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RESUMO

Neste trabalho, consideramos uma equagao de tipo de placas com inércia rotacional,
sob os efeitos de um amortecimento fracionario e uma ndo-linearidade de tipo de
memodéria. O objetico desse trabalho é encontrar o expoente critico p que é limitrofe
entre a existéncia e a nao-existéncia de solugdes globais para o problema dado, e en-
tender como o amortecimento fracionario interage com a nao-linearidade de memoaria e
como essa interacao pode interferir em p. Com este fim, encontramos e utilizamos diver-
sas estimativas L"— L9 com 1 <1 < 2 < g < oo, bem como estimativas (L' N LP) - LP
para p < 2, um caso delicado para o qual ha uma perda na taxa de decaimento.
Sao analisados diversos cenarios com base na dimensao n e nos intervalos admis-
siveis para 0 e vy, os parametros que caracterizam o amortecimento fracionario e a
nao-linearidade de memoaria, respectivamente. Com esse trabalho, concluimos que,
embora na maioria dos casos as taxas de decaimento obtidas sejam suficientes para
alcancar o expoente critico esperado p, ha uma combinacao especifica de intervalos
envolvendo n,y e 0 para a qual a perda nas taxas de decaimento € grande o suficiente
para interferir nos resultados de existéncia, deixando uma pequena lacuna para a qual
a existéncia ou a ndo-existéncia de solucoes globais € desconhecida.

Palavras Chave: Equacao de placas. Inércia Rotacional. Dissipacao fracionaria. Taxas
de decaimento "sharp". Nao-Linearidade de tipo Meméria. Estrutura de Perda de Reg-
ularidade. Dissipacao efetiva. Espaco de Fourier.



ABSTRACT

In this work, we consider a plate-type equation with rotational inertia, under the effects
of a fractional damping and a memory nonlinearity. The objective of this work is to find
the critical exponent p that is the threshold between existence and non-existence of
global solutions for the given problem, and to understand how the fractional damping
interacts with the memory nonlinearity and how this interplay may interfere on p. To this
end, we find and employ several L" — L9 estimates with 1 < <2 < g < o, as well as
(L1 N LP) — LP estimates for p < 2, a delicate case for which there is a loss in the decay
rate. We analyze several scenarios based on the dimension n and on the admissible
ranges for 0 and y, the parameters that characterize the fractional damping and the
nonlinear memory, respectively. With this work, we conclude that, though in most cases
the obtained decay rates are enough to reach the expected critical exponent p, there
is a specific combination of ranges involving n,y and 6 for which the loss of decay is
significant enough to interfere in the existence results, leaving a small gap for which
existence or non-existence of global in-time solutions is uncertain.

Keywords: Plate equation. Fractional damping. Rotational Inertia. Regularity-loss struc-
ture. Sharp decay rates. Effective damping. Fourier space.



RESUMO EXPANDIDO

Introducao

Neste trabalho consideramos uma equacao do tipo de placas, assim caracterizada por
possuir 0s termos uy e A%u, com inércia rotacional, descrita pelo termo —Auy;, sob 0s
efeitos de um termo de amortecimento representado pela acado do operador laplaciano
coT poténcia fracionaria (-A)®u; e de um termo nao-linear do tipo de meméria I'(1 —
VY| ulP.

Objetivos

O objetivo do trabalho é obter taxas de decaimento do tipo LN-L9com 1 <n <2< qg<
oo para a solugéo e sua primeira derivada no tempo, bem como taxas de decaimento
(L1 N LP) — LP para p < 2, para em seguida aplica-las na equacgdo proposta e obter
resultados de existéncia global de solucdes, a partir de dados iniciais suficientemente
pequenos. Durante o procedimento, analisar-se-a de que modo os parametros n, 0 e v,
relacionados a dimensao do espaco, a dissipacéo fracionaria e a ndo-linearidade de
membdria, respectivamente, influenciam o expoente critico p, um valor limitrofe para a
existéncia ou nao-existéncia de solucdes globais no tempo.

Metodologia

Através de uma revisao bibliogréafica, verificamos que o expoente critico esperado seria,
a priori, p, o maior dentre os valores pc € y~, sendo pc uma generalizagdo do notavel
expoente de Fuijita e v~ fruto de um fenémeno decorrente da n&o-linearidade do
tipo de meméria. Contudo, a estrutura de perda de regularidade da equagédo dada,
associada ao termo de inércia rotacional, conduziu-nos a seguinte conjectura: “Para
determinadas combinagdes de valores de n,y e 0, a perda nas taxas de decaimento
sera grande o suficiente para alterar efetivamente o valor de p para o qual se pode
garantir existéncia global de solugdes para o problema proposto.”

Por outro lado, na parte dedicada a mostrar a nao-existéncia de solucdes globais
no caso subcritico, verificamos que as duas principais dificuldades diziam respeito a
aplicacdo do método de fungdes teste em operadores ndo-locais, como é o caso do
Laplaciano fracionario que aparece no termo dissipativo, e a escolha de uma funcéo
teste adequada para tratar do termo de nao-linearidade de memdria. Nesse sentido,
baseado em trabalhos precedentes, utilizamos uma variante do método de funcdes
teste, que se utiliza de funcdes com decaimento polinomial no infinito em vez de
funcdes teste com suporte compacto, e a combinamos com o emprego de uma funcao
teste sob medida para controlar o termo n&o-linear de meméria.

Resultados e discussao



A equacao estudada contém diversos termos cujos efeitos ja foram estudados sep-
aradamente. Entre eles, a perda de efeito parabdlico devida ao termo de meméria,
a perda de regularidade devida a inércia rotacional e a ndo-localidade do termo de
amortecimento fracionario. Estudamos a interacdo desses efeitos em conjunto, cole-
tando os resultados separadamente para dimensao n=1,2,3 e 4, e subdividindo-os,
quando necessario, com respeito a variacao do parametro y.

Para dimenséao baixa, isto €, n = 1,2, observamos que a estrutura de perda de regu-
laridade da equagcéo influencia a taxa de decaimento da solugdo em H2. Além disso,
para n = 1, o perfil assintético da solugdo em L2 muda quando 6 > 1/4. Contudo,
nenhum desses efeitos altera o expoente critico. Para este fim, utilizamos uma imersao
de Sobolev fracionaria quando necessario. Outrossim, a perda de efeito parabdlico
nao aparece em baixa dimensao, fazendo com que o expoente critico seja p¢, para
todo y € (0, 1). Em particular, a propria definicado de p¢ torna necessario assumir que

vy e (ﬁj) sen=1.

Para n = 3, a perda de efeito parabdlico aparece, fazendo com que o0 expoente
critico se torne y~! quando y é préximo de zero. Para y suficientemente distante da
origem, distinguimos dois diferentes cenarios: quando p > 2, utilizando a desigualdade
de Gagliardo-Nirenberg, é possivel obter os mesmos resultados que em dimensdes
menores. No caso p < 2, torna-se necessario aplicar estimativas (L' NLP)—LP, o que im-
plica requerer regularidade adicional W3:P x W2 para os dados iniciais. Utilizando-se
dessa estratégia, € possivel recuperar o expoente critico esperado p.

O ultimo caso abordado, n = 4, traz 0 mesmo conjunto de efeitos que o caso n = 3,
mas com uma principal diferenca: para 6 suficientemente préximo de 0 e vy suficiente-
mente préximo de 1, verificamos de fato o que haviamos conjecturado: As taxas de
decaimento produzidas pelas estimativas (L' N LP) — LP para p < 2 apresentam uma
perda grande o suficiente para modificar o intervalo de p para o qual se pode provar
existéncia global de solucdes.

Consideracoes finais

Nos casos abordados neste trabalho, mostramos ser verdadeira a conjectura que
afirmava que a interacao entre os parametros n, y e 6 pode ocasionar perdas nas
taxas de decaimento grandes o suficiente para diminuir o intervalo de valores p tais
gue se pode provar existéncia de solugdes globais de (p¢, o) para (pe, oc), com pe > Pc
no caso em questao.

Na contraparte de ndo-existéncia, a combinagdo do método de fungdes teste com
decaimento polinomial e da funcao feita sob medida para a ndo-linearidade de tipo de
memoria se mostrou adequada, e foi possivel demonstrar que ndo ha solugdes globais
nao-triviais no caso subcritico, considerando-se o expoente critico p inicialmente con-
jecturado.

Com esses dois resultados, percebemos uma lacuna quando n=4, 0 € [0,6q), v " 1



e p € (pc, Pc), €m que nao se foi possivel concluir existéncia nem nao-existéncia de
solucdes globais para o problema dado.

Palavras Chave: Equacao de placas; Inércia Rotacional; Dissipacao fracionaria; Taxas
de decaimento "sharp"; Nao-Linearidade de tipo Meméria; Estrutura de Perda de Reg-
ularidade; Dissipacao efetiva; Métodos dos multiplicadores; Espaco de Fourier.



Figure 1 — Function g(n)
Figure 2 — h(n), y > 2
Figure 3 — h(n), y < -2
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1 INTRODUCTION

In this work, we will study the global existence of small data solutions to the
following Cauchy problem

t
uﬁ—Auﬁ—Au+A2u+(—A)eut=/o(t—s)‘ylu(s,-)lp ds
(0, x) = Uo(x) M

u(0, X) = s (),

where 0 € [o,%), v e(0,1), p>1.

The model we are about to study can be seen as a Plate-type equation, since
the solution u(t, x) to the linear associated equation to (1) describes the transversal
displacement of a plate under the effects of rotational inertia, characterized by the term
Auy, and fractional dissipation, characterized by (—A)eut.

We will look for the critical exponent p = p(n, vy, 0) for (1), that is, a positive value
such that:

* If p > p, then there exist global in-time small data solutions to (1), for a suitable
choice of data and solution spaces;

* If 1 < p < p, there exist arbitrarily small initial data such that there is no global
in-time solution to (1).

H. Fujita proved in 1966 (FUJITA, 1966) that the critical exponent for the classical
semilinear heat equation with nonlinearity F(u) = uP is pg = 1 + ,% This is widely known
as the Fujita exponent. In 2001, G. Todorova and B. Yordanov proved (TODOROVA,;
YORDANOV, 2001) that the critical exponent is still the Fujita exponent for F(u) = |u|P,
with the nonexistence result for the critical case p = pr being proved by Qi S. Zhang
(ZHANG, Q. S., 2001).

In space dimensions n = 1,2 we prove the existence of global small data solu-
tions for p > p¢, where p¢ is given by

2(1+(1-v)(1-9))
(n-2+2y(1-0)),"

pe(n,y,0) =1+ (2)
here we use the convention that & = oo, for any finite constant C, and p > pc = o©
means that there are no global solutions for that particular case. As y — 1, pc —
1 + 2/(n— 20), consistently with the result obtained in (D’ABBICCO; EBERT, M. R.,
2017) for evolution equations with structural damping and, previously, in (D’ABBICCO;
REISSIG, 2014) for wave models.

Since the study of plate models has a special interest in space dimension n =2,
due to its physical background, we stress that in space dimension n = 2, we may write
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pc in its simpler form

1—
In particular, pc increases from 2y~ to 3y~! as 0 goes from 0 to 1/2.

Besides the assumption that the initial data of (1) are in L', the regularity-loss
decay structure of the equation makes natural the choice of the space HS¢(R") x
HSe=1(R"), for the regularity of initial data, where

N
[en)

==
(@]

Pc =

Sc = Sc¢(y,0) :=2+2y(1-0). (3)

This condition allows us to produce enough decay rate at high frequencies, to match
the desired decay rate at low frequencies, for p close to the critical exponent pc. For
greater values of p, this condition can be relaxed.

We remark here that in lower dimensions, say n = 1,2, we don’t find great
trouble to run the estimates. This is due, among others, to the fact that the influence
of the nonlinear memory is not so strong for n < 3. For instance, if n > 3, for small
values of v, the critical exponent is expected to become y~!. This phenomenon was
first investigated in 2008 by T. Cazenave, F. Dickstein and F. Weissler (CAZENAVE;
DICKSTEIN; WEISSLER, 2008), who proved that the critical exponent for the heat
equation with nonlinear memory

Vi— AV = /Ot(t—s)‘yv(s, P ds

v(0, x) = vy(x) > 0,

is p(n,y) := max{py(n),y~'}, where

L 22-y)
) = o =),

In 2014, D’Abbicco (D’ABBICCO, 2014b) proved that the same effect occurs for
the damped wave equation with nonlinear memory,

t
Uy — AU + Uy = /0 (t—8)"Y|u(s, )P ds 5)

U(O!X) = UO(X)! Uf(O’X) = Uy (X)

and later extended this analysis to the case of a wave equation with structural damp-
ing (D’ABBICCO, 2014a).

Another interesting effect starts to appear for dimension n > 3 : whereas the
critical exponent given in (2) is always greater than 2, this condition is not necessarily
true anymore for greater dimensions. This fact has a heavy impact and can represent
a major difficulty in the task of obtaining solution results, since LP — LP estimates are
not easy to obtain for p < 2. In fact, we expect some loss in decay rates in this region,
which can lead to a different value for p in this case.
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1.1 BACKGROUND FOR PLATE MODELS

Fourth-order evolution partial differential equations arise in problems of solid
mechanics as, for example, in the theory of thin plates and beams. Also, in particular for-
mulations of problems related with the Navier-Stokes equations (see Temam (TEMAM,
1979)) appear elliptic equations of fourth-order. Models to study the vibrations of thin
plates (n = 2) given by the full von Karman system have been studied by several au-
thors, in particular by Ciarlet (CIARLET, 1980), Sanchez (SANCHEZ, 2003), Lasiecka
(LASIECKA, 1998), Lasiecka-Benabdallah (LASIECKA; BENABDALLAH, 2000), Koch-
Lasiecka (KOCH; LASIECKA, 2002), Puel-Tucsnak (PUEL; TUCSNAK, 1996). Perla
Menzala-Zuazua (MENZALA; ZUAZUA, 2000) considered the full von Karman system
and they proved that the Timoshenko’s model

Ut —YAuy + A2u+u=0, in R?x (0, 00) (6)

may be obtained as limit of a full von K&rman system when suitable parameters tend to
zero. The term —Auy is to absorb in the system the rotational inertia effects at the point
x of the plate in a positive time t. It is well known that the plate equation (6) withy >0
is a hyperbolic equation with finite speed of propagation, whereas the non-rotational
plate model with v = 0 has infinite speed of propagation. The hyperbolic model with
v > 0 is more complicated to be analysed than the non-hyperbolic one. In particular, for
the dissipative plate equation

Uy —YAUtt + (—A)eut + A2U = 0,

with & € [0,1) and v > 0, new difficulties arise, due to the property of regularity-
loss decay. This fact can be observed by analysing the structure of the eigenvalues
associated to the plate equation in the Fourier space (see (SUGITANI; KAWASHIMA,
2010; CHARAQ; LUZ; IKEHATA, 2013)). Due to that special structure, when we get
estimates in the region of high frequencies it is necessary to impose additional regularity
on the initial data to obtain the same decay estimates as in the region of low frequencies.
The additional regularity necessary to obtain the result appears in the theorem in the
next section. This effect does not appear if y = 0, since the solution exponentially decays
in the zone of high frequency of the Fourier space, even with fractional damping.

A more general equation to model the vibrations of a thin plate is given by

Uy — AUy + A2u + go(uy) — div g1 (Vuy) = 0. (7)

Such models have been studied by several authors ((GEREDELI; LASIECKA, I., 2013;
DENK; SCHNAUBELT, 2015; CHUESHOV; LASIECKA, 2008; SCHNAUBELT; VER-
AAR, 2010)). In (SUGITANI; KAWASHIMA, 2010), Sugitani-Kawashima obtained decay
rates for a semilinear plate equation in R” with g = 0 and gg = Id —f. The term u;
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represents a frictional dissipation in the plate, and the nonlinear term f(v) is a smooth
function of v satisfying f(v) = O(|v|?) for v — 0.

Moreover, Andrade-Silva-Ma (ANDRADE, 2012) proved exponential stability for
a plate equation with p-Laplacian and memory terms. To get this result they considered
a structural damping of type —Au;. Furthermore, there are some papers in which a
strong damping of type (-A)2u; is considered in model (7), in place of the damping
given in go(up) —divgy(Vuy) (see, e.g. (WANG, 2013; MA; YANG; ZHANG, X., 2013;
XU; MA, Q., 2015) and references therein).

NOTATION

We list some notation used in this work:

* the expression f(t) < g(t) denotes that there exists a constant C > 0, such that
f(t) < Cg(t), uniformly with respect to t;

« the expression f(t) ~ g(t) denotes that f(t) < g(t) and g(t) < f(t), simultaneously;

« the notation |o| denotes the smallest integer, or floor function of o, that is, the
number m e Z suchthatm<o<m+1;

« the notation p’ denotes the conjugate exponent of p € [1, o), that is, the number
suchthat;—)+%= 1;

- the expression Ff or f denotes the Fourier transform with respect to the x variable
of f;

« the space CZ2°(Q) denotes the space of test functions, that is, infinitely differen-
tiable functions with compact support in Q.

- the space LP(Q) represents the Lebesgue space of measurable functions f de-
fined in an open domain Q c R” with finite norm

171, = / P dx,
Q

for 1 < p < oo, quotient with functions with zero measure over Q. For p = oo, we
define the space L*°(Q) as the space of measurable functions f with finite norm
1]l = esssupxeqlf(X);

* the space L%C(Q) denotes the space of locally LP functions, that is, the space of

all measurable functions f : O c R” — R" such that its restriction to a compact
subset K C Qs in LP(Q).
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« the space LP(Q, u) represents the weighted Lebesgue space of measurable func-
tions f such that f is in LP(Q) with respect to the measure , that is, f has finite

norm 1
( / If(X)Ipdu) ’.
Q

» the notation ()2 denotes the quantity 1 + |&|2, often referred to as the japanese
norm of &.

« the space WSP(Q) represents the Sobolev space of functions f such that
(1 +[&|5)f € LP(Q).
In particular, we denote H5(Q) = WS2(Q);

- the space WSP(Q) represents the homogeneous Sobolev space of functions f
such that |£|Sf € LP(Q);

-+ the notation ||f|| ;,, denotes the quantity HIX/'IS?‘HLZ:

« the operator (I—A)‘1 denotes the Bessel potential of order 2, whose action may
be defined by (/- A)~'f = F~1((£)2f) for any f € S, and then extended by density.
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2 LINEAR PROBLEM

The main argument in all of our proofs consists on a rather usual construction
of solutions to nonlinear problems, based on applying Duhamel’s Principle and a fixed
point argument. To this end, we make use of the decay rate of solutions to the linear
problem associated to (1), that is, the following linear Cauchy problem:

Uy — AUy + A2u—Au+ (—A)eut =0
u(0, X) = up(x) (8)
ur(0, x) = uy (x),
with 6 € 0,1).
Therefore, the first thing we need to do is to obtain existence results and decay
estimates for the linear associated problem. Throughout the following section, we will

adopt the notation || - || and ( - ,- ) to represent the norm and the inner product in L2,
respectively.

2.1 EXISTENCE OF SOLUTION TO THE LINEAR PROBLEM VIA SEMIGROUPS
THEORY

Consider the following linear Cauchy problem:

U —Aug + A2u—Au+ (-A)Pu; =0, t>0, xeR"
(U, up)(0, X) = (ug, u)(x),
with © € [0, ).

Formally, we make u; = v and substitute this relation in (9) to see that it is
equivalent to

Uy =V,
(10)
Vi—Avi+ A2u—Au+ (-A)Pv =0,

or yet

ug =Vvj;
11
{v, (1= A A2 = A+ u+ (I-A)" (u—(—A)ev) . )

Now, this pair of equations can be seen as one vector equation: Setting U = (u, v),
this is the same as

du o |/ 0
dr - <_A2 o) . ((/—A)—Wu—(—A)ev)) | "o
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with
Ao = (I-A) (A=A + ). (13)
Therefore, (9) is equivalent to the system
du = AU + B(V);
dt (14)
U(0) = Uy,
where

_ u _ Up _ 0 / _ 0
V= (v) Y= <u1> A= <—A2 o) A= ((/—A)—1(u—<—A)9v)>'

We will now define properly the operators A,, A and B(U) that appeared above
and obtain some important properties about them.

