile into diffusion-like and wave-like. One can also
investigate asymptotic profiles to solutions of the problems (6.1) for values of 6 that were
not covered in Theorem 5.9.

In addition, semilinear problems associated with the models presented in this work
can be studied. In particular, we want to investigate the so-called critical exponent to the
problem

urt — Au+ Logug = |[ulP, 0<60 <1,

which has not yet been discovered for the usual wave equation with dissipation —Auy.
Other problems involving coupled systems as, for example, thermo-elastic systems,
Maxwell system and the linearized compressible Navier-Stokes system may be studied

under effects of the Ly operator.
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