2.1.1 About the Operator A,
Let D(A,) be the subspace of H2(R"), defined as follows:
D(As) := {u cH3(R") : 3y € H'(R") such that
(Au, AY) + (Vu, V) + (u, )
= (y, ) + (Vy, Vi), b € H2(RM) }. (15)
Now, define, for every u € D(A»),

A 1 D(As) — HY(R")
u—y. (16)

Observe that, at least in a more loose sense, the equation on the definition (15)
can be seen as

(AZu, p)~(Au, ) + (U, ¥) = (v, %) = (Ay, ¥), Y € HA(R"),
= ((A2=a+Du,p)) = ((I=A)y, W), ¥ e HAR),
= A=y =(I-A7 (A% = A+ Du, in(H>R"). (17)

So, this definition agrees with (13). Let’s prove that the operator A, is well-defined
and later on, characterize its domain properly.

Lemma 2.1.1 For each u € H3(R"), there is at most one y € H'(R") such that

(Au, AD) + (Vu, V) + (U, ) = (v, 0) + (Vy, V), Vb € HA(R"). (18)
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Proof: Assume that yq, y» € H1(R™), and that both satisfy (18). Then,
(1= Y2, 0) + (V(y1 = y2), Vi) = 0, Wb € HA(R"). (19)
Since C(R") is dense on H2(R"), it holds that
(V1 = y2, ) + (V(y1 = y2), Vb) = 0, Vi € Cg°(R"). (20)

Now, let y = y1 —yo € H'(R™) and consider {bvlven € CZ(R) such that
(bv)veny — yin H' (R"). Then,

V125 =20y, Wv) gt + Wy |20 = Iy —Wv]3 — 0, as v — oo (21)
Also, because | |[Wv ||y = ||| | < [[Wv =Y| 41, One has

[bvllgt = Yy, asv— oo (22)

From (21) and (22),
iy, W) = (Y115 - (23)
Finally, from (20) and (23),

V=0

0= (¥, Wv) + (VY Viby) = (v, o) gt = [l 113,
hence |y||y1 = 0, thatis, yy = y». m

Remark 2.1.2 From the previous lemma and the fact that u = 0 € D(A) (hence it’s
nonempty), it follows that Ao is well-defined.

With the next two lemmas, we will show that D(A) = H3(R").

Lemma 2.1.3 D(A,) C H3(R"), and there exists a constant C > 0 such that
|l < C AUl
for every u € D(A5).
Proof: Let u € D(Ay). There exists y € H(R") such that
(Au, AY) + (Vu, V) + (U, d) = (¥, ) + (Vy, V), (24)
for every 1 € H2(R"). Now, define the functional F : H'(R") — R by
(F. ) = (v, ) + (Vy, V), b € H'(R").

F is clearly well-defined and linear. It is also continuous:

L, W) | < (v, W) + [(Vy, V)|
< Iyl [l + IV y [ VW
<21yl Wl g, YV € HYRM,
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that is, ||F|| < 2]|y|/41 - Now that we know that F is bounded, we can rewrite the

variation problem (24) as
(Au, &%) + (Vu, V) + (U, 9) = (F, ), v € HAR").
Also, since H2(R") ¢ S'(R"), the identity
ANPu-Au+u=F
holds in S’'(R™). Applying the Fourier Transform,

(1&* + &2+ i = (1 + gy

= (14 [EPYR(E + (£ + )i = (1 + [E)27.

First we observe that

(1+1E0)(1 +183) =1 +]82+1[% + g2
< (142 + g]H2.

Taking the L2—norm in (26) and using (27), we get

/ (1+€[%)0f dg < / (1+1EP)7 (1 + &7 + &0 d£=/R (1+ &)y de.
R7 RN n

Hence,
[ullpe < Yl = |Azul[ g1 -
This implies that u € H3(R").

Lemma 2.1.4 If u € H3(R"), then there exists y € H'(R") such that
—=(V(Au), Vi) = (Au, ¥) + (u, ) = (v, ) + (Vy, V),

for every \ € H2(R").

Proof: Let u € H3(R"), and define the functional F : H'(R") — R by

(Fi) :==(V(Au), V) = (Au, ) + (u, ).

(25)

(27)

(28)

(29)

F is clearly well-defined, because u € H3(R"), and it is a linear functional. Let’s

check its continuity:

|(F,0) | < |(V(AU), V)| + |(Au, b)| + |(u, V)]
< llullpgo W1, + lull e W]+ [[ull [[b]
< 3|ullps W]y, Y € HY(RM).
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Next, define the form a : H'(R") x H'(R") — R as

a(e, V) = (o, V) + (Ve, V).

The form a is well-defined, bilinear, continuous and coercive. In fact, good defini-
tion and linearity are immediate, and we check its continuity and coercivity:

* la(e, V)| < (@, )|+ [(Ve, V)|
<ol ] + Vel [V
<2|@ly Wy, Yo, b e H(RM;

« la(e, @)l = @2+ | Vel?
= ol Yo € H'RN).

Therefore, by Lax-Milgram’s Theorem, the variation problem
aly,w) = (F, ), »eH R (30)

has a unique solution y € H'(R"). Since (30) holds for every { € H'(R"), in particular
it is true for each P € H2(R"), i.e., there is exactly one y € H1(R") such that

v, 0) + (Vy, V) = =(V(Au), V) = (Au, b) + (u, 1), Y € HA(RD),
or equivalently,
(v, b)) + (Vy, V) = (Au, Ap) = (Vu, V) + (u, ), Vb € HA(R).
| ]

Remark 2.1.5 Observe that the previous lemma asserts that u € D(Ao). Since u €
H3(R") was arbitrarily given, this means that

H3(R") € D(Ap).
Combining this and the result from Lemma 2.1.3, one can see that
D(As) = H3(R").
2.1.2 Returning to the Problem
Having defined properly the operator A, : H3(R") — H1(R"), let
X = H2R") x H'(R"),

we’ll show that the operators A : H3(R") x H2(R") — X and B : X — X given in (14)
satisfy:
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« Ais the infinitesimal generator of a Cy—semigroup in X;
* Bis a bounded linear operator in X.

From these two statements, it follows from Semigroups Perturbation Theory that
the operator (A + B) generates a Cyp—semigroup in X. More precisely, one can apply the
following:

Theorem 2.1.6 If A is the infinitesimal generator of a Cy—semigroup over a Banach
space X and B is a linear bounded operator in X, then A + B generates a infinitesimal
Co—semigroup in X.

Now, let
S 1[0, 00) — L(X)
be the semigroup generated by A + B. From semigroups Theory, U(t) := S(t)U is the
strong solution of the Cauchy abstract problem (14) when Uy € D(A + B) = D(A) =
H3(RM) x H2(R™), and alternatively, it is the weak solution to (14) when Ug € X.
In other words, if Uy € H3(R") x H?(R"), then
U e C([0,00); H3 x H?) n C1 ([0, %0); X).
Thus, setting U(t) = (u(t), us(t)), this means that if uy € H3(R") and uy € H3(R"), then
the problem (9) has a unique strong solution, satisfying
u e C([0,00); H¥) n €1 ([0, x0); H?),
up € C([0,00); H?) N C1([0, o0); HY),
that is,
u e C([0, 00); H3) N C1 ([0, o0); H?) N C2([0, o0); H).
On the other hand, if the initial data has a little bit less regularity, say ug € H2(R")
and uy € H'(R"), then
U € C([0, 0); X),
that is,
u e C([0, 00); H?) N C1 ([0, o0); HY)
is the unique weak solution to the linear problem (9).

So, all we have left to do to conclude this part is to prove the two following
lemmas:

Lemma 2.1.7 The operator

A: H3R" x H3(R") — H3(R") x H'(R")

(U, v) — (_2\2 (’)) (;’) = (v,~Aou)

is the infinitesimal generator of a Co—semigroup in H*(R") x H'(R").
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Proof: Let U = (u, v) € H3(R") x H3(R"). We'll show that A satisfies the hypotheses of
Lumer-Phillips’ Theorem, that is, A is a densely defined, dissipative maximal operator.

The first assertion is clearly true, because H3(R") is a dense subspace of
H2(R™), and H2(R") is a dense subspace of H'(R"). Now, let'’s show that A is dis-
sipative, that is, Re(AU, U) < 0 for every U € D(A) :

(AU, U)o g1 = (V, U) e + (=AoU, V) 1

=/R< 1+ [E2 4 &)%) 0 TdE - / (1 + [€12) Agu ¥ .

Now, from the definition of A,, we have Ay = (1 +|£[2)~ (1 + |£]2 + |£]*) 0. Hence,

(AU, Uy = [ (14122 4 2)0 0= 0T o
= [ (+1eP feit2imm (v o
Rn

which implies that Re(AU, U) 2, 1 = 0, for every (u, v) € D(A).
Now, let’s prove that A is maximal, that is, (/- A)(D(A)) = 2 % H'. Firstly, let's
check that (/— A)(D(A)) c H? x H :
Let (f, g) € (/- A)(D(A)). Then, there exists (u, v) € D(A) = H3 x H? such that
(I=A)u,v) = (f,9).

Since (u,v) € H® x H2 ¢ H? x H' and A(u,v) € H? x H', it follows that
(f,g) € H?2 x H!.

Now, let’s prove the reverse inclusion, H2 x H' c (- A)(D(A)).

Let (f, g) € H? x H'. We need to show that there is a pair (u, v) € D(A) = H3 x H?
such that (/- A)(u, v) = (f, 9), thatis, (u—v, v + Asu) = (f, g), or yet

u-vs=f
v+ Asu=g.
Finding such pair is equivalent to find u € H3(R") satisfying

u+Asu=rFf+g (31)

and after that, define v = u—f. To find a solution to (31), we formally apply the operator
(I—A) on both sides to see that we are looking for a solution to

(I=A)u+ (A% =A+ Du = (I-A)(f +g).
Define the bilinear form
a: H?(R") x H3(R") —» R
(0, 0) = (0, V)1 + (@, )) e
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Then,

a(e, W) < (@, W) 1] + (@, 1) e
<ol Wiy + llellge 10l 42
<2lollpz Wl

hence it's continuous, and

2
la(e, o)l = | @lZ + o122 > lol2e

hence it’s coercive.
Now, define the linear functional F : HZ(R”) — R as

(F,) = (f+ g, ) -
F is continuous. In fact,
|[{(F, ) [ < IF+ gl [l g

< (Il + 19l e) bl 2
< (Ifll e + 19l ) bl e, YA € HA(RT).

Therefore, Lax-Milgram’s Theorem asserts the existence of u € H2(R") satisfy-
ing
a(u, ) = (F,b), Vi € HA(R"),

which is equivalent to

(U, D)1 + (U, W) e = (F+ 9, b) g1, Vb € HAR")

— (U, ) +(Vu,V¥) + (u) + (Vu, V) + (Au, AY)
=(f+9,¥) +(V(f+g), V), (32)

for every \ € H2(R"). In particular,
(U, )= (Vu, V) + (Au, AY) = (-u+ f+ g, ) + (A(-u+ f+9), ),
for every \ € H3(R"), with —u + f + g € H'(R"). Therefore, u € D(A,) and
Acu=-U+Tf+g.

As discussed before, defining v = u—f € H2(R"), we have found a pair (u, v) €

H3 x H? satisfying (I— A)(u, v) = (f, g). Therefore, (f, g) € (- A)(D(A)).
We have shown that A is a maximal dissipative and densely defined operator. By
Lumer Phillips’ Theorem, A is the infinitesimal generator of a contraction Cy—semigroup.
|
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Lemma 2.1.8 The operator

B: H*R") x H'(R") — H2(R") x H'(R")

(u,v) — B 0
(I-A) Y (u—-(-4)%)

is a linear and bounded operator.

Proof: Linearity is immediate. For the continuity,

2
1B 2y g1 = ||(1= AN u=(=4)%v)||
H
2
B o |u—1&[2%
- [ iey | ST ae

IN

|02 / 40
2/ d¢ +2 v|cd&
R 1+ &2 R"1+|5|2| |

gz/ |0|2da+2/ (1 + EP)v2 de
RN RN
< 2||ulZp +2| V|2,
2
=2|U|%, 1 -

To clarify, we used, on the calculations above, the fact that for || > 1 and 6 < 1§
%0 <182 < (1+ 2182 + &) = (1 +|E]7)2.

Therefore, \|B(U)H,2_,2X,_,1 < HUH%_,ZX,,_,1 , and we are done. ]

2.2 ESTIMATES AND DECAY RATES FOR THE LINEAR PROBLEM

We formally apply Fourier’s Transform to the differential equation in (8) and to
the initial conditions, obtaining

(€)% 0y + €200 + (£)21EPU = O, 33)
u(0,&) = tg(&), 00, &) = Uq(&).
The characteristic equation associated to (33) is
(E)2A% + €290 + (£)2]€)2 = 0. (34)
Multiplying (34) by (£)72,
A2+ (E)BIEPON+ e =0, (35)

whose discriminant is given by

Ay = (£)4E|*0 - 482,
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We'll analyze the behavior of solutions in the low frequency (i.e., when |&] — 0) and
high frequency (when |&] — o).
When || — 0, we have (¢) — 1, and so

Ay>0, if 0<

Ay<0, if 8>

This means that, for |&] — 0,
i) If 0 € [0, 3), the eigenvalues will be real;
i) If0 e [%, 1], the eigenvalues will be complex.

On the other hand, if |&| — oo, then (£)™* ~ |£]™* and so

A)\>0<:>|£|_4+4e—4|£|2>O<:>—4+49>2<:>6>g,

and because of our initial assumption 0 € [0, 1], this never occurs. This means that for
high frequencies, we have A, < 0.

Observe that in the case 6 > % both high and low frequencies imply that A, < 0,
that is, the solution oscillates with no decay, and hence the approach to the problem
would need a completely different method. This justifies our choice of dealing only with
the case 0 € [0, 3).

The characteristic polynomial roots are given by

~JE20 = \ /][4 — 4(E) 42
2(&)2 '

+= (36)
Lemma 2.2.1 Assume 0 € [0, 1?). If|&] — 0, then the eigenvalues of the characteristic
equation associated to the linear problem (8) satisfy the following equivalences:

i) Ay e —|g 20170,
i) -~ —|E[29;
iii) Ay — A~ |E]29.

Proof:

Observe that for 0 < |&] < 1, we have 1 < (£)2 < 2. Also, we notice that,
because of our assumption [¢{|] — 0 and the fact that 0 < % we can take |&| small
enough so that

1 _
4 <1 —4(8)4E)P0 < 1.
This implies that

_3_
S £)4)2 240
<5< 141/1-4(5)4[240 < 2.
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i) We have that, multiplying and dividing by the conjugate root of the

numerator,

€20 + \/]£[40 - 4(E)4]¢ 2
2(€)?
1 g4 —(1g|40 —4(8)4|¢)?)

S 2(8)2 g0 \/|5|4e_4<5>4|5|2
4(8)*Ef?
£)2(E[29(1 + \/1 - 4(£)4E[2-40)
2(&)%1¢)?
ERO(1 41— ()4 je240)

So, for |€| small enough, we have

+=

2 2
—4 |£|29 SAr s |£|29’
& €]
that is,
A~ =g,
ii) Here, we have
—|& 20 3 40 3 2 3 20
A = |E] \/|2<|£>2 | | - £<|E’>2 (1 +\/1 _4<£>4|£|2—46)_
Hence,
e << -lEE
_— - = 4 3
that is,
A~ g2

iii) Directly from the definition,

2,184 - 4(e)4lef2 2G¢1 4(£)41[2~40

AL —A_ =
" 2()2 ()2

Therefore, using again the equivalences for |&| small enough,
1
BP0 <A —A < e,

or equivalently,
Ay — A~ |E[20,
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Lemma 2.2.2 Assume 6 < [0, %). If |&] — oo, then the complex eigenvalues of the
characteristic equation (34) associated to the linear problem (8) satisfy the following
equivalences:

i) ReAsx ~ —|[20-1);
i) |Ax| = |El;
i) Ay = A| ~ [E].
Proof: Observe that, for |&| > 1, it is true that
67 <1+ 18P <218 = (£)% ~ g,

Also, for |§] large enough, the argument of the square root that appears on (36) is
negative, and so, we can explicitly write the real and imaginary parts of the eigenvalues:

€0 \JHE)ER g4
= — 4+ .
2(£)2 2(¢)2

i) It follows immediately from our observation above that

1 _ _
ReAy ~ —§|a|28 2 = ReAy =~ —|g|20-1),
ii) Also from the same observation,

|E]40 + 4(8)4g)2 - |40

ALl = _ e
= |AL| = [&].
iii) We have
6% jeto2 < 1 < g2 o g2 < 0
(&4~ T (e

With that in mind, we obtain

®aE)EP - |0
RGE

2 _lE*
(&)*

4112 _ | 5|46
A AP ‘ VA <|a| B 4

£)?

= 3|82 < Ay —A_]? < 42
= A+ = 2| = [E].
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|
Now, the solution of the Cauchy problem (33) is
u(t, £) = Cy(£)e™ + C(£)e™, (37)
with C4(§), Co(&) depending on the initial data. We have that
Elo(f,) = I:I(O, E) = C1 (E,) + CQ(E,). (38)
Differentiating (37) with respect to t,
Uy(t, £) = A Gy (E)e™ + A-Cp(£)e™,
hence
Uy (&) = ur(0, &) = A+ C1 (&) + A-Ca(&). (39)
Solving the system (37)-(39), we get
_ —}\_Elo + 01
C1 (‘t—») - }\+ _ }\_ L]
_ }\+ EIO - 01
Co(8) = N
Replacing C4 (&) and Cs(&) on (37), we obtain
O(t, £) = Ko(t, €) g (&) + K (t, €) 0y (8),
with
. Aot —aefh et _ oth
A Ve A v
Therefore, the solution to the linear Cauchy problem can be written as
u(t, x) = Ky(t, x) = tg(x) + Ky (t, X) * Uy (x), (40)
with
Kolt,x) = F 1 Ko(t,8), Kq(t,x) = F1Kq(t, &). (41)

In order to prove a theorem that gives the decay rates and regularity for the linear

problem, we need to prove some estimates.

Lemma 2.2.3 Let 0 < [0, %). Then, in the Low-Frequency region, the following esti-

mates are true, fort > 0:
i) IFHEPY <1, then |Kq(t, &) < te™;

i) IfHEP® > 1, then |Ky(t, &) < [E[72%ef;
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iii) 10:K4(t, )] < e + |]2(1-20) gl
iv) |Ko(t, £) S e
V) [9:Ko(t, &)] < [EP1-0 e
Proof:
i) We have that

efM — oA
Ay — A

— |£|—29 el’)\_ (et(?\+—)\_) -1 ) )

IKq(t, £)| = ~ |E[20] e — e

X _
Observe that the function x — ©

liesin[1,2] for0 < x < 1.

So, our assumption #£|29 < 1 implies that
0 < t(As =) < Hg[*0 <1,

(we remark here that the upper constant we found in the proof of Lemma
2.2.1(iii) is exactly 1). Therefore,

tA—A-) _
1< 6—1 <2
= Tt —A)

= ™M) 1 t(h - M) & 10
Using this on our initial equivalence shows that

Ky (t, &) ~ |&] 29|20t = te-

i) Assuming that ¢|£|2° > 1, we can use the equivalence on Lemma
2.2.1(iii) to estimate

4
~1-g71 <1-—el2) <1,
Hence,
A _ ofh
A~ et —e B ~
K1 (t, &) = o |~ 7206 (1 — efAM)
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iii) Differentiating the expression for k1 (t, &) with respect to t, we get

}\_el‘?\_
Ay — A

Ao —a_e™| | A et
Ay — A= Ay — A=

- |£|2(1—6)et7\+ . |E|2Geﬁ\_
e |£]29

10¢Kq(t,&)| =

+

t+ e,

_ |E|2(1—29)eﬁ\ A

iv) Observe that
)\_+% |£|2(1—9)
A 1|2

- 621290 < +

because || < 1 and 0 € [0, £). This implies that

At —t(A—A) At _—t(A—A)
- +-) < — +AT <1,
1 N <1+ » € S
Therefore,
- A —A_eth
Ko(t, &)| =
|Ko(t, &)l -

~ e | al—ze ‘7\+ e tA—A) }\_)

{ M tA)

A, 1z1—26
=e’™ A
[EF A1 = 3=

< e,

v) Differentiating the expression for ko(t, &) with respect to t, we have

AA_e- — A, et
Ay — Ao

_ A
As = A

- |&|2(1—9)|£|29 0,

~ |5|29 ’

13¢Ko(t, &)| =

t(}\—_}\+) —1 |

e

since A-—A; < 0 implies

0 < el < 4
= |et(7‘—_7‘+) -1]=1- ef(A-=A) <A1.

(42)
Lemma 2.2.4 Let0 € [0, %). Then, in the High-Frequency region, it is true that
4Kt £)] < |e[UNetBersjj = 0,1,
I

forall t > 0.
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Proof: We start by observing that, since A, and A— are complex conjugates, we have

ReAy =ReA- and ImA; =—ImA_,

and hence, by Euler's Formula,

| o _

et7\+‘ _ etRe Ai‘e—it]lm A _ eit]lm ?\+|
= el ReAx| _2jsin (tImA,)| < 2e! R+,

With this inequality, it follows directly from the estimates of Lemma 2.2.2 that

~ A et}\—_x_et}\.*
K — |0+ =
Kolt,&)] A — A
_ }\+et>\— _7\+et>\+ + }\+eﬁ\+ _}\_et>\+
- A — A
A |et?\__et?\+ + || < gfReAs
~ |)\+_)\_| ~ ’
. et — A 1
K t, = = e”‘—_en\+ < -1 etRe)\i;
‘ 1 E’)} Ay — A |}\+_)\_|’ S 1€
. A, e —A A e A
kot )] = | =53 B |>1 *_)\|||e“—_em+ < el et
+ — + _
A )\_et}\— — 7\+ et?\+
0K (1,8)| = |-~ A€
okt 2) A A
_ A_eir- —?\_60\* + et —)\+e’7‘+
- Ar— A
IA| e — 6| 4 |e™] < efFers

|
We'll use these estimates to bound L9 norms of the natural solutions Ky, Ky, as

well as their spacial and time derivatives. First we’'ll prove an auxiliary lemma.

Lemma 2.2.5 Ifa>—-n,b > 0, c > 0, then there exists a constant C := C(a, b, ¢, n) such
that

/ 1£]1267P1E° g, < C < +o0.
Rn
Proof: Integrating over shells of fixed radius,
c o0 c
/ |£|1267D1E° g, = / / p2e™PP" dS; dp
R” 0 JIg=p
00 c
=/ 2™ wnp™ T dp
0

> 1_—bp°
= (Un/o pa+n_ e P dp!
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where wp = w{x € R" : |x| = 1} is the volume of the n—dimensional unit sphere. Now,
since the function

f(X) — Xa+n+1 e—bXC

tends to zero when x — +oo, for b > 0, ¢ > 0, there exists a constant Cy = C4(b, c)

such that

pa+n+1 e—bpC <1 = pa+n—1 e—bpc < p—2,

for every p > Cy. This implies that

c G c o0 c
|E|ae—b|£| dé = wp [/ pa+n—1 e—bp dp +/ pa+n—1 e—bp dp]
R7 0

Gy
C1 (0 ¢
< wn / pa+n-T dp+/ o2 dp
0 Ci
Cq 1 X
= BN a4, lim -
a+n X—00 P
0 1
w Ca+n w
=™ L 2N ._C(ab,c,n), fora+nso0.
a+n Cq

Remark 2.2.6 In the following lemma, we prove several L"—L9 estimates for derivatives
of the fundamental solutions, Ky and Ky. In some cases, we did not choose the sharpest
possible estimates, since it would lead to breaking in much more cases. Instead, we
chose a more clean result which is fit for our purposes. For a precise and more general
result, we address the reader to (EBERT, M.; DA LUZ; PALMA, 2020).

2.3 LOCALIZATION OF FUNCTIONS IN THE FOURIER SPACE

Up until now, we discussed about low and high frequency regions and the need
to treat them separately. In fact, the eigenvalues A+ (and consequently the fundamental
solutions Ky and Kj) behave differently depending on the size of the variable &. In this
sense, we proved equivalences for AL in Lemmas 2.2.1 and 2.2.2. In Lemma 2.2.1,
we assumed |&| < gq, with ¢ > 0 being the greatest value for which the eigenvalues
A+ are real, that is, when the argument of the square root from the definition of AL is
non-negative. On the other hand, in Lemma 2.2.2 we assumed |§| > 1 to prove our
estimates. One could question what happens for the intermediate frequencies, that is,
when [&| € [eg, 1]
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This section is dedicated to fix the localization for the low and high frequency
regions as
Low-frequency: |&] < 1,
{High-frequency: &l > 1,
based on the argument that, for intermediate values of ||, one can obtain exponential

decay rates for the fundamental solutions. Therefore, any result we obtain assuming ||
very small or very large will still hold if we assume |&] < 1 or |&| > 1, respectively.

Lemma 2.3.1 Let6 € [0, %), nell,2],ge[2,+x],k >0,ne Nandj=0,1. Consider
n' =n/n—=1) andr € [1, oo] given by
i 1 1 1 A1

r g v n q
with ' = q/(q—1). If{ € L"(R"), then the following estimates for the Low-Frequency
region are true:

) IEFRot, Vbl o ey < (1+ 07200 Japy
i) IER Ko (t, Nl gy < (1 + 7200 R
ji) 1fe € (0, %), then

1(n
HEFR (8, YD o e o<y < (1+ 81720 FH0) o

iv) Forn(l—g-,> +k=20>0ando ¢ (o,

i ) one has

N —

k— 29
H |£|kK1 II)H "t 2% <|EILT) S(1+1) 2(1 —0) (7+ Hll)HLn

Alternatively, if = 0,

iv’) Forn(%—%) +k >0 one has

!
HEFR (8 Dbl ety S 1+ 0728 o o

v) Forn(f] %) + k—20 <0 one has

HEF Rt bl < (1 + 01720 () |0

t 29 <|gl<t) ™

Vi) Forn(%—(l]) + k—20 =0 one has

k k <
IEI" Ky (t 1I)H o (3 <[e|<1) ~ In(e +t) ||| n-
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A special exception case is given when k = 0, 1 = q, namely,
vi’)
| Kq(t ﬂ)HLq qej<i<n S Wl
vii) For n (% - },) +k—20 > 0, one has
k—20)—
HEFDRs (8 Vb a1y S (1 + 72002 g
viii) For n (ﬁ — (—7> +k—20 <0 one has
HEROR (8, Wbl o ey S (1 + 0720 (R ] .
Proof:
i) From Holder’s Inequality, Lemma 2.2.3(iv) and Lemma 2.2.1,
k i 7 k
Ko(t, - < H Kol
|1 Rott, 10| g ypy = 16RO g TP
< Kk StA,
< [ e, gpqy 0l
— (/ |£|kretr7\+ da) ||1I)||Ln/
[EI<1
1
S (/ |£|kre—th|E|2(1_e) da) ' HII)”L“"
|E|<1
First, observe that, for |&] < 1,0 € [0, %), we have
162079 < 1 & CleR-9r < Cr & O < O
o1 < lrgCIEFr
e—CtrIailz(“e) < eCre—C(1+t)r|£|2(“9>_
Hence,
1
KKy (t, N < </ kr g=C(1+1)r|£[20-0) g ) bl
(SRCCRU NS &) I,
Now, changing variables, v = (1 + t)20-9) o) )&, which implies dv = (1 + t)ﬁda :

e Rott,

L9 (|1g]<1)
N

5(/ VK (1 + £y zm @ OV (4 4 gy dV> DI,
Rn

1
<+t aal? k)< . |v|kr g CrivE? dv) D] -
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Therefore, using Lemma 2.2.5 and applying Hausdorff-Young, we

end up with

1 n
< (1 7 m=

e Kott, 0|, e

for kr + n > 0, which is true since we are assuming k non-negative and

n, r to be positive.
i) We will follow basically the same steps as in i), but using Lemma 2.2.3
(v);

Hl&lkatko(f, b

LI (1<)

< N1E*0:Ko(t, -

< |leFodkott |, bl
< k+2(1-6) g\,

S e veren TPl

1
_0) — 2(1-6) L
5 </|£|<1 |E|kr+2r(1 9)e C(1+t)r|&| da) |N)||LT1"

Making the same change of variables, v = (1 + )20-9) o) )&, and using
Lemma 2.2.5,

[1eackot, b

L9 (|g]<1)
;

~

< ( 9 |V|kr+2r1 6)(1 L 1) 19 -r —CrIVI 19(1 +1)7& P d\/)r ||1I)||Ln/

1
_ 1 n _ - r ~
< (1 4ty zo (Feh)- ( |v|fr+2r(1-0) g=Criv ™ dV> I o
Rn

< (1 + ty @ ), if kr +2r(1—0)+n>0.

Again, the condition for using Lemma 2.2.5 holds, since k, r, (1 —0) are

non-negative and n € N.
iif) Using Lemmas 2.2.3(i) and 2.2.1, and assuming 0 > 0,
< |lef ki)

< tH|E|keD\_

[1e s, b

gy MWl
Il

L9 (1)£[29<1)

Lr(t|g[29<1)

1
S(1+1) </ |£|k’e‘c(1+f)f|£|29 d5> ||li)||Ln"
lEI<1
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Now, changing variables, v = (1 + t)ziea and using Lemma 2.2.5,

|1eRi e,

L9 (t£[20<1)
1
<(1+1) (/ VA (1 + t)_z%e‘Cflvlzeu + t)—% dv> ||1L||Ln/
Rn

1
<(1+n"- 26 (7+K) ( y |v|k’e‘Cf|v|26 dv) ' ||1])||Ln,
< (1 + )2 (0|, if kr +n > 0.

Once more, the condition kr + n > 0 is true for our parameters k, r

non-negative and n € N.

iv) Using Lemma 2.2.3(ii), and assuming that 6 € (0, %) ,

o
(CRATURTY IR
S [1efkac | Dl o
S (R R 1
< k—ZGeI?\+ 1, ,
[ s <iegen Pl

1
< (/ |£|(k—26)re—C(1+t)r|g|2<1—e) d&) r ||1I)||Ln/.
|EI<1

Again, making v = (1 + t)ﬁg,

k [ Nl
Hlil Kalt, ) Lq'(t‘%eglalsﬂ
1
S (1 + t) (1 + t) 2r1 )} ( |V| (k—20)r —Cr|v|21 0) dV> ||1I)||Ln,
Rn
1
S(1+t) = Sy (7+k—20) ( |V| (k-20)r g=Crlv[2(1-0) dv) ||11’||/_n’
Rn
<(1+t)2 1e( +k— 29)”11)”“, it (k=20)r +n> 0.

Observe that the condition needed for using Lemma 2.2.5 is equivalent

to our assumption:

(k—29)r+n>0<:>$+k—26>0®n(%—%> +k—-20>0.

iv’) For © = 0, observe that the condition £ 26 <& <1, givenin
opposition to item iii), does not make sense. We exchange it for [£| <1 <t
instead, in contrast to (t|¢| < 1) from itemiii), in the case 6 = 0.

The calculations are the same, though, and we find

P 6] <046

for kr + n> 0.
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v) Here, we start the same way as in item iv):

|1k Ra e, b

5 e e, bl

1
Lr(t 28 <|g|<1

1
_ _ 2(1-0) A
< (/_1 |£|(k 20)r g=C(1+1)r[E] dg) [l -
120 <JgI<

1
L9 (20 <|g| <1

But in this case we cannot apply Lemma 2.2.5 for, as seen in the pre-
vious item, the condition (k —20)r + n > 0 is necessary, and here we have
the opposite (excluding equality, which will be dealt with in the next item).

We make the change of variables v = (1 + t)ziea. This choice implies
that

VPO = (14 )€ > 11EP0 > 1 = v > 1.

So, the monotonicity of the integral, along with the inclusion

[EeR": 2 <|i| <1} C{veR":|v|> 1)

allows us to integrate over {v € R" : |v| > 1}.

Also, the change of variable imply that

|£|(k—29)f — (1 + [’)_(k_2296)r|\/|(k_29)r — (1 + t)f—é%lv|(k—29)r

and
— —2(-6) - _1-20 _
A+ 0ELAO (1 4112 v = (1485 |v201-9),
Hence,
L
EFRE D s <
1

< (1 + 1)z < |V|(k—29)fe—cr(1+t)1go|v|2(1—9)dv> ’ [l

vI>1

1
< (14 1) (348) ( | ez dv) Bl
[v|>1

And because of our assumption n (% - %) + k—20 <0, the above

integral is finite:

/ [v| k290" gy = / h / pk=29rgs, dp
[v|>1 T Jlvl=p

(0]
- wp /1 olk=20)r+n-1 g,

(k=20)r+n |%
=wp lim LA
x—+0o (K—20)r + n ’
Wn

T T k=20)r+n T
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for (k —20)r + n < 0. Therefore, we have

< =55 (7+k)
L (B <t <1) S (1+8) 720 ||,

|1ek K
for (k—20)r+n<O.

vi) In contrast to items iv) and v), now our assumption implies that

k—20=-"
r

So, starting the same way as in items iv) and v) yields

|1ekRa 8,y

1
L9 (20 <|g|<1)

< [ierkie ) Rl

Lr(r 20 <|g]<1)

1
5 </ 1 |E|(k—26)re—C(1+t)r|g|2<1—e) d£> r ||1I)||Ln/
726 <|E|<
1
-n . — 2(1-0) e
— </_1 |£’| ne C(1+1)r|&) d£> ||11)||Ln/
20 <|E[<A

s(/J MﬂdQWMmW
£20 <|g| <1

Again, the integral can be evaluated by integrating over shells of fixed

/_1 £ dE = / / 1 dS; dp
t2e §|E|<1 f29 HE p

1
—1 _
_wn/t_1p dp—wnlnpt_z%

20

radius:

= wnpln t21*9
—%Int with ¢ > 1.
Vi) For0=0,k=0,r =
Ky gy A1(t")HL°0(|a|§1gt)”ﬁ)ll/—”'
S e Loo(|a|<1<t)”‘i)”L“’
< |le-ctier HLOO (el<1< ]

S bl
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vii) From Lemma 2.2.3(iii),

[1e ok e, i

La'(|E]<1)

< |ierakie, ,

Lr(|&|<) Ln
< H k(g 4 2(1—29)60\
< |1+ e B )2

k o—C(1 20 k+2-40 —C(1 2(1-0)
< (fpesercnne & [epztogroar ) ol
Lr(lgl<) Lr(lg]<)

= (N + No) [ -

Let’s deal with the norms N; and N, separately.
For Ny, if 0 € (O, %) , we make the change of variable v = (1 + )25 &
and apply Lemma 2.2.5:

Hlilk —C(1+)&)20 |

Lr(lg|<1)
=/ (&K g CO+OMER? 4
|EI<1

kr+ 20
ST+t / vk emCrM™ dy
n

< (1 + t) (n+kr)

Y

Hence,
Ny < (1+ )20 (7+),

for kr + n > 0, which is true since k is nonnegative and r, n are positive.
If 6 = 0, we immediately obtain

Ny < e

For No, we make the change of variables v = (1 + )2(-9) -9) )& and apply

Lemma 2.2.5:

H|E|k+2—4e e~ CU+D[g[P1-9

Lr(1&|<1)
=/ |£| k+2—4e)re— (1+t)r|a|21 -0) de
[E]<1
S+ t)_% |\/|(k+2—49)fe—Cf|\/|2(1‘9) v
Rn

<{+0)2 sticey (1 (k+2-40)r )

Hence,
No < (1+ t)—ﬁ($+k—2e)—1,

for (k +2—-40)r+ n> 0, since k > 0 and r,nand 2 — 40 are positive.
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Since we obtained two different decay rates for Ny and No, we check
which is the worst one.
We have the following equivalence:
(14 1y726(F+K) < (1 4 2oy (7h-20)1
1
1-0)

(” +k=20) +2(1-0)20

+
=

— ——
Vv
N
D

v
n

<$+k—29) +1

+

+
= =

SIS3SSIS3 SIS
vV

20 (F + k) — 402 1 40(1-0)

1-20)

Vv

40(1 - 20)

—
I3
+
=
NP~
vV
N
2

since 1 —20 > 0. Therefore, we get

(+k —20)-

1EFDK (Nl o g1y S (14 1) "l

viii) The argument we used on item vii) says that

115K (t, ‘)11’||LQ’(|5|§1)
< (el 1 gt (020) ) gy

and the worst decay rate amongst those two was the latter, because of the
specific assumption on that item, that 2 7 +k—20 > 0. Since in this item,
we assume the opposite, i.e., 7 + k—20 < 0, the former decay rate is now

the worst one, and we obtain directly

&%k (t, 11)||Lq (1g<1) S 1+ 26 (74K | 1.

Now we obtain the decay rates for the high-frequency region.

Lemma2.3.2 Let0 € [0,2),n € [1,2], g € [2,+0c], n € N, k > 0 and j,/ = 0,1.

Consider 3 > 0 such that p < % andlets; =k +j—1+ 138 Ify e HS(RM), then
— <)+

ek olKict, b U+n1942926wwwp

L7 (jg]>1) ™
with q' = 24
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Proof: From Lemma 2.2.4, we have that
)it &)| < lefTetReMs,

for j,I=0,1. Also, for 3 > 0,

e_Ctl &IZ(B_U S ece_c<1 +t)|£|2(e_1)

1
—eCCm (14+1) 2 <C(1 4 t)|z,|2<9-1>) 28 grO+DIEP O g 15
1 1-6
S(1+t) (gl P

~ ’

for t > 0,

]
because x — x28 X tends to zero when x — oc.
We first deal with the special case g = 2. Using the estimate above and Lemma

2.2.2,
kol < H k+j~l gt Re A i ’
[1er ottt o 5, ) < | wpmm)
< gk 25| F ‘
[ )
k+j—1+128
e ey
S(1+1) &) P 12(E[>1)

(1 +t 26 ”ll)H k+/—l+ f5

Now, for g > 2, we have its conjugate g’ = q—ﬂ satisfying @’ € [1,2). We then
estimate

|lekalKict,

L (|&|>1)

<& k+j—letRe At]
S |1 W L9 (1g1>1)

_1e _ 2(0-1) | . kj—l+ 1= 9 »
< ||Ig)7F @ CURMIERTT g KR T30

L9 (|&]>1)

_; 2(6-1) k+j—l+1=8 +
< Jler ® eotmieEe \w|fﬁw
~ : L2(|E[>1)

L2 (jg]>1)

/
_1-0 29" —C(1+t)2—ql|£|2(e —1)
(f wresveeod 0

1 n
Making the change of variables v = (1 + t)2@-1 & which implies dv = (1 + t)2@-Nd§,
1-0 2¢' 1 29 _1-0 29"
and |§] B = (1+¢) 28 = |v| B 24" we get

174N

|lealKi, o

L7 (jE]>1)

< (14 oy (5)

2-q’

-0 20 _52q | 120-1) 2q”
</ - )2(611 |'v| B 2-q’ e z_q/‘V‘ d‘\/) ||l|)||Hs/ .
v|>(1+t

X
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It remains only to show that the above integral is bounded by a finite constant.

/
2
/ | W E e CE gy
[v[=(1+)200-1

1-0 2q’ —C 2q'
S. N
(1+1)200-1) <|v|<1

_1-0 29"
+/ |v| B 2d dv
[v[>1

= J1 + J2.

|V|2(6—1)

dv

For the first integral J;, we use the boundedness of x — xPex , for b > 0 and
x> 0:

/

q
2q Be-q) _(29 |y 20-1)
ks /I <1 (0(2 —qQI)|V|2(e_1)) T el gy
v|<

S / dv < +oc.
lv[<1

For the second, J>, we have

1-0 29’ +00  1-9 29"
Jo = |v| B 2d dv = / p B 27 / dSydp
[v|>1 1 [v|=p
+00 _1- gzi
=wn/ o B 27T dp < 4oo,

1

for _Te 22‘7/ +n < 0, that is, for n < 1%922%/, which is equivalent to our assumption
(1-6) 2q

B < rg-2

Therefore, we have proved the following:

N R _n (2=¢\_1
[ERRE: S (17 (5

LY (1&[>1)

for B < {7020, and with s = k +j— 1+ 13°.
|
Combining the estimates from the last two lemmas, that provide L"—-L9 estimates
for the fundamental solutions at low-frequency and high-frequency regions, respectively,
we obtain the following result:

Lemma 2.3.3 Let0 € [O,1>,n e[1,2],qe[2,oo],neN,j,l=0,1,k20. Consider

0<p< ((qe)zz)q and let sy = k +j— 1+ 152, Then, for every p € L"(R") N HSI(R"),
ko < (14 oy m (1),

(14 070 (F76)735 ) e
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i Forn(l—l) +k—2050,

okdlK, wH (1 + 1z (7(=6) #28) yp

w1 7w (303 g
i) Forn<1—1) +k-20<0,

a0 < (00O

L(l_l)_L
+(1 4 T T |y,

iv) Forn(%—%) +k-20=0,

1_1\__1
04Ky 5[] g < IN(@+ ) [1bllpn + (1 + 27 (570)725 g

1_1

Ki *wHLq S+ [ W[+ (1 + 1) : <§_E) 2 W g -

Proof: The proof follows from Hausdorff-Young Inequality and Lemmas 2.3.1 and 2.3.2:

i) Applying Hausdorff-Young Inequality, and using Lemma 2.3.1(i), (i)

and Lemma 2.3.2,

WS &Kot Yl o<1y + | TEF KO, YDl ot 1)

ey Gy,
n 1_1 !
o (1 + 070 (552

i) Here, we have, observing that

216( - 29)_2(11_ )( +k— 2e)<:>2(1—2e)(2+k—2e)20,

s0 0 < J and our assumption 2 + k—20 > 0 imply that

(1 + 1726 (Fk20) < (14 g0 (7 +H20),

and therefore item iii) of Lemma 2.3.1 gives us an even better decay rate
for j = 0. Nonetheless, we’ll use the worst decay in order to summarize
the results from both regions in one estimate.

Using Lemma 2.3.1(iii) (along with the above observation), Lemma

2.3.1(iv),(vii) and Lemma 2.3.2,

ajK1 *11)H Sl |£|ka/K1 1I’HLO/ |g|<1)+|| |5|kajK1 Ur’HLq (E1>1)
< (14t (70 20) Ty
L(1_1>_L
+(1+1)20-0\27q)728 HII)HH% .
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i)y Again, from Hausdorff-Young Inequality, Lemma 2.3.1(iii),(v),(viii)

and Lemma 2.3.2,

+[1e @K 2,

Kol || | < |[llEfaf )

L9 (|E|<1) L9 (|E|>1)

< (140" m G ),
e (1 2 (87

iv) From Hausdorff-Young Inequality, Lemma 2.3.1(iii),(vi) and Lemma 2.3.2,

Hak/q *")H SRl e <1y + HEFKT D o= 1)

n 1_1
< inte+ ) [l + (1 + 07 (575)73

For the second estimate, we use Hausdorff-Young Inequality, Lemma

2.3.1(vii) and Lemma 2.3.2 and obtain directly the result:

atme < IHEPF QR (8, Yl ecn) + | EFOR (b gy

At [l + (14 0270 (7825

|

In particular, setting g = 2, n = 1, we can choose 3 > 0 arbitrarily large. Then,

recalling that the solution to the linear problem (8) is given by u/M = Ky * uy + Ky * uy,
we have the following:

Corollary 2.3.4 Letn € N, 0 € [0%) k >0, j=0,1,s > 1, and assume that
ulin(t, x) is the (global) solution to the Cauchy problem (8). Then, u'™(t, x) satisfies

S—k—j

|04t (1 + 7309 (g, U)o s

(1+ t)_“n“:'_j I(uo, un)llprspr if 3+k=20>0, (43)
9 (1 + 0" T ||(ug, Uyl if B+k=20<0,
t)H(UOJU‘I)HUan ifg+k—29=0,
with
Infe+t), j=0
aj(t) = e+h J (44)
1+, j=1.

Now, another important set of estimates are the ones involving the operator asso-
ciated with the application of Duhamel’s principle to the corresponding inhomogeneous
equation. These estimates are obtained taking uy = 0 and applying the Bessel potential
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(I-A)"to uln Indeed, the presence of the rotational inertia term —Auy and the appli-
cation of Duhamel’s principle, leads to gain 2 derivatives in the regularity-loss decay
rate structure at high frequencies. These estimates will be a staple in the nonlinear
existence argument.
We define
Eq(t,x) = (I- A Ky (t, x). (45)

Next, we prove some estimates involving convolution with E;.
Lemma 2.3.5 Let 0 € [0, }),n € [1 2],q € [2,00],n € N, k > 0. Consider 0 < p <
%, andlets; =k+j—1+1 B Then, for every \ € LN(R"™) N HS1=2(R"), it holds
—<)+
that

i) Forn(l—l) +k-20>0,

k0l | | < (147w ()T

(1 + )70 (570)75 e
ii) Forn(l—1)+k—ze<o,

g 0| < (10O

L(l_l)_L
+(1+ 120082 a) 28 [l s, ;

i) Forn(%—g) +k—20=0,

1
Sin(e+ 1) Wl + (1 +Z‘)2(1 -0 ( ‘7) 26 W] g2 5

1_1\_ 1
ata*wHLqN (107 bl + (14 07 G780 e

Proof: For the low-frequency region, we observe that £; ~ Kj. In fact,
. X 1. R X
Ei=(1+[Ef)Ky = 5K < By < Ky.
This means that all the results we obtained for K; on Lemma 2.3.1 are also true
for E1. For the high-frequency, we use Lemma 2.2.4 to get

LEL (1, €)= 1001 + 16 Ky (8, €)] S &2 g et ReAs
< |E|f‘3etRe}\i, j=0,1.

With this estimate, proceeding as in the proof of Lemma 2.3.2 we obtain

Kyl E.(+ W <
R CIRN A 2(le]1)
< |lyz k+i-3 ~28 2| B
~ H|£| 40 FEE W] o)
- k+j—3+122 »
<
SR i e

_1
S (1+8) 2 [ U] sz
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For g > 2, calculations are similar:

H|£|ka/t'é1(t, || e121)

S |E|k+j—3 etRe ?\ilj)

L (|1g]>1)
_1-e _ 2(0-1) k+j—3+1=8 ~
S |£| 5 e C(1+1)|&| |£| +=3+7 11) /
La'(1g|>1)
< |ljg 5 g-ca+nleRen | H g[kH=3+75 e
< |1l ol

L2-d (j&[>1)

2-g
_ﬁﬂ C(1+t) 20 S| &[0 1) W
( /W R [l e -

]
Making the change of variables v = (1 + )20 &, we get

N

[1EaEq (8, b

L7 (jE21)

<1y (F)H

q
_1-8 29" c 2(0— 2q"
X (/ e [v[[® =7 e |V| dV) ||11)||Hs1—2,
[v|>(1+t)20-1

and we have shown already on Lemma 2.3.2 that the integral above is finite. Therefore,

N 2o (55 )25 11
e AE ] oy SO0 Il o -
We conclude by combining each estimate for the low-frequency with the estimate
for high-frequency, exactly in the same way that we’ve done on Lemma 2.3.3. [

Again, we shall particularize a bit to get a more clean and meaningful result for
our purposes. Setting g = 2, n = 1, and choosing a sufficiently large 3 > 0, we have the
following.

Corollary 2.3.6 Letn € N, 0 € [O%) k >0, j=0,1,s > 3, and assume that
u'M(t, x) is the (global) solution to the Cauchy problem (8) with uy = 0 and uy = ¢. Then,
we have the estimates

o= aytum, )|, < 0+ 75D oo

Hk
(1+8)7%09 7 [l if 2+k—-20>0,
L+ )T o), i §k-20<0,
B el if 04+ k—-20=0,

with aj(t) as in (44).

2.4 SOME IMPORTANT AUXILIARY RESULTS

In our task to prove the existence of global in-time solutions for small initial
data, we must estimate several norms and integrals. The following inequalities play a
fundamental role in these estimates.
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The first of these inequalities is Gagliardo-Nirenberg’s Interpolation Inequality,
with also a fractional version of it, proved in (D’ABBICCO; REISSIG, 2013).

Lemma 2.4.1 (Gagliardo-Nirenberg’s Inequality) Let n € N, and assume that « is
either a natural number or that it satisfies k € (0, g). Then, it holds that

- n/1t 1
Julles 1zl oxta) =2 (5-) 7)

for any q > 2 that also satisfies

2 < < i
=a= n—2k’
in the case x € (0,3).
In the special case q = nfg ~, inequality (47) reduces to the Sobolev embedding:
lullie S Nl w=n (51 (48)
Ullpa S Ul e, K= 55

In some cases, it is also useful to use interpolation between spaces. In particular,

the Bessel Potential Spaces can be interpolated as
Fow = (Foo, B
B

where sg = (1—B)sg + Bsy, for B € (0, 1). In other words, if u € H% N HS!, then u € HS

and it satisfies
1-3 B
Hso ||U||HS1 .

Also, in order to estimate the nonlinear part of the solution, we rely heavily on
the following lemma, which we prove in Appendix A.1:

lull gyse <l

Lemma2.4.2 Letw € R, x> 1, vy €(0,1). Then, it holds

, . 1+ w > 1
/0(1+2‘—’t)_“’/0(’c—s)_y(1+s)_‘X dsadt S S (1+)YIn2+t) w=1

(1 + t)1-w-vy w<1.
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3 NONLINEAR PROBLEM

Now that we have collected the necessary estimates from the linear associated
problem, we return to the semilinear problem

t
Ut — AUy + AZU—AU + (—A)eut = / (t— S)_y|U(S, )lp ds
0

u(0, x) = ug(x) (49)
u(0, x) = uq(x),

with 0 € [O, %) , Y €(0,1), p>1. The operator

F(t,u) = /Ot(t—s)_ylu(s, )P ds

is referred to as the nonlinear memory of the function u. Now, for T > 0, we define the
Banach space

([0, T, H2) nc ([0, T], H), if p>2;
X(T) = (50)
c([o, T1, H?) nc' ([0, TI, H') nL>=([0, T], LP), if p<2,
equipped with the norm
2o [Vl it p>2;
Vlix(m) = <[0.7] o _ (51)
sup (HVHXO +h 07 V(L e ), TTp<2,
te[0,T]
with
1Vl x(t) Zh 07 V() +Zh/ “Hlvedt Mg
for some m > 1,where0=k0<---<km=2 (here HO = [?).
Now we define the operator G : X(T) — X(T),
t rt
Gu(t, x) = / / (t—8)YE{(t—T,Xx) *|u(s, x)|° ds dr, (52)
0.Jo

where, we recall,
Eq(t,x) = (I- A Ky (t, x).

Setting v = uy, the semilinear problem can be rewritten as

du
{dt = LU+ H(U),

U(0) = Up,
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0 /

with U = (u,v), L= (A —(I- A) (=A)®

) , Uo = (Up, uy) and

0

AU = /Ot(t— s)Y(I=A) " u(s, x)|Pds

Then, by Duhamel’s Principle, a function u € C([O, T], HK(R”)), where k > 0, is
the global (weak) solution to (49) if, and only if, it satisfies the identity

u(t,-) = uM(t, ) + Gu(t, x), in HKRM), (53)

where u'M is the solution to the linear Cauchy problem (8).
We will be able to apply Picard’s Existence Theorem and find a solution u to (53)
if we prove that

) [um] S s unlg

X(T)
i) |Gullxm) < ||UH§((T);

1 1
iii) [|Gu—GV| xT) < lu=Vlix (HU”,))(_(T) + “V”I))(_(T)) ’

uniformly on T > 0.

3.1 CASEn=1

Theorem 3.1.1 Assumen=1,0 ¢ [0, %) ,Y € (ﬁ 1) , P> pc and s = s¢, with pe

as in (2) and s¢ as in (3). Then, there exists € > 0 such that, for initial data
(Ug, Uq) € A = <HS(R) nL! (R)) X <H3—1 (R) N L (R)), (54)

with ||(ug, u1)|| 4 < ¢, there exists a global solution to the problem (1), u € C([0, co), H2)m
c1([0, ), H'). Moreover, the following estimates hold:
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(47500 Y g, )4, O [0,3),
lutt, Mz S q In(e+ (1 + D™ |(ug, ug)ll 4, iFO =1,

_ 1 _
1+ 020 g un)la,  if 0 (§.3):

1 .
lut, (1 + 7501 g, up)] 4

||H1 ~
1 .
[u(t, Mg S (1 +1)2 2917 | (g, ) 4

In(2+ 6)(1 + )™ [[(ug, ug)|l 4, fO=0,
(1407 [ (ug, up)ll 4. » if 6 (0,1
[oru(t, )12 < _ , ( )
IN@+ 1)(1 + 87 |[(Ug, uy)ll 4, ifO=1
_1_
(1+z‘)1 a0~ ||(ug, u1)ll 4 » /fE)e(Z %)

»
[orut, Mg S (1 +1) 1Y | (up, ut)ll 4 -
Proof: We first consider the case 0 € [O, %) . We remark that, in this case, the inequal-
ity
g +k-20>0
holds for every nonnegative value of k, and therefore, when we apply Corollary 2.3.4,
we will use the same kind of linear estimate for every norm.
For T > 0, we define the Banach space

X(T) :=c([0, TI, H¥) nc' ([0, TI, HY),

equipped with the norm

IVlix(r) = sup (ho Vv, gz + by (87 (g
te[0, 7]

»
+ ho (VI V(t, )| g + o8 lvi(t, )l 2

p
+ hy (87 [|wat, ||H1>

where

ho(t) = (1 + fy a0+ 1=,
hy(t) = (1+t)1e”Y

N 1+07Y if 6 >0,
(1+)7VIn(2+1t) ifo=0,

hot) = By (t) = (1 + ty 20017
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We will now show that the solution u/(t, x) to the associated linear problem (8)
belongs to X(T), and satisfies

Hu/in < Iug, uq)|l 4,  uniformly with respect to T. (55)

X(T)

To this end, we may apply Corollary 2.3.4 several times to estimate each one of
the five norms that appear in the definition of ||-[| x(r) . Firstly, setting n=1, j=0, k=0
and s = s¢ in Corollary 2.3.4,

|o™(t,)] , S 1+ 074 (o, )1,

+ (14 27209 | (ug, Un)| g ot (56)

. _49 0 +1 -y
Since y € (0,1), we have (1 +1t) #0-00 < (1 +1) -0 . Also, since s¢ > 2 and

0 < 1, it holds that
S 1-46 1-40
—>1> > —(1-
5(-0) = ' Za{i—0) = d(i—g U7V

which implies that the decay rate from the hlgh frequency4 region is also faster than the
decay rate we set for hy(t), that is, (1 +t)_2< < (1+1t) 40-9) =y . Using this information
in (56), we get

] 1
|umie, )], < 0+ 079 g, o)l 4. (57)

Now we do the same for the other norms. To estimate the norm in H1, we set
n=1,j=0, k=1and s = s¢ in Corollary 2.3.4, obtaining

Hulin(t, _)’

i < (1 +t) 4(1 9 ) I( Ug, Uq ”L1><L1

(1 + t) 1 9 H Up, Uy ||HSXHS—1 . (58)

Again, because vy € (0, 1), the low-frequency part decay is obviously faster than

h4(t). For the high-frequency decay rate, using that s = s¢ and 321 o) < 1,

s—1 1+2y(1-90) 3-40
= >y > -1
2(1-0) - 2(1-0) ~Y=41-0) TV
'49 +1 -y
hence (1 +1t) 20 <(1+t)* , and returning to (58),
' 1
e, )], < 1+ 07309 (g, 1)l 4. (59)

For the normin H2,setn=1, /=0, k=2 and s = s¢ in Corollary 2.3.4,
p
|t )] o < 0+ 07590 (g, ) gt

+ (14 07200 [|(ug, uy M s o s - (60)
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We show again that the powers that appear in both low and high-frequency terms
are greater (in absolute value) than the exponent in definition of hy(t). Indeed,

540 1 1
ai-0) = Zai—e) = 20—g U7V
$-2 _ > 1 -1+
2(1-0) "= 21-0) 7

Using this in (60), we get

o, o)

—sigy 1Y
, S (1 +18) 2070 [ (ug, uq) | 4 -

For the L2—norm of the time derivative of u/"(t, x), we setn=1, j =1, k = 0 and

s = s¢ in Corollary 2.3.4, which gives us

__1-40__ 4
, ST+ 8) 50 l(ug, uq)l[ 11

lin
d )
H U (t, ) .
-

st
+(1+1) 209 (g, Ul s, fys - (62)

Here, both decay rates are faster than (1 + t)7Y, because y € (0,1) and 6 < % :

and
s—1 1

Hence, (62) becomes

, S 1+ 07 [I(uo, u1)l 4

Hatuﬁn(t: )

L
< ho(1) [|(u, up)]| 4 - (63)

The last one is the H'— norm for 9;u’"(t, x). Setting n =1, j = 1, k = 1 and
s = s¢ in Corollary 2.3.4, we get

_ 34406 —1
S (1) 4= [(Ug, U [l

lingy
Jow™ )|,

_s2
+(1+1) 209 [(ug, Ul s, fys - (64)
Here, since it holds that
3-40 1 1
> 1>
ai—o 122 aamg 2o (Y
and
$-2 _ > 1 -1+
21-0) V= 2(1-0) Y
we have that, in (64),
(65)

i 1 41—
\hW%MMSUHVH“YM%WWm
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Now, we isolate [|(ug, u1)]| 4 in estimates (57), (59), (61), (63) and (65), add them
up and take the supremum over t € [0, T], obtaining

TR Y [ 7 (66)

X(T)

with a constant that does not depend on T.

Our next task is to prove that the operator G defined in (52) is well-defined, maps
balls of X(T) into balls of X(T) for small data in .4 and it is also a contraction map in
X(T). In other words, we must prove the following estimates:

1Gullxr) < Ul ry,

(67)
1Gu—GV|xm) < llu=Vlixm (lully vl
(T)

X(T))'

To prove the first estimate in (67), we estimate Gu(t, x) in each one of the five
norms that compose the norm in X(T).

Firstly, we estimate the norm in L2. Settingn=1, /=0, k=0, ¢ = |ulP and s = 3
in Corollary 2.3.6, we get

t B T
Gut, )2 < [ (1+t=1)30 [ (t—s) ||lu(s, )P, dsdt
L 0 0 L
t T
+/(1 +t—1)‘2(13—e)/ (=8 [[u(s, )%, ds dr. (68)
0 0

We stress that, in contrast to the estimates from Corollary 2.3.4, the value s that
appears on Corollary 2.3.6 doesn’t have any relation with the regularity of the initial
data (ug, uy).

Here, it becomes clear that we must estimate the norms || u(s, ~)|]’Zp and ||lu(s, ~)H’Zzp
that appeared in the right-hand side above. We apply Gagliardo-Nirenberg’s inequality
(47), with k = 1 and g = p. Having in mind that u(s, -) € X(T), hence its norms in L2 and
H' are estimated by h(s) || u(s, Mx(ry and hy(s) |lu(s, )|l x(T) » respectively, we obtain

1—
u(s, ')HFL)pS lu(s, _)H(L2 01(p))p e ,),‘?__;1(/!9);3
< ho(s)\101(PNP, ()01 (PP ”U”g((r)
< (1.4 )] (1=01EDp + (G251 )01 (oo lullr
=(1+8)7% HUH'?((T) . (69)

Recalling that 6 (p) = %— , the power « in the estimate above may be rewritten

o=
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as

= (g gy~ 1= (=enlp + (25 =(1-) ) ex(op
(1-40)(1 + g) + (3—49)(% -1)
1_

4(1-0)
(2-40)p-2
= w—“ -v)p
_(1=20)p=1 _

2(1-9)

—(1-v)p

(1-v)p.

Since our intention is to apply Lemma 2.4.2, it is important to know for which
values of p the condition « > 1 holds:

(1-20)p—1
2(1-90)
& (1-20-2(1-0)(1—v))p>1+2(1-06)

= (—1 +2y(1 —9))p> 1+2(1-0).

a>1< —-(1-vy)p>1

Observing that 1+2(1-0) is positive, the inequality will hold only if —1+2y(1-0) > 0,
1

thatis, v > 200" Assuming that y € (ﬁ 1) , we obtain

3-20 . 2(1+(1-y)(1-0)) _
c>1ep> g o ime ~  * T STraya—e P

Doing the same for the norm in L2P, that is, applying Gagliardo-Nirenberg with
k=1and g = 2p, we get

u(s, ')HIZZp N hO(S)(1_91(2p))ph1 (3)61(2'0)'0 ||UH'§((T)

=(1+9)7 HUH';)((T) ; (70)

with
1
4(1-10)
Notice that (71) implies that, since & > «, the condition @ > 1 is achieved
automatically with the previous assumption p > pc.
Using (69) and (70) in (68), we get

X =0+

> o (71)

t T
1Gu(t, )| 2 < [/0 (1 +t—T)‘4‘<fig>/o (t—8)™Y(1+8)* ds dr

t T
+/ (1 +t—T)_2(13—6)/ (=) (1 + )% ds de[ull - (72)
0 0
Applying Lemma 2.4.2 on each of the integrals above, having in mind that

1-46 3
4(1_e)<1 andm>1,
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we obtain
||Gu(t,->||Lzs(<1+t) SEY L (1 )Hun"
1-40
S+ )Yy f o (73)

Similarly, we estimate the H! and 42 norms. Settingn=1, j=0, k=1, ¢ = |u|P
and s = 3 in Corollary 2.3.6 yields

t . T
Gu(t, )i S [ (1 +t=074 0 [ (x=s) |u(s, )| dsdr
H 0 0 L
t T
+/(1 +t—T)_2‘<126n/ (t=98)7 |lu(s, )||%, ds dr. (74)
0 0

Since we have already estimated the norms in LP and L2P in (69) and (70), we
use these estimates and apply Lemma 2.4.2, thus obtaining

IGutt gy 5 ((1+ 0751 winz e 001 407 ) 0l
340 L q_
< (14t 5 Y ) o (75)

where above we already considered the worst case scenario 0 = 0, for which the loga-

rithmic term appears. We observe again that on application of Lemma 2.4.2, condition

p > pc implies o, & > 1. Also, it holds that 92‘49) <1, while 2( ) > 1, so the decay rate

coming from high-frequency region is fast enough so it doesn’t interfere on the results.
For the norm in H2, we set n =1, j=0, k=2and s =3in Corollary 2.3.6, which
gives us

t T
1Gut, ) o < / (14 t—) 500 / (t=9)™ lu(s, )|, ds dt
0 0
t 1 T
+/ (1+t—m1) 2“-‘3)/ (t—8)"Y Jju(s, Hsz ds dr. (76)
0 0

Using again estimates (69) and (70) for the LP and L2P norms and applying
Lemma 2.4.2, we see that

|Gt e S (187 (1 7o Y) 0l
< (1 Y g o (77)

Next, we estimate the two norms that concern the first order time derivative.
Since E4(0,-) = 0, we get

t T
10:(GU)(t, ) < /O /0 (1= 8)" [0cEr (t=, ) * [u(s, )P ;e DS .
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Hence, setting j=1, k=0,1, ¢ =|u|P and s = 3 on Corollary 2.3.6, we get
t _1:2k40_4 [T _
10¢(GU)(t, e < / (14 t—) 59 / (t—8) lu(s, )|% ds dr
0 0
t ok T
+/ (1 +t—T)_2(1—G)/ (t—8)7Y ||u(s,)||;2» ds drT. (78)
0 0

We shall distinguish two cases. If k = 0 then, using 6 < 1/4 we find

1-40 151 1 =1 if0=0,
+1>1, —
4(1-96) 1-0|>1 ifexo,
so that, applying Lemma 2.4.2 we find
[0(Gu)(t, Iz < o) lully

On the other hand, if k = 1, then, using 6 < 1/2 we find

3-49 +1>1> !
4(1-0) 2(1-0)’

so that, applying Lemma 2.4.2 with

. 3—40 1 1
w=mn {5 i) A

we find

104(GU)(t, i S

Combining the five derived estimates, we are able to estimate

(1+5s) a1y ||u|]§((T)

1Gullxr) S Il - (79)

Now it remains to show that G is a contraction in X(T), that is, the second
estimate in (67). We will use the Mean Value Inequality to obtain

llu(t, P = vt IP] < Ju(t, ) = v, (ludt, )P+ v, )P, (80)
Hence, by Holder inequality and the estimate (69) for ||-||;» , we get

[lu(s, )P =1v(s, )IP|| s

< [luts, ) = vis, M(uts, W+ 1v(s, P

L1
< lluts, )= vis, e (lluts, ME + lvis, %)
(1)
S48 Ju=vixn (1497 7 (lulfhy+ Vi)

=(1+8)|u=vlxmn ( ||UHI)3<_(1T) + ‘|VH§(_(1T) ) ®1)
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and from Hdolder and (70)
[luts, NP = 1v(s, 1P| 2 < (1 + 8 u=Viixn (1l + VIS ). (82)
12 S X(T X(T) X(T) )
Using these estimates, one can proceed as we did for || Gu(t, - HX , to get

1 1
IGu=Gvlx) S llu=Vllx ( luller + IVl >

Now, for the case where 0 ¢ [1 2) the estimate for ||u(t,-)||;2 changes, be-
cause condition 2 5 +k—26 > 0in (43) doesn’t hold anymore when k = 0. We must then
change the decay rate in the L2—norm of both u and u;, and also include another norm
on X(T) so this loss on decay won't interfere in the critical exponent pc.

For T > 0, we equip X(T) with the norm

IVIix() = sup (ho D7Vt 2 + b (8 V(L )] e
te[0,T]
+ ho () ([ V(E, ) e+ ha (D)7 (it

1)HH2

+ ho(t) 7 lve(t, )12 + ha(8) [lve(t, HH1>

where ky = 5 — 2—), and
ho(t) = lp(t)(1 + 1)>730™Y
1-1-20 1
hi(t) = (1 + 1) 20+
ho(t) = (1 + ty a0+ 1Y
ho(t) = lo(t)(1 + t)y s+ 1Y
ha(t) = hy(t) = (1 + 7001
with

1, otherwise.

an{mw+n,ne=%

The linear estimates give us again (55). In fact, setting j =0, k=0, k¢, 1,2 and
then j =1, k = 0,1 with s = s¢ in Corollary 2.3.4 we estimate u’(t, x) in the six norms
that define |- x()

u(8)|) , S O+ 0" (Lo, U)o

+(1+ t)_m (o, )l g o g1

_ 1 _
S (M0 + %57 [|(Uo, )| 4 5
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1-1_20

Hu/in(t’ )‘ » ST+ )2 (o, Ut) || 151
S}
+ (1 + 1) 200y 9) | (uo, Uy ||H5><HS1
1-1-20 ]
S+ 0720 Y (g, )l 4 5
Huﬁn(t’ ,)‘ o <(1+ t) || Uos Ul 11511
(1 1720 || (U, tt) | o o
< (14 7500 g, )4
p
[t < 01+ 075 )

+(1+ l‘)_z‘:e ) |[(uo, Uy ”HSXHS—1

;
S(1+t) A ot (o, un)] 4 ;

i -1
Joe™(t.)| , 5 1+ 075 (w0, )l 11

__s1
+ (1 + 1) 2079 ||(Uo, U1)|] s fyst

< lo(f)(1 + a1y (o, t1)|] 4

Joe™t, )], < 1+ 07w, un)ls s

+(1+1) & 2o V(o5 U s o s

(1+t) 19)+ YH Uo,U1 ||A

We remark that, regarding the A& norm, it could be the case, depending on p,
that either g + ki — 20 is positive, zero or negative, and this would change the linear
estimate to be applied. However, we assert that only the first case is possible, since we
are assuming p > pc. In fact, observing the equivalence

H+Kp26§0@1+<1—£%49§0@P§

1
2 2 2 1-20°

and the fact that 21+ (1 \(1—0))
pC(‘I"Ya e)_ 1 + 2Y(1_e)_1

is decreasing with respect to vy (because when y 1, its numerator decreases and its
denominator increases), we have

1
1-20  1-20°

p>pC(1ayne)>pC(1!1se)=1+

Therefore, our assumption p > pc implies that % +ky—20>0.
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To prove (67), we first set j = 0, k = 0,kq,1,2, ¢ = |u|P and s = 3 in Corollary
2.3.6, getting

t T
1Gu(t, ),z < / it —7)(1 + t—1) 15 / (t— s |u(s, )| ds dr
0 0

t T
+/(1 +t—T)_2(‘3—9)/ (t= ) [[u(s, )|[%, ds dr, (83)
0 0

and for k = k¢, 1,2,

1+2k-46

t T
1Gu(t, e < /0 (1 + t—r) 557 /0 (t=8) lu(s.)|I%, ds dr

t - T
+/ (1+ t—ft)_2<1—9>/ (t—98)7" |ju(s, ~)H’L32p ds dr. (84)
0 0
To estimate the LP norm, we use the estimate from Sobolev’s Embedding. This
is the reason why we included the HX—norm in X(T).

lu(s, NEe < luts, NP, < (1 + 87 [ullfmy

with o := % —(1=v)p. Then « > 1 if, and only if, p > pe.
For the L2P norm, we use again Sobolev’'s Embedding and apply Interpolation of

Bessel Potential Spaces between H* and H' :

lu(s, )P <||U(S,-)|IZ1 LS luts R s, )PP,

Lep ~ 325 Hks
for some B € (0, 1) that verifies %— %) =f (% - %) + (1 —=pB). Then, we obtain
S L NE R
u(s, )z < (1+5) (1+ )\ AR g B
~ (148 ullfkn (85)
with

1-1-2¢ -

1_1)_
=(1+2£2 p) 49_(1_Y)>Bp+<1+2_49—(1—y)>(1—[3)p

(1-9) 4(1-0)

(1—a0)p (28(3-5)+20-8)p

T 4-e) 4(1-0) —(1=vp
(1 +2<%—2lp>—49)p

= A1=0) -(1-v)p
(2—40)p—1

= W_“ -Yv)p
(1-20)p—1 1

B (R LA TRy
1
4(1-0)

Il
X
+
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This means again that the condition p > p¢ is enough so we can estimate both
LP and L2P norms. Using these estimates and applying Lemma 2.4.2 in (83), observing

that [y(t) is nondecreasing, we get

|Gu(t, )| 2 S lo(t)</ot(1 + t—*t)“ﬁ /OT(T—S)_VU +8)"* dsdt

t T -
+/ (1 +t—T)_2<13—9>/ (T—8)Y(1+5)* ds dT) lullr)
0 0

< (b(y(1 + t)“é” (1407 Ul
S lo(t)(1+ 7707 [|ullf

and applying Lemma 2.4.2 in (84) for k = ky,1, 2,

t 1+2ky—40 [T
|Gu(t, M e S (/ (1+t—-1) 10) / (t—8)Y(1+8)™* dsdt
0 0

t 3k T -
+/ (1+ t—’t)_zﬂ—zﬂ/ (t—8)Y(1+s8)* ds dT) HUH’?((T)
0 0

1—%—26 ]
S{O+72 e (07 | ullyg

1—5—29 ’
S+ 0720 R g

t T
|Gu(t, ) < (/ (1+t—m1) 4<?‘3>/ (t—s)™Y(1+5s)™* ds drt
0 0

t T -
+/ (1 +t—1)‘2<12—9>/ (T—8)Y(1+5)* ds dT) lullr)
0 0

< ((1 £ L (14 p) —V) lull 7,

S+ 7Yyl

t - T
1Gu(t, e < (/ (1 +t—¢)‘45<143>/ (t—8)(1+s)™ ds dr
0 0

t T .
+/ (1 + t—'r)_2<‘1—9>/ (t—8)Y(1+8)* ds dT) ”U”If((r)
0 0

< (@t (1079 o)

1
S A+ 0770 Ylulff

Summarizing, we get

IGu(t g < M) U7y 1=0,1,2,3 hg=0,ky=1,kg=2

(90)
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Now we consider the two norms of 9;(Gu)(t,-). For the || - HH1 norm we may
proceed as in case 0 € [0, %) . On the other hand, for ||9;(Gu)(t, -)||;2, dueto n=1 and

0 €[1/4,1/2), we find
=1 ifo=1,
1 { ! 4 1 >1,

40 | <1 if6>%, 1-9

which is the reason we included the logarithmic term /y(t) in the definition of f?o(t). So,
applying Lemma 2.4.2, we find

t | T
10:(Gu)(t, |2 < (/O (1 +t—fr)‘4e/0 (1—8)Y(1 + 5 ds dt

t T ~
+/ (1 +T—T)_2<12‘9>/ (t—8) V(1 +s5)dsdr
0 0

N———

HUHé)((T)

- ((1 + 1Y 4 (14 f)_y> HUH';)((T)’
T @+ 00 07 (07 ullyy

S p 11
5{“”) Y ullfry. 0 (d1), o)

In@2+ (1 + 07 [[ullk, ©=13

that is,
126(Gu)(t, 2 < o) [ullfpy -

Combining the previous estimates, we get

||GU||X(T) S ||u||l))((7') .

The argument that G is a contraction map in X(T) is the same as in the case
0 c [O, %) . Hence, we showed that, in both cases 0 € [0, 1) and 0 € [], 1), itis true
that

|Gullxry S lullfry
1 1
IGu—=Gv|xT) S llu=Vlixm (HUHS)(_(T) + V||§<_(T)> ’

and then Picard’s Contraction Theorem guarantees that there exists a unique fixed
point inside a sufficiently small ball of X(T). In other words, there exists an ¢ > 0 such
that, if ||(ug, uq)|| 4 < &, there exists u € X(T) such that

u(t, x) = u"(t, x) + Gu(t, x),

that is, u is the solution to (1). Moreover, since all the obtained estimates are uniform
with respect to T, we can take the limit T — oo, which implies that u(t, x) is a global
in-time solution to (1) and satisfies all the estimates given in our theorem’s statement. m
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32 CASEn=2

The bidimensional case n = 2 possess a structure that is similar to the one-
dimensional case, since the decay rate coming from the low-frequency is relatively slow,
and we do not have trouble to control the high-frequency decay rates so they at least
match the low-frequency decay rates. In particular, the proof for n = 2 follows the same
steps as the proof forn=1and 0 € [0, %) , because in both these cases the condition

g+k—26>0

holds for every non-negative k, leading us to use the same kind of estimates in Corol-
laries 2.3.4 and 2.3.6. We decided to present these results in separate theorems only
to organize the work in a cleaner and easier to read structure.

Theorem 3.2.1 Assumen=2,0 ¢ [O, %) ,Y €(0,1), p>pc and s = s¢, with pc as in
(2) and s¢ as in (3). Then, there exists ¢ > 0 such that, for initial data

(Ug, Uq) € A = (HS(RQ) nL! (R2)> X (HS—1 (R2) N LT (Rz)), (92)

with ||(ug, u1)|| 4 < ¢, there exists a global solution to the problem (1), u € C([0, co), H2)ﬂ
([0, c0), H'). Moreover, the following estimates hold:

;
lu(t, )l < (1+1) 2 2011 | (Uo> ur)ll 4.5
[u(t, Mg SR+ HA + 57 (|(uo, t1)ll 4

1
- 1—
[u(t, M e S 1+ 172077 | (ug, ug)]| 4

0gu(t, )0 < 4 M@ OO+ OV (W, Ul iFO =0,
t DL _ |
(1+ )7 [[(ug, u)ll 4 - ifo e (0,%>,

I B
19su(t, (1 + 1720 (g, )| -

HH1 ~

Proof: The proof for dimension n = 2 is similar to the first part of case n = 1, because
the decay speed coming from the low-frequency linear estimates is still very slow. For
T > 0. we define the Banach space

X(T):=c([0, TI, H?) nc'([o, T}, HY),

equipped with the norm

V(t, )2 + @7 IV g + P07 V(L e

IVlix(ry = sup <h0 "Iv(
te[0,7]

+ho(0)7" [Ivat, )2 + (&) Iwalt, \H1>
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where

. (1+8)7Y if 6 >0,
(1 +0YIN@+1) if0=0,

ha(t) = By (1) = (1 + y 2007
To see that u/M(t, x) is in X(T) and satisfies

H lin

<
X ~ (g, )l 4 »

wesetn=2, k=0,1,2, j=0and s = s¢ in Corollary 2.3.4, obtaining

,
U(t)| , S (1 072 oy )l g + (1 2 (Lo, 1) e

< (1 + 87209 || (o, Uy Mioas (93)
[ (1 07 1w )l + (1 67255 o )
Mg ~ 0, Ut)|[ 115 p 0x F /1 e x Fst
S+ (U, th)ll 45 54)
‘ulin(t’ ) y <A +t)x a0 [(Uos ut)|[ 15 + (1 + 1) 20y (o, )l s s g5

S(A+t) A 20 [l (Uo, uq)]] 4 - (95)

Hence, in all of the three cases above, sincey € (0,1), 6 € [0, %) and In(2+t) > 1
for t > 0, we get

Hulin(t, ,)‘

Hkrghk(t)H(UO’U‘])HA’ k=0;1,2-

Settingn=2,k=0,1, j=1and s = s¢ in Corollary 2.3.4, we get the estimates
for the remaining two norms:
[t )|, < (4 073507 oy )l + (14 0720 (0o, Ut g -

S (07 [[(o, Ut 45 (96)

; __s2_
0™ (8, )|, (1 072 oy n)llrss + (1 + 8725 (o, )] o o
S+ 770 Y (U, )] 4 (97)
And again, using the fact that 6 € [0, ), v € (0, 1), and also In(2+t) > 1 for ¢ > 0,

we get
.

e S hi(t) 1(ug, )l 4, k=0,1.
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Combining these five estimates, we are able to estimate u””(t, x)in X(T) as

/I'HH <
u Upg, U .
[y = w0, )]

Next, we define G in X(T) as in (52) and we prove that G satisfies (67). Setting
n=2,j=0,k=0,1,2, ¢ = |u|P and s = 3 in Corollary 2.3.6, we have

1+k—-20

t T
1Gult, ) e < /O (1 + t—r)" 200 /0 (t= sy ||u(s, )%, ds dr

t _ 3k T
+/ (1+t—m1) 2“—‘”/ (t—98)7Y |u(s, HLZP ds dr. (98)
0 0

So, again, we must estimate u in the norms LP and L2P. Applying Gagliardo-
Nirenberg’s inequality (47) with n=2 and k = 1, we see that

(1-64(
l|lu(s, )HILDP < lu(s, H 1(P))p lu(s, ,)|’?;;1(P)P

< (149 F (24 (1 4 5P lullry

S (1487 (n@+ )P ully 7y (99)
where 1 —2g ’
We remark that
a>1 >1+ <= p> 2-0
Yp -0 P>Ja -0y

So, assuming that p > p¢, we find that « > 1, and choosing 6 € (0, x— 1),
luts, I < (1487 ullf 7y (100)

with « — & > 1. For the L2 norm, applying Gagliardo-Nirenberg again, we will get an
exponent & which is greater than « obtained on estimating the LP-norm:

(1-61(2p) 01(2p)
luts, )12z < lluts, NI CPIP s, ) 01 2P

-20
5(1+$(2< ”“00m2+gu+srwpqnwgw)
S+ (@ +9)P |lullfpy. (101)
where
(1Y) Y (p=1) =~y YD = g
2(1-10) 2(1-0) 2(1-0)
Therefore, the condition p > p¢ is already enough to ensure that & > 1.

With these estimates, we are now ready to apply Lemma 2.4.2 in (98). We first
observe that

X =

1+k-20 | <1, ifk=0
2(1-0) | =1, ifk=1
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and that
1-20
, k=0
i [1k=20 3k | _ 12(1‘9) .
- 2(1-06) "2(1-0)) ) -
1
2(1-9)’ k=2
Therefore,

1+k—20

t T
|Gu(t, )| i < [/0 (1 +t—'r)_2<1—9>/0 (t—8)Y(1 +8)™**® ds dt

3-k

t T _
+/0(1 +z‘—T)_2(1—9)/O (t— )Y (1 4+ ds dr| [[u
< Uy, k=0,1,2. (102)

Lastly, the two norms of 9;(Gu). For these two norms there are no additional
concerns and we get

[0:(Gu)(t, Iz S o) lullry 3
S NE [
106(GUMt, e S (14 97200 a7

Hence, just as we did in case n = 1, we combine the five estimates for Gu(t, x),
obtaining
|Gullx(r S 1l -
Then, to prove that Gu satisfies the second estimate in (67), we argue as in (80),
(81) and (82), obtaining

1 1
1Gu—GvllxT) < lu=Vlixm ( H“HSD(_(T) * ”"Hg(_(T) )

Therefore, G is a contraction map in X(T) and with an application of Picard’s
Contraction Theorem as in Theorem 3.1.1, we conclude the proof.

3.3 LPESTIMATESFORp<2

Studying low-dimensional cases, we have seen that the influence of the nonlinear
memory term is not so strong and its interference on the critical exponent is subtle. Also,
since the obtained critical exponent is greater than the Fujita exponent

—1+2
PF = n’

which equals 3 for n = 1, and equals 2 for n = 2, these low-dimensional cases conve-
niently allow us to work only in the case where p > 2. For dimension n > 3, this is no
longer true, and there will be cases in which p € (p¢, 2) . We will then need to obtain
new estimates for LP-norms to apply in these cases.
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The approach to get these estimates consist on making use of not only the
behavior of the fundamental solutions themselves, but also of their derivatives in the
Fourier space.

We may divide our study in the low-frequency and high-frequency regions.

3.3.1 Low-Frequency Region

In the Low-Frequency region, we have the following estimates, proved in detalil
in Appendix B.1:

$1gp0-0).

« [08Ko(t,&)| < leflem

. ag[ﬂ (t, 5) 5 |E|—26—|a|e—é|£|2(1—9);

$1gp0-0).

* [0FEq(t, )] S lg[2o e

We will combine these estimates for Ky, Ky and E; with a lemma to derive
pointwise estimates for their inverse Fourier transforms.

Lemma 3.3.1 Assume that f € C§(R"), for some « > 0 integer, and that it verifies the
estimates
oFA(E)| S lel? Vel <,

for some a < n. Then, g = F~'f satisfies the estimate |g(x)| < (1 + |x|)7%.
Moreover, if f € C§*1(R"), and

OFF(E)| SIEMP V]l < k+1,
for some ay € [n,n+ 1), then

(1 + |x|)~<(-a), ifa>ay—1,
l9(x)] < (1 + |x|) K (n+1-an), ifa<ay—1andaj € (nn+1)

(1 +|x)™"log(e+|x|), ifa<n—1anda;s=n.

Proof: Firstly, from a < nand supp f compact, we obtain agf e L', for || < k. In fact,
let M be such that supp f C {|§| < M}. Then,

n—a
/ [0gf(£)|de < C eade < ¢ M (103)
R |El<M n-a

where wp, is the volume of the n—-dimensional sphere.
Now, observe that the inverse Fourier transform of any integrable function h is
uniformly continuous, and HJ’HhHLm < |||+ - Indeed, this comes directly from

n

[(FTh)(x)| = < (@n)? (x)| dx.

(2m)~2 / ) e'® h(x) dx

|h
RN
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Therefore, since g = F~1f and (J-“‘1 (agf)) (x) = (—ix)*g(x), it follows that

(1+ IXI)KQ(X)’ S 191+ 1x1519(x)] = 19(x)] + |(=ix)*g(x)]

=S [Ifll +

< +00.
L1

Hence,
g0l < (1 +Ix])7"

Now, let’s prove the second claim. We first observe the following identity:
n .
Z _J ix
2
>
obtained by direct differentiation. Now, integrating by parts, we have

%) = (2n)3 / e¥Ef(£) de

1
LA ¢
=@ s [ @ e de
j=1
n n H
= (2m) 2 |x|! ch /R ) e’XEaajf(a)da. (104)
j=1

We remark that no boundary terms appear, since f is compactly supported, and
that ¢; = —% satisfies |c;| < 1. Integrating by parts k — 1 more times, we obtain

gx) = @ "X Y ¢ / e €l (&) (105)
IBl=x

where the constants cg depend on each multi-index 3 € N”, each one satisfying
lcgl < 1.

Splitting the integral in two parts and applying one more integration by parts in
the latter integral, we get

n
/ eixéagf(a)da - ’Xaaﬁf ) d& — |x|™" Z CBJ/ e’X‘iaEf(E,) dé§
" |&I<Ixl : |El=x™
n
+ X ZCBJ /|a|>| e 50 D f(€) dE, (106)

where cg j = cgcj, foreach j=1,..., nand each |B| = k.
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To estimate these three integrals (in absolute value), let M > |x|~! be such that
supp f C {|£| < I\?I} . Then,

/ |a§f(5)ld5§/ £ dg < X7, (107)
[EI<]x! [EI<]|x!
x| / 0B £(£)] e, < |x[ / €72 de
[E|=]x]! |&|=|x|~"
< —1 —a+(n-1) _ —(n-a)
< ¢ (1) )\I‘%W Ix|(-a), (108)
X / 105,08 1(£)] dE < || / e de
[&|> x|~ X1 <|E|<M
| x| (n+1-an) if a; > n,
S 5 (109)
IXI7'In(M|x|), if a = n.

Using (107), (108) and (109) in (105), we get

(1 + |x|)~("-a), ifa>a;—1,
g < (1 + |x])(m1=a) ifa< a;—1and ay > n, (110)
X7 Vin(e+|x]), ifa<n-t1andas=n.

|

We are now ready to prove a set of LP—estimates for K, K; and Ej in the low-

frequency region. In the following, we will assume |&| < ¢q, with ¢g small enough so the
estimates obtained in Appendix B.1 will hold.

Lemma 3.3.2 Assumen e N, 0 € [0, %), p > 1, and let the operators Ky(t, x), K1(t, x), E1(t, X)
be as in (41) and (45). Consider also a cut functionxo(&) € C°(R") such that suppxg C
B(0, ¢g). Then, for any & > 0, the following estimates hold:

) 7 (ot o) |, < £30

i) {|7 (it xo() < ath

i) || 71 <E1(t,~)xo(-)> gt‘(zap—e)+5.

Proof: Since these estimates for Ky and Ky are similar, namely

%|E|2(1—6)’

‘agke(t, a)‘ < |g2to-led g k=0,1, (111)

we can strike both cases (i) and (ii) at the same time. Also, the estimates for K1 and E1
are the same, so the result obtained for K will hold also for £;.
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Let > 0, and set a=n—-58(1—0) < n. Then, for |E| small enough, (say, || < ¢q)
and for £ =0, 1,

2 —la|-200 —1]£[2(1-0) 4y opa 2 1E12(1-6)
’agKB(f, E,)‘ < 1) | 2693 51€l < |&] (n—1) 229 L1g)
< |El—ala1—269—5(1—9)6_%|5|2(1—9)

1-200 _ %

- ¢ — 2(1-0) 2 _tiz2(1-06) _1=2¢€0 . &
S E a (§|5|2(1 9)> e 51€l f2i-ot2
bounded
_g-l2e s
SIEFAraeT2, el < n-1, (112)

Applying Lemma 3.3.1 with k = n—1, f(§) = 15(12-899 %

7 (Kt Ex0(@) | S CEITEQ 4, =01 (119)

On the other hand, for |«| < n—2, we can get similar estimates. Set a=n—-5(1—-
0) < n. Then, again for |&| < ¢g, from estimates (111), for £ = 0, 1, it holds that

%Kt 2)| < IR0 < (21210 e

_ _50a_5(1_0\ _11z12(1-6)
S |E| a|£|2 200 5(1 9) |E,|

2—2@9) 5 po
2 — —200 , &
< Iél_a( e ) e lE ai-o
bounded
é
< |Eer o) T2, Vx| < n-2.

(114)

»oto Therefore another application of Lemma 3.3.1, with k = n—2 and f(§) =
t20-0) ZKrz(t &)xo(&) yields

‘]_-—1 (kg(l‘, 5))(0(5))‘ <t 2 = %(1 +|x|)” n—2), (=0,1. (115)

Now, we can interpolate (113) and (115). Infact, letj € (1,2) and take v=2—j €
(0,1). Then,

7 (Kalt,2xo)) | £ (CHE5E o) (8 1 4 pgye2)

S t 252;__296)6*'2(1 + |X|)—n+2—v

j—2
0tz (1 4 |x|)", vjie[1,2]. (116)

With this inequality, we can estimate the desired norm:

|7 (Ratt o) 5, < [ 177 (Rict ebxote)) ” ox
<) A geeax

j—20 | &
< t(_ﬁJr?)p

(117)
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if, and only if, (n—j)p > n, or equivalently, j < n (1 - %) .

So, choosing j = n(1—=1)=5(1-9), it holds that
p

n(1—1)—2£8

—_\_PJ] "
LSt A w0 (=0,1.

|7 (Kt xo0))

|
Finally, with a direct application of Young inequality, we can extract estimates for
u'M(t, x) and convolution with £; in the low-frequency region.
We may write the function u’M(t, x) in the Fourier space as

ulin(t, £) = Ko(t, £) il () + Ky (1, £) i1 (£). (118)

Lemma 3.3.3 Assume n € N, 0 ¢ [0%) p >1andt > 1. Consider E/"\”(t, £) as
in (118) and E; as in (45). Consider also a cut function xq(&) € C°(R") such that
suppxg C B(0,¢q). Then, for any & > 0, ug, Uy, € LY(R"), the following estimates
hold:

n(1-1)-20

i H_;:—1 ([,Ev(t, .)XO(.)>HLP S+ 8720 (g, U)o

n{1-

i) |7 (it xo0bO)) ||, < (1t T .
Proof:

i) Applying Young’s inequality for convolutions and Lemma 3.3.2(i)-(ii), we get

7" ()

o &7 (Roxo) » o]+ [ (i) =,

< (o)t = (i) o
R
S (1 + 0720 U
n 1—% 20 5
+(1+8)7 200 [y |

n 1—15 20 5
S+ 82000 (U, )| 11 - (119)

i) Applying Young’s inequality for convolutions and Lemma 3.3.2(iii),

HF1 (E1Xoﬁ))

e HF1 (E1X0> *lpHLp
< [7" (Bxo) |, 0l

n(1—1p)—29

S+t (120)
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3.3.2 High-Frequency Region

For the high-frequency region, we will use again some estimates for the funda-
mental solutions Ky, K1 and the operator E4, but this time to apply a multiplier theorem
for functions that vanish in a neighborhood of the origin, which is the case for the lo-
calized high-frequency functions. This multiplier theorem is given for a more general
class of functions, in Hardy spaces HP(R"), not to be confused with the Sobolev space
HP(R™) = WP-2(R").

3.3.2.1 Multipliers on Hardy Spaces

The theory of Hardy spaces can be considered a fundamental chapter of com-
plex function theory, with intimate connections with Fourier analysis. The definition of
HP can be posed for any p € (0, oo), based on the LP-boundedness of the Riesz trans-
forms (see (FEFFERMAN; STEIN, 1972)). For p € (1, o), the Hardy space HP(R") is
characterized as the space of harmonic functions u(t, x) such that

|ull40 =sup [ |u(t, x)[Pdx < cc.
t>0 JR"

With this definition, it is well-known (see, for instance, (STEIN; WEISS, 1971))
that #P(R") coincides with LP(R"), since u € HP if, and only if, u is the Poisson integral
of an f € LP, and the Poisson integral is bounded by ||f||;» in LP and converges to it
when t — 0. Therefore, the results we collect for multipliers in HP(R") will also hold for
multipliers in LP(R").

We shall consider the operator

fos Tf = 7 (m(e)f(E))
where m is a bounded function in R”.

Definition 3.3.4 A bounded function m is said to be a Fourier multiplier for HP, p €
(0,2], if Tmf € HP for all f € HP, and

[ Tmfllae S N1fll30 -

We denote M(HP) as the space of all the Fourier multipliers for HP, and define
its norm ||ml| vy to be the operator norm of T in HP, that is,

[ Tmfll3e

e (21

Ml pgeeey = I Tmfll3go 20 = SUP

Now, we can state the multiplier Theorem for Hardy spaces. For the proof, see
(MIYACHI, 1980).
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Theorem 3.3.5 (Miyachi): Leta > 0, b > 0,0 < py < 2, na (l;_o_%) = b, k =

max{[n <I}O—%>] +1,[5] +1}. If m e CK(R"),m(&) = 0 in a neighborhood of 0
and

ogmie)| < 1er® (Ae)™ 1o < &

withA > 1, thenm e M (HP (R”)) and
()
1Ml peae) < CAV® 2/, forp e [pg, 2] .

For the high-frequency region, we have the following estimates, collected in
Appendix B.2:

AN

- |og (Kott, 2)e)

(
+ Jox (Kste, o) | < 16 (1e20-0)
(

(162070 (1 4y,
(
(

. ||
- [og (Ex(t e)lars)| s 1er? (1e=0) " 1

Lemma 3.3.6 Letne N, 0 € [0, %) , o any multi-index, p € (1,2), andt > 1. Consider
also a cut function xo (&) € C°(R") such that suppx~ C R™\ B(0,1). Assume that
upg € WSPRM), uy € WS HP(RM) andp € WS3P(R"), for some s € N satisfying

s > n(3-20) (%%) _
Then,
n(3-20) l—%
) HF 1 <u”” . )H (14 0720200 [[(Up, U1)|| yyso st
n(3—2e)(l—l

i) [ 71 (Ertt o 0b0O) |, S 01+ 7T 20

where

LP
0B
bl = ||Z [o%w]],-
r
Proof: Since we are considering t > 1, we have t7@ ~ (1 + t)7@. for any a > 0.

i) For Ky(t, &), we use the estimate

‘ag <K0(t’ E)I&I_sﬂ <|E[b <|5|2(1—e )I @l _sb

9

and apply Miyachi’s Theorem with m(&) = 2o f(o(t, E)IEIS,
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A=1,a=3-20and b= n(3-26) (,15 - %) . Hence, for any ¢ € LP(R"),
o mee(i})
[Ko(t, ) 05| 1p S 2007200 || (122)
for every s > n(3 —20) (% - %) . Taking @(x) = 05ugp(x), we get
o ro20(hh)
Ko (t, ) * Upllp < £ 2007200 ||ug| /s (123)

for every s > n(3 —20) (,13 - %) :
For Ki(t, &), we use the estimate
s—b

03 (Ky(t,2)1e D) | 5 e (162070 s,

s=b .
and apply Miyachi’s Theorem with m(&) = ¢ K; (t, £)|£[=1),
A=1,a=3-20and b= n(3-20) (;—) 1), thus obtaining

o meen(b-})
B e TP (124)

)

for every s > n(3 —20) (;—) - %) . Taking @(x) = a§—1 uq(x), we get

s, e20(p-3)
K1 (8, ) * ugl[pe S & 20072000 flug || st 5 (125)
for every s > n(3 —20) (;—) - %) . Recalling that

u(t, x) = Ko(t, X) * tp(x) + Kq (£, X) * Uq(x),
estimates (123) and (125) give us the desired result.

ii) From the estimates for E1 in the high-frequency, but plugging s—3
instead of s, we have the estimate

|cx| __sb

o (Ey(t, 019 | < 187 (16209 =,

for b < s. Applying Miyachi's Theorem with m(£) = t2701 £, (t, £)|£[~(5-3),
A=1,a=3-20and b = n(3-26) (%—%) , we obtain

n(3-20)(1-

HE1 (ta ) * 1\bHLP S t_2(1_e)+ 2(1-9) Hl-l"H Ws-3.p* (1 26)

).

if s satisfies s > n(3—260) (

N —

1_
[
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|

Finally, we may present the main result of this section, as a direct consequence

of the results we obtained in low-frequency and high-frequency regions, or to be more
precise, in Lemmas 3.3.3 and 3.3.6:

Corollary 3.3.7 Assumen € N, 0 € [0,}), p> 1 andt > 1. Consider u'(t, x) as in
(40) and E; as in (45). Then, forany 5 > 0, uy € WSPR™) N LY (R"), u; € WS TP(R™) N
LY(RM),p € WSBPRM N LY (R"), the following estimates hold:

' n(1—%)—26 5
D) U] S O+ 0722 (o, U)o

re-20(3-5)

—_ S L  \P 2/
+(1+ )20 200 [ (o, Ut)| s st

n(1-1)-20

_n(1-3)2e
i) |Eq(t, ) %Wl S (1482000 *0 ]|

n(3—29)(%—%

(14 7T e, -
Proof: It suffices to write u/M(t, x) as
u(t,x) = 77 (uln(t, 2)xo ) + 7 (0(t, £ ) (127)
and E4(t, x) as
Ey(t.x) = 7 (Ex(t.E0x0) + 7' (Eq(t o) (128)
and apply Lemmas 3.3.3 and 3.3.6 to bound the desired norms. [

3.4 CASEn=3

The case n = 3 is the first case where things start to get tricky. In fact, while in low-
dimensional cases we were able to strike our problem in a single blow, for dimensions
n > 3, several parameters start to show their influence, bringing some problems that
we need to work around. In order to strike each of these issues in a more organized
fashion, we shall break into several cases, based on the size of the memory nonlinearity
parameter y. The first region concerns small values for y, namely y € (0, %) . This is

a particular case of (O, ”‘Tz) , for which the influence of the nonlinear memory is so

strong that the critical exponent switches to the value v, as investigated before for the
heat equation with nonlinear memory in (CAZENAVE; DICKSTEIN; WEISSLER, 2008).
The possible influence of the regularity-loss decay on the critical exponent is neglected
by estimating the power nonlinearity at high-frequencies in H', instead of L2 as we did
in lower dimensions.
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Theorem 3.4.1 Assume thatn =3, 0 € [0, 2) v € (0, ] Also, assume p >y~', and
S = S¢, with s¢ as in (3). Then, there exists ¢ > 0 such that, for initial data

(Ug, Uq) € A = (HS(RS) N L (RS)) x (HS—1 (R3) N LT (R3)>, (129)

there exists a global solution to the problem (1), u € C([0, o), H?) N C1([0, o0), H1).
Moreover, the following estimates hold:

lut, gz S (1 + 0730017 (g, g) Lo (130)
ot Y S {(1 + t):V I(wo, up) 4. 70>0 31)
(1+87Y In@2+1) |[(ug, tq)]| 4, O =0,

Jup(t, )2 < (1 +8)7Y [[(Ug, uq)ll 4 (132)
e, i {(1 7Y (U, ut) 4 i0>0, (133)
(1+ 87 In(2+1t) ||(ug, uy)]| 4, ifO=0.

Proof: For T > 0, we define the Banach space
X(T) :=C([0, 0), H?) n ([0, o), H1),

equipped with the norm
IVlixr) = sup (ho v, 2 + he ()7 | v(t, Wi + ha(t) v, Wi
te[0,T]
+ ho(0)7 [|ve(t, Yl 2 + he (8 [[valt, )| g )

where ky =3 (% - [1—)) and

. 1+ if >0,
(1+H7YIn2+t) ifo=0.

Settingj =0, k =0, k{,2 and s = 2+2y(1-0) in the linear estimates (43), we get

’ u™(t, ) L+t 0 || (1, 1)1 + (1 + 8720790 [[(tdg, 1) | e o
< ho(t) [[(to, t1)] 4 ; (134)
iin 3+2k —46 S—k
0708y S O 07T ot + 1+ 072 (o, U e s

S hi(8) [[(uos U] 4 - (135)

~
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Here we used the fact that, since p > y~' > 3, we have ky € (1,2). From kq > 1,
the low-frequency decay is faster than (1 + &)™ :

3+2kj—40  5-46
41-0) ~4(1-0)

>1>.

On the other hand, from ky < 2, the same holds for the high-frequency decay:

S—k-| 2+2’Y(1—9)—k1
= > .
2(1-0) 2(1-0) =Y

For the H2—norm, we control the high-frequency decay by using the regularity
Sc on initial data:

lin < _47;48
HU (l‘,-)‘ S (1 + 1) 2029 [[(uUg, Uq) || L1y 1

H2
__s2
+ (1 + t) 2(1-9) ||(U0, u1)||HsXHs—1

< ho(t) [[(ug, ug)ll 4 - (136)

The norms of u"(t, x) bring no further difficulties, since the low-frequency decay
rate becomes greater than 1 and the high-frequency decay rate is not worse than the
one from H? estimate, hence also controlled by the regularity of the initial data. Setting
j=1,k=0,1and s=2+2y(1-0)in (43), we get

|

)ulinH
X(T)
the L2—norm, setting j = 0, k = 0, { = |u|P and s = 3 in Corollary 2.3.6, we get

u ()|, S P (o, un)llx, K =0,1. (137)

Ak ™

Therefore,

S |l(ug, uq)ll 4 - We now prove ||Gulx(1y < ||U||§(T)- For

3-46_

t T
1Gu(t, )2 < /0 (1 + t—g) i /0 (t—8) u(s, )%, ds dr

t T
o [Qt= T [ s (s, ) ds o (139)
0 0

so we must estimate the norms |ju(s, -)H’Zp and ||u(s, ~)|]’Z2p. For the LP—norm, we use
Sobolev’s Embedding A1 (R3) — LP(R3),

lus. NTe < luls N, < (1+ 9P ully 7.
with yp > 1 if, and only if, p > y~1. For the L2P—norm, we use the Sobolev’s Embedding
H&(R3) — L2P(R3), with k = 3 (% - #) . Notice that k € (ky, 2), and therefore we can
interpolate between H% and H? :

lu(s, Mz < Nuls L, < (1 + 8P (In@+ )P [lull 7y

considering already the worst case scenario where 6 = 0, for which the logarithmic
term appears. As discussed before, these logarithmic terms do not influence on the
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existence results, since they can be bounded by (1 + ) with § > 0 as small as we
please. Returning to the L2 estimate and applying Lemma 2.4.2,

t T
1Gu(t, )|,z < [/O (1 +f—T)_m/O (t—8) (1 + )P ds dt

t T
v [(@at—ayato / (v= 87V (1+ 5772 ds it Jul
0 0
S 7Yl (139)

For the H*1 and H2 norms, we may choose s = 4 in Corollary 2.3.6:

3+2ky—40

t T
1Gu(t, ) < /0 (4 t—r) o /O (t—8) |u(s, )|, ds dr

t 4—k. T
+/ (1 +t—’r)_2(1—16)/ (=97 [lu(s,)IP||; ds dr. (140)
0 0

Since the LP-norm is already estimated, we must then estimate the norm H lu(s |pHH1 ;
or equivalently, ||V|u(s |pHL2 We first use chain rule and apply Hélder’s mequallty

[V1ulP|| 2 = H|u|p_1Vu

I Dl Y (141)

The norm in L3(P-1) is estimated applying Sobolev’s Embedding
HX(R3) — L3(P~1)(R3), with k = 3 (%—%) Notice that k € (ky,2) so we can
interpolate H* between H* and H2, obtaining

1015y S Nl < (14 8P (In@ + )P [lullfy 7y (142)
On the other hand, we apply Sobolev’s Embedding A (R3) — L8(R3), getting
IVUulle S IVUll g ~ lull e S (1 +8)7YIn@2 + 8) [|ul| 7y - (143)
Using (142) and (143) in (141), we get
I¥1uPll2 < (1 + 8P (In2 + )P ully (144)

Returning to the H*' estimate and applying Lemma 2.4.2,

t 3+2k—40 [T
|Gu(t, )| g S [/ (1+t-1) a(10) / (t—8)™Y(1+58)YP dsdt
0 0

t 4k T
+/ (1+ t—fr)_2<1—19>/ (v =) (1 + )77 ds dr| ul%,
0 0
S+ ”U”f((r) . (145)

For the H2-norm, since we have already estimated both ||u(s, -)||7, and |[|u(s, )IP|| 41,
we estimate directly

1GUtt, Mom < (1+1)7Y Hqu((T), if 0 >0, (146)
1A+ n@+ 1) lul§ gy, if0=0.
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For the two norms of 04(Gu), we also choose s = 4 in Corollary 2.3.6, and with
|u(s, -)H‘Zp and |||u(s, -)IP|| .+, we can once more apply Lemma 2.4.2 to obtain

18:(Gu)(t, Ml 2 S (1 + 7Y [l g, (147)
(T)
and
— p .
oGt g < 4 0 1y 10>0, (148)
(1+7YIn@2+1) ||u||§((T), if 0 =0.

Therefore, we have proved that || Gu| x(1) < Hqu(( ) and we conclude the proof
asincasesn=1,2.
|

The second region we will explore in case n = 3 is for values of y that are
greater than % so its influence in the critical exponent will not be so drastic. As we
mentioned before, when y tends to 1, it is possible that p < 2. We first show that, when
this is not the case, the critical exponent remains p¢, which can be shown without great
modifications on the previous proofs.

We notice the following equivalence:

Pc>2 < n+2(1-0)>2(n-2+2y(1-0))
6—n-20

< —_
Y= 7029

Hence, the second result for n = 3 covers the case y € (% ﬁfg)] , for which
pc > 2, and the case y 1, forcing the condition p > 2.

Theorem 3.4.2 Assumen=3,0 ¢ [0, %) .Lets=2+2y(1-0), and assume

ye(%,%} and p > pe, or
ye(%J) and p > 2.

Then, there exists ¢ > 0 such that, for initial data

(Ug, Uq) € A = (HS(RS) nL! (]RS)) x (HS—1 (R3) N L] (R3)>,

4(

there exists a global solution to the problem (1), u € C([0, o), H?) N ([0, o0), H).
Moreover, the following estimates hold:

340 {_
u(t, e S 1+ 0720077 ||(ug, Uyl 4 »
(1 +t)_YH(U0,U1)HA, ifo >0,

lut, Mg < { _ .
(1+ 87 In(2+1) |[(up, uy)l| 4, ifO=0,
lug(t, Mz < (0 + 7 [[(uo, t1)ll 4.

ug(t, | oy < (1+ 807 |[(Ug, uq)l 4.» 050,
Y 4w 0 In@ 4 ) It up)ll 4, iO =0.
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Proof: For T > 0, we define the Banach space
X(T) := C([0, 0), H?) n ([0, x0), H'),

equipped with the norm

where
ho(t) = (1 + ) 4-0*1Y,
(t) (1+H7YIn@2+1),
o) =(1+1)7Y
if 0 >0,
{ HYIn2+1t) if6=0.

First, we check Hu”"HX(T) < |(ug, uy)4- Setting j = 0, k = 0, }, 2 and
s =2+2y(1-0) and after that, settingj=1, k=0, 1 and s =2 +2y(1-0) in Corollary
2.3.4, we estimate all five norms of Gu in X(T) without any additional problem.

Now, we prove [|Gul[x(1) < HuHﬁ’((T). We will choose s = 3 in Corollary 2.3.6,
forj=0, k= 0,%, and s = 4 for the norms with k =2, j=0and withj =1, k=0, 1. This
will lead us again into estimating the norms |[u(s, )|}, , lu(s, Hsz and ||[u(s, -)IP|| ;1 -

For the norm in LP, we may use two different approaches, depending on p :
Firstly, assume p € [2,3). Then, we apply Gagliardo-Nirenberg’s inequality (47) to
interpolate between L2 and H2 :

Juts, Vs < llu(s. Vs " s
340 L 4_ - _
<1+ 9T )P0 7 iz 4 ) Pl (149)
where 04 = %(1—1>=6<1——> (0, 1) due to p < 3. We then get
;- I1\27p 2°p
luts, I < (1487 ullf 7y (150)

with & > 0 sufficiently small and

3-40
_ (m—1 +y) (1 —9%>p+y91§p

= %—(1 -Y)p. (151)
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We have « > 1 if, and only if, p > pe. For the case vy € <%, 1) , this condition
holds as a consequence of p > 2. In fact, from the equivalence

3+2(1-0)
> _ > — > -
pe>2 1+2Y<1_9)_2<:>3+2(1 0) > 2+ 4y(1-0)
3-20
— 1+2(1-0)>4y(1-0) — 2o 2 (152)

we have that p > 2 > p¢ will hold when y > %.

For the case p > 3, we may use Sobolev’s Embedding H*(R3) — LP(R3) with
1

k=3 (? - %) . Notice that, for p > 3, this « satisfies } < k < 3 < 2, so we can interpolate

between Hz and H2 :
u(s B, < uts, I, (1 -+ 877 (@ + )P |l (153)

and since we are assuming y > % and p > 3, we have yp > 1 automatically.

For the norm ||u(s, )|%, , since 2p > p, and the map g — 3 <% - %,) is increasing,
we'll obtain a decay speed that is not worse than the one we got for the LP—norm. Indeed,

using Sobolev’s Embedding H*(R3) — L[2P(R3), with k = 3 (%— 2lp> , the condition

p > 2 implies k € [% %) C (4,2) and we can again interpolate between Hz and H2 :

(s, M, < llu(s, B, (1 + )P (n(@ + )P [|ul% 7, (154)

For the norm |||u(s, )IP|| ;: » we may proceed as in (141)-(143) from Theorem
3.4.1 and obtain again (144). The only slight difference is that, for the L3(P~1) estimate,
we interpolate between Hz and H2, which is possible since = 3 (% - ﬁ) € [% %)
for p > 2.

We are now ready to apply Lemma 2.4.2 for all five norms inside ||Gul|x(r) -
Naming

L S e itpel29),
e itp>3,

we get, for k = 0, 3,

_3+2k-40

t T
nGwnmmsA(HJ—ﬂ4M»Acvsﬁwwamﬂdsm

t T
+/(1 +t—T)‘2u—e>/ (t= ) [lu(s, )|%, ds dr
0 0

3+2k-46

t T _
S [/ (1+t—7) 49 / (t—8)Y(1+5)™**® dsdr
0 0

3-k

t T
+/(1+f—T)'2“-9>/ (T=8)7(1+ )P ds dr| ||ully
0 0

(155)
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That is,
_ﬂ+‘|_y p .
1+ t) 40-9) u , if k=0,
jGutt N5 { LU 1 (156)
(1+ 07 In@+ ) ||ully 7y, k=3
The other three norms are also now easily estimated:
t 7-40 T ~
1Gu(t, ) < [/ (1 +t—T)_4“‘9)/ (t—8)Y(1+ 8 dsdr
0 0
t T
+/ (1+ t—T)_2(12‘9>/ (t—8)Y(1+ 87" ds dr | [lull%
0 0
— p .
< (1 + 07 ull§ if 0 >0, (157)
1+ In@+t)ulfqr, fe=0,
and for the two norms of 0;(Gu), we do the same and get
104(Gu)(t, )2 S (1 +1)7Y, (158)
and
(1 + 07 ull% g if 0 >0,
J3:(Gu)(t, g < Lo xme (159)
(1+1)7YIn2+1) HU”X(T) , ife=0.
We conclude that || Gu| x(1) < Hqu((T), and finishing the proof as in previous
cases, we are done. n

The last case for dimension n = 3 concerns values of y that are close to 1, and
p < 2. For this case, we make use of (L1 N LP) — LP estimates that we obtained in
Section 3.3. These estimates bring two additional concerns to our problem. Right away,
we have the need of additional regularity W3-P x W?2P on initial data. Also, the obtained
estimates have a decay speed loss when compared to the energy estimates we got for
p > 2. This loss could lead to a different admissible range for p for which we can obtain
global existence results. Fortunately, we are able to prove that in dimension n = 3 this
doesn’t happen and we still recover the critical exponent pc.

Theorem 3.4.3 Assume n = 3, 0 € [O%) Lety € (%,1), p € (pe,2) and

s=2+2y(1-0). Then, there exists ¢ > 0 such that, for initial data
(Ug, U7) € A = (HS(RS) N L' (R3) N WS’P(RS)) X (HS—1 (R%) N L'(R3) N W2’p(R3)>,

there exists a global solution to the problem (1), u € C([0, 00); H?) N1 ([0, 0), H') N
L>°([0, 00), LP).
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Moreover, the following estimates hold:

]
Ju(t, )l S (1 +1)* o) (Uo> u1)ll 4.5

u(t, | i < (1 + 07 [[(Uo, ur)ll 4 ifo >0,
' N
H (1+87Y In@2+1) |[(ug, ty)]| 4, O =0,

Jug(t, e S 1+ 07 [[(o, ug)ll 4.5
It ) (1+ 07 [[(ugs u1)ll 4.5 ifo >0,
t N
A ) (4 7Y @+ 1) (U, tr) g, 7O =0,

Proof: For T > 0, we define the Banach space
X(T) = ([0, 00), H?) n ([0, o0), H1) N L ([0, 0), LP),
equipped with the norm

. -1 -1 —1
[Vix(ry =sup (ho V(g2 + P (@ V(g + Po(®) " [lvilt, )2
te[0,T]

+ hy (07 et g + B v, HLP):

where
ho(t) = (1 + ty s+ 17
ha(t) = By (1) = {“ s 16>0,
(1+H7YIn@2+t) if6=0,

3 1—%)—29

Bp(t) = (1 +1)° a0 17,

for 6 > 0 sufficiently small.
With exception of the LP—norm, the estimates for u/"(t, x) will follow as in Theo-
rem 3.4.2. For the LP—norm, we may use the u””(t, x) for p < 2, in Corollary 3.3.7:

Jin 5 3(1—%)—29
|a™, ), S (0 0% =T (g, un)llpr e
3-3(3-20 (,l, )
(1 + t) 201-9) ||(U05 U1)|| W3.px Wap - (160)

We may compare the decay rates coming from low and high-frequency regions.
We notice that the condition

3<1 _;_)>—2e 3-3(3-20) (;1‘9‘%)
(-0 2(1-0)
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is equivalent to

1 1 1 3 1 1
3(1—5)—2933—3(3—26) (73_5) > 520 <3-3(2-20) <5_5>
1 1 3

Since we are assuming p > pc > % and 0 > 0, it holds that

1 1 3 1 1 3 3
[ — —_ R — < = .
3(,0 2)<4:>3(2 26)(p 2) <2_2+26
In other words, the condition p > p¢c > %, together with the chosen regularity
(Ug,ug) € W3P x W2P_ implies that the slower decay rate will come from the low-
frequency region, yielding

3(1—%)—29

|o", )|, (e 0" g, g (161)

LP

for a sufficiently small & > 0.
Therefore, we have Hu””

S ll(uo, uy)ll 4 - To prove | Gullxry S lullyr.

X(T)
we will need again estimates for the norms ||u(s, -) ||, , [|u(s, -)||75, and ||[u(s, )IP|| -
For the LP—norm, we may use directly the X(T)—norm of u :
NP < (5 0l = (1 + 87 02 162
Ju(s, e < o(S) HUHX(T) (1+59) HUHX(T)’ (162)
with (3—20)p-3
) Y

wim e (1Y 8P, (163)

For 6 > 0 small enough, it holds that « > 1 if, and only if, p > pc. For the

[2P—norm, we apply Sobolev’s Embedding H<(R3) < L2P(R3), with k = 3 (%— g_p) .

We remark that 2p > 2, and that k € (0, %) C (0, 2), so we can interpolate between L2
and H2 :
luts, Mz S lluts T,

_ 346 1— p
< (149 lul%r)

S A+ ulfrys (164)

where in the last step we used the fact that the decay coming from L2—norm is faster
than the one coming from LP—norm, since p < 2. Indeed, for § > 0 sufficiently small, we
have

3-40 3(1—%)—29

—-(1=v)>-0+

4(1-9) si-8 UV
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— 3—46>6(1—;>—46 — p<?2. (165)

For the norm |||u(s, -)|P|| ;1 » we proceed similarly to Theorem 3.4.1, using chain
rule and Holder’s inequality to obtain

I¥16P)| 2 < NullPomsy V0l s

The norm |]u||"Z;(L1) is estimated using Sobolev’'s Embedding H¥(R3) —s [3(P~1)(R3),

with k = 3 (% —ﬁ) .Since p > pe > pr = 3, it holds that « € (o, g) c (0,2), and

we can interpolate between L2 and H? :

-1 - p-1
lul S lull

[ 3(p—1)
_ 340 ,4_
< (14 IO ot
< (1+8) 2Py P (166)

where in the last step we used again the same reasoning as in (165) to see that the
decay rate from L2 is faster than the decay from LP, when p < 2.
On the other hand, using Sobolev’s Embedding H'(R3) — L8(R3), we get

IVulle S IVUllgr = lull e S (1+8)7VIn@ +5) |ull x(T
S +s) P lullxr - (167)

Combining these estimates, we find
luts, WPl < O+ 87 Mlullf 7y (168)

with o as in (163).

Using the estimates (162), (164) and (168), we can proceed to estimate the
norms of Gu(t,x) in X(T), exactly as in Theorem 3.4.2, with the exception of the
LP—norm. In order to estimate it, we apply the LP — LP estimates for convolution with the
operator E4 with p < 2, that we obtained in Section 3.3. Namely, we will apply Corollary
3.3.7, setting n = 3, ¢ = |u|P and s = 3, obtaining

3(1-1 -20

t T
| Gul(t, ')\Lpﬁ/om +t—1)° a0 /O (t—9)7 |Ju(s,")||P dsdrt

t 3—3(3—26)(%—% T
" / (4 t—m)y 2o / (-8 u(s. )P, dsdr.  (169)
0 0

We must then estimate the LP*—norm of u(t, x). Noticing that p > % hence p? > 2,
we can apply Sobolev’s Embedding H<(R3) — LP*(R3), with k = 3 (1? - #) . Also, we
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remark that k € (% %) C (0,2), due to p > 3, and we can interpolate between L2 and

H? -

lus. NP, < llu(s, I,

_3-40_ 1— p
< (1491 lull

SO+ ully - (170)

Once more we used the argument that the decay from L2—norm is faster than
the decay speed coming from LP—norm, according to (165).

We now return to the estimate (169) and apply Lemma 2.4.2, stressing that, due
top> %, the worst decay comes from the low-frequency region, and it is slower than
(1 +t—1)"1, since

<1 <= 3—%<2 <~ p<3.

We then obtain

3(1-1)—20

(
1GU(t, e S (1+ 8201y o (171)

and with all the norms for Gu in X(T) estimated, we finish the proof as in the previous
theorems.

35 CASEn=4

We have seen in the previous section that two phenomena arise for n > 3. Firstly,
for small v, the influence of the nonlinear memory changes the critical exponent to y~.
This effect appears in the same way for n = 4. Second, for vy close to 1, a loss in
the decay speed when p < 2. In case n = 3, this loss is not great enough to actually
change the critical exponent. We may see that, for n = 4, if the parameter vy is large
enough in some sense when compared to 6, we must assume a different, greater value
for p in order to prove global existence of solutions, besides the additional regularity
W3-P x W2P that was already required in the case n = 3.

As in case n = 3, we divide our results based on the size of the parameter .
First, we show global existence fory € (O, %} , when p>vy~1.

Theorem 3.5.1 Assume thatn=4,0 € [0,}),v € (0,}]. Also, assume p >y~', and
S = Sc¢, With s¢ as in (3). Then, there exists ¢ > 0 such that, for initial data

(Ug, Uq) € A = (HS(R4) nL! (]R4)> X (HS—1 (R4 N L1 (R4)), (172)
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there exists a global solution to the problem (1), u € C([0, o), H?) N ([0, cc), H1).
Moreover, the following estimates hold:

ut, e S A +57YIN@2+1)||(Ug, ugll 4 (173)
1+ 87 |[(up, u , ife >0,

Ut )l e (1+ 87 [[(ug, uq)ll 4 > (174)
1+ In2+1) ||(u0,u1)HA, ifo =0,

ug(t, )2 S (1 + 07 |[(ug, up)| 4 (175)
1+80)7Y ||(ug, u , ifo >0,

gt M < (1+ 87 [[(ug, uq)ll 4 > (176)
1+ In(2+1) ||(uo,u1)||A, ifo =0.

Proof: For T > 0, we define the Banach space
X(T) =¢([0,00), H?) n ([0, o0), HY),

equipped with the norm
IVilx(r) = sup (ho 7 IV M2 + b @7 1V g + B8 VA e
te[0,T]
+ho(0)7 |vat, Ml 2 + Pe (8 [[wa(t, ||H1),

where k = 4 (12 — ;—)> and

ho(t) = (1+ )Y In@2 + 1),

hi(t) = ho(t) = (1 + 1)

N 1+~ if >0,
{(1 +)YIn2+t) ife=0.

We check that Hu””

X(7) < [[(ug, uq)|| 4 just as in Theorem 3.4.1. The only slight
difference concerns the HX—norm. Here, since p > y~! > 2, we have k; € (0,2). But
for n = 4 this is just what we need to control both low and high-frequency decay rates

with a (1 + )™ profile:

Kq
<A+t e V[ (o, ut) [l 1+ (1 + t) H(UO’ Ul g c o

Uﬁn(t, )

H
S+ (v, ut)ll 4 -

To prove ||Gul|x(1) < ||u||’)’((7.), we also follow the same steps as in Theorem

3.4.1: To estimate the LP—norm, we use Sobolev’s Embedding H* (R*) — LP(R%). For

the L2P—norm, we use Sobolev's Embedding H<(R4) < L2P(R%), with « = 4 (% - %D) c
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(k1,2) . Lastly, for the norm |||u(s, -)|P|| ;1 » we proceed similarly to (141)-(143), changing
the dimension accordingly. From Hélder’s inequality,

S ||U||L4,H IVull 4. (177)

L2~

[VIulP|,2 ~ H|u|p_1Vu

For the L*(P~1)—norm, we apply Sobolev’'s Embedding H*(R?4) — L4*P-1)(R4),
with « = 4 (% - 4(p1_1)> . Notice that k € (0, 2) so we can interpolate H* between L2 and
H?, obtaining

1 - 1 1
Hu||L4p—1 N HUH';,_K < (1+87P N (In@ + )P |!UH§)(_(T)- (178)
On the other hand, we apply Sobolev’s Embedding H'(R4) — L4(R%), getting

IVullps SIVUllg = Nulle S (14987 In@ + 8) [l x(Ty (179)

~Y

which gives us
lluts, )Pl g S (1+ )P (In2 + )P ully 7y (180)

that is, the same estimates for ||u||;p, [|ull;2o and |||u(s,-)|P||;; we got in Theorem

3.4.1. Using these estimates and applying Lemma 2.4.2, we estimate the five norms

of Gu(t, x), concluding that || Gu| x(1) < ||u|]’)’((T) . Concluding the proof as in previous
cases, we are done.

|

Comparing the results for n = 3 and n = 4, the next case should cover interme-

diate values for v, that is, v € (”‘TZ a‘(tgﬂ , for which pe > 2. But since for n = 4

this never happens (because that interval is degenerate for n > 3) we are left with the

case where y approaches 1. Firstly, we force the condition p > 2 and apply the energy

estimates, in a similar fashion to Theorem 3.4.2.

Theorem 3.5.2 Assume n=4,0 € [0,1),v € (4,1),p > 2ands =2+2y(1-0).
Then, there exists ¢ > 0 such that, for initial data

(Ug, Uy) € A = (HS(R4) ALt (]R4)) X <H5‘1 R4 LT (R4)>,

there exists a global solution to the problem (1), u € C([0, o), H?) N ¢ ([0, 00), H).
Moreover, the estimates (173), (174), (175) and (176) hold.

Proof: For T > 0, we define the Banach space
X(T) := C([0, 0), H?) n ([0, o), H1),

equipped with the norm

: 1
IVlixr) = sup (ho v, Mz + @) lv(t, )l ge
te[0,T]

+ ho (8™ [[vi(t, )l 2 + B (87 v )Hpn),
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where
ho(t) = (1 +1)7VIn(2 +1),
ho(t) = (1 + 1)
. (1+1)7Y if 6 >0,
hi(t) = by (1) = ) |
1+ YIn2+1t) ife=0.
Settingj=0,k=0,2;andj =1,k =0,1, with s =2 +2y(1-0), in Corollary 2.3.4,
i lin <
the estimate Hu HX(T) < |[(ug, uy)]| 4 follows.
To prove [|Gullxr) < Hqu((T), wesetj=0k=02 ¢ =|uPands=4in
Corollary 2.3.6, obtaining

t T
1Gu(t, WS [ (A4 t=0 7w [ (x—s) |lu(s, )P dsdr
H 0 0 L
t T
+/(1 +t—T)-z<“T—ke>/ (t= sy [lu(s, )Pl ds . (181)
0 0

We estimate the LP—norm using Sobolev’s Embedding H*(R%4) — LP(R%), with

k=4 (% - —> [0,2), obtaining

lu(s, ) < (1+ 7P (2 + )P [l 7,
For the norm |||u(s, -)IP|| 1, we proceed as in (177)-(179), obtaining again (180).
Since p > 2and vy > % we have yp > 1 and we can apply Lemma 2.4.2 in (181),

obtaining
1Gu(t, )2 S (1 + 87V InE@+1) Hqu

|Gult, | (1 07 ullr). 70>0
T A e In@ e uly gy i =0.

and

Setting j=1,k=0,1, ¢ = |u|P and s = 4 in Corollary 2.3.6, we get
t T
oGt S [ (1 + = > T [ rm ) s, )]s s
0 0
t _ T
+/ 1+ t-T)—zﬁ—"w/ (t— ) [[lu(s, )P ds dr
0 0

-y p . _
< (1+1) HUHX(T), ifk=0or6>0 (182)
§ +t)‘VIn(2+t)||u||f(T , ifk=1and@=0.

Then, with ||Gu| (1) < Hqu , proved, we finish the proof.
|

In the case where p < 2, the LP—estimates can be used to prove existence of

global solutions for p > max {pc, pc} , where
- 14-100
Pe= 7 28 2vy(1-0) (183)
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is obtained from the high-frequency region estimates, while pc comes from the low-
frequency region estimates. Here, we have an interplay between the parameters 6 and
v. If v is not large enough in comparison to 6, namely if

y < 202 -30 +7

~ 8(1-0)2
then the worst decay rate will come from the low-frequency region, and we find global
solutions assuming p > p¢. Otherwise, we will find solutions for p > pc.
We remark that, if 8 > 0, with

, (184)

13-1/145
EEEE
the smallest root for 202 — 36 + 7, then the condition (184) is achieved automatically for
every y € (0,1).

B = (185)

Theorem 3.5.3 Assume n = 4, and that either

2’ 8(1-0)2
0 € [0, 5) and y € (%1) :
with g as in (185). Let p € (pc,2) and s = s¢, with pc as in (2) and s¢ as in (3). Then,
there exists ¢ > 0 such that, for initial data

(Uo, L) € A i= (HS(R4) N L' (RY N W3’p(R4)) x (HS-1 (R4 N L'(R% N WZ!P(R“)),

{e € [0,00) and v € (1 292‘39"“7} , or

there exists a global solution to the problem (1), u € C([0, c0), H?) N ¢1([0, o), H1) N
L>([0, o0), LP).
Moreover, the estimates (173), (174), (175) and (176) hold.
Proof: For T > 0, we define the Banach space
X(T) = ([0, 00); H?) n ([0, o0); HY),

equipped with the norm

IVIix(r = sup (ho(l‘)_1 vtz + b7 V(L )l e + Po(t)™ [[velt, ) e

te[0,T]

where
ho(t) = (1 +1)7VIn(2 +1),
ho(t) = (1 + 87,
_ 1+1)7Y if 0 >0,
h1(t>=h1(t)={ ) |
1+)YIn(2+1t) ifo=0,

2(1-4)-o
Ba(t) = (1 + )T +17,
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for & > 0 sufficiently small. The norms that compose Hu”” (T are estimated directly

by setting j =0, k=0,2;andj =1, k = 0,1, with s = 2 + 2y(1 —0) in Corollary 2.3.4,
as usual. For the norm Hu””(t, -)HLp , we apply the LP—estimates for p < 2, in Corollary

in 5-201-)°
|a™, )|, S @+ 07T (g, unllpreg

LP
_ss20(h-3)
+(1 + t) 201-9) ||(U05U1)||W3,pXW2,p' (186)
Comparing the low and high-frequency decay rates, we see that, for & > 0 small
enough,
1 1
2<1_")_6—5< 3-4(3-20) (5 E)
(1-9) - 2(1-0)
— 4 (1 —1> - 26 < 3-4(3-20) (1—1>
P p 2
8(1-9)
= p> 5_20 " (187)
And, since we are assuming p > pg, the equivalence
8(1-10) 21+ (1—-y)(1-0)) 3-60
Pez 55 " giyi-e = *5-20
202-30+7

ensures us that our assumptions on p,y and 6 are just what we need to have the
slowest decay rate coming from the low-frequency region, that is,

2(1-4)-o

|o™9)[, (1 + 07T (g, un 4 (189)

Therefore, we have Hu”” X

ull
Setting j = 0,k =0,2;and j = 1, k = 0,1, with ¢ = |u|P and s = 4 in Corollary
2.3.6, we get

n < l(ug, uq)ll 4 - Next, we prove that [|Gul| x(1) <

t
IGu(t NS [ (1 +t=07"" [ (=5 uts. I, ds o

/1+t el / =) [lu(s, )Pl ds o, (190)
0 0
for k =0, 2, and
t
RGN 5 [ (14 1= o [M(-9) uls, I, ds dn
0

+/ (1+t—n) g / T—8)"Y ||u(s, )|l ds dr, (191)
0 0
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for k = 0,1. The LP-norm is already included in ||-|| (), so we don’t need to estimate
it: 5
luts MG < (hp()” Nl gy = (1 + 87 ul§ 7. (192)

with o« = (2_16_)‘99_2 — (1 —v)p. We remark that, as expected, « > 1 if, and only if, p >

Ty (1-0) = Pe:
The norm |||u(s, -)IP|| 1, is estimated as in (177)-(179), obtaining again (180).

We must then check if yp > 1. Indeed, since y > % and p > pg, it holds that

v(3-0) 2y —1

Therefore, we can apply Lemma 2.4.2 and obtain the desired estimates for the
first four norms that compose || Gu||x (7). The last remaining norm is ||Gu(t, )| p , for
which we use the E;—convolution estimates for p < 2 we obtained in Corollary 3.3.7,
settingn=4,¢ = |ulPand s =3:

2(1—1 -0

t T
1Gu(t, VS [ A +t=0> 70 [ (t—8)7 |lu(s, |5, dsdr
L 0 0 L
t _3—4(3—26)(%—% T _ b
+/ (14 t—g)y 2 / (=8 lu(s. )P, dsdr.  (194)
0 0

With the LP-norm already controlled, it remains only to estimate the LP*—norm.
We observe that p > pc > pr = % hence p? > 2, and we can apply Sobolev’s Embed-
ding H(R%) — LP*(R%), with « = 4 <% - #) € (0,2) and interpolate between L2 and
H?2, finding
WP, < P < -vp Pl lP
Ju(s, )72 < llus, )”HK S (1+8)777(In(2 + 5)) ”UHX(T)-

LP?

As we argued before, we have yp > 1, so we can apply Lemma 2.4.2, and from

the assumption y < %, the slowest decay rate comes from the low-frequency

region. It is also slower than (1 + t)~1, since
1
L.205)-e
1-0

for & > 0 sufficiently small. Therefore, we find

<1l <= p<2,

2(1-1)-

_2(t-p)e
1Gut, g < (1+ %0 1w o, (195)

proving that || Gu|| (1) < HUHSJ((T) . The rest of the proof follows as in previous cases.
|
The last case for dimension n = 4 concerns small values for 9, that is 6 € [0, 0),
and large values for v, namely y € (zgi%gy, 1) . For this range of parameters, we
have pc > pc, SO we are able to prove existence of global in-time solutions for p > pc.



Chapter 3. Nonlinear Problem 95

It is important to stress that in Chapter 4 we prove nonexistence of global in-time
solutions only for p < max{pe,y~}. This leaves us with a gap p € (pc, Pc), for which we
do not know whether there are global solutions or not.

Theorem 3.5.4 Assumen=4,0 ¢ [0,0p), Y € (ng;f’g)f, 1) ,p € (Pc,2) and s = sg,

with ©q as in (185), pc as in (183) and s¢ as in (3). Then, there exists ¢ > 0 such that,
for initial data

(Ug, Uy) € A= (HS(R“) nLYRY N W3’p(R4)) x (HS-1 (RY N L'(R*) N WZP(R“)),

there exists a global solution to the problem (1), u € C([0, c0), H?) N ¢1([0, o), H1) N
L>® ([0, 00), Lp).
Moreover, the estimates (173), (174), (175) and (176) hold.

Proof: For T > 0, we define the Banach space
X(T) := C([0, 00), H?) n ([0, x0), H'),

equipped with the norm
IVlxr = Sup (ho(f)_1 IVt )2 + b @7 V()| e + ho(D 7 [ ve(t, )l 2
€|0,

+ hy (8 vt Mg + B v, -)||Lp>,

where
ho(t) = (1 + )Y In(2 + 1),
ho(t) = (1 + 1),
N 1+ ifo>0,
hy(t) = hy(t) =
(1+t)In2+t) ife=0,
_% 1_ . 8 1_9
hp(t) = (1+1) ( e i< S5
2(1-1)-o
A+ 1Y ip > 8128)
for & > 0 sufficiently small.
We observe that, since the equivalence
_1)\_ —4(3— 1_1
2(1-7)-0 _3-4e-20) (3-1%) . 80-9)
(1-9) 2(1-19) 5-26

holds, one can see the decay rate hp(t) as

H(t) = (1 + 71,
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2(1—7)—9 3-4(3-20) (-1

=0) 2(1=0) , S0 it’s slower than both the low and the
high-frequency decay rates obtained in LP — LP estimates.

As done before in Theorem 3.5.2, we estimate the four first norms that compose
Huﬁn o by setting j =0, k =0,2;andj =1, k = 0, 1, with s = 2+ 2y(1-0) in Corollary
2.3.6. As for the last norm, we use the LP — LP estimates for u/M from Corollary 3.3.7:

with w = min < =6 +

) 2(1-5)-0
lin < 6‘%
|d" )|, S 1+ 07T (g, i
3-4(3-20)($-3)
+(1+1) 200 [(Ug, t1)ll sy r2e

t) [(ug, ug)ll 4 - (196)

lin p
Therefore, Hu X(T) S [l(up, ug)l 4- To prove [|Gullx(1) < HUHX(T), we set
j=0,k=0,2;andj=1,k=0,1,with ¢ = |ulP and s = 4 in Corollary 3.3.7, getting

t T
| Gult, .)||Hk5/0(1 +t—T)_1_2(1k—6)/0 (t—8) |lu(s,-)||P, dsdr

+/Ot(1 £ t—) 2 /OT(T—s)—y llu(s, )P|l;: ds dr (197)
and
JouGut N & [ 1+t [ o) uts, s ds on
/1+t )a /0 =) u(s, )P, ds dr. (198)
As for the LP—norm, we get directly
luts, N < (Hp(e))” lully
_ {(1+3)_&U§((T)! it p < 50 (199
(1+ 874wl 7, if p > 158,
with 1
- (3 4(32(12%” 2>—(1—v))p and «= ZZOP72_(_p

We remark that & > 1 if, and only if,

&>1 < 3p—4(3-20) (1 —§> —2(1=v)(1=0)p > 2(1-6)

— (3+2(3-20)—2(1—y)(1-0))p > 2(1 - 0) + 4(3 - 20)
14-100 )
— P37 5e2y(1-9) ~Pe (200)
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On the other hand, for the case p > 85(153), we have « > 1 < p > pc. Using

202-30+7
8(1-0)2

we have

the equivalence (188) and the assumption y >

p = > Pc,

hence « > 1.

The norm |||u(s,-)|P|| 1, is estimated as in (177)-(179), obtaining again (180).
We must then check if yp > 1. As we have seen in (193), this will hold if p > pc and
Y > % But this is true, since pc > pc is equivalentto y > %, hence our assumption
p > pc is stronger than what we had before.

Therefore, applying Lemma 2.4.2, we are able to estimate the first four norms
inside ||Gu|| x(r - Lastly, for the LP—norm,

2(1—1)—6

t T
ICult, s [ (1 t=0 5 [ o9 futs. ), s o

Lr?

t _3—4(3—26)(%—% T ~ b
+/ (14 t—g)y 2 / (t—s) |u(s,)|P, dsdr,  (201)
0 0
and using Sobolev's Embedding H<(R4) — LP*(R%) with « = 4 (%—#) € (0,2), we
find again

luts, P, < llu(s, B < (1 +9)P(In@+ )P ull§, - -
LP H (T)

Applying Lemma 2.4.2 and having in mind the observation from the beginning of
our proof, we obtain

IGu(t, e < hp() ull 7 - (202)

This concludes the argument that || Gul| x(1) < Hu||§((T) , and we finish the proof
as in all previous theorems. [
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4 NONEXISTENCE OF GLOBAL SOLUTIONS

4.1 TEST FUNCTIONS AND WEAK SOLUTIONS

In this work, we find global in-time solutions to the problem (1) for the supercritical
case, for a specific critical exponent candidate. The sharpness of such candidate is
achieved by showing nonexistence of global solutions in the subcritical case.

This nonexistence counterpart is usually derived by using a classic test function
method. However, since the Laplace operator has a nonlocal behavior, such method is
not applicable (at least directly), since it relies on the compactness of the test functions’
support under the action of these operators.

Having this in mind, we use a modified test function to obtain our results. To
deal with the nonlocality of the fractional Laplace operators, we will replace the usual
compactly supported test functions by some suitable test functions with polynomial
decay. To this end, we introduce a class of functions and a definition of a weak solution
to problem (1) which is adequate to our purposes.

Definition 4.1.1 Let 6 € (0,1) be a fixed number, and fix g = n + 20. We define the
space (330(]12{”) as the subspace of infinitely differentiable functions ¢ such that (x)9 ¢
is bounded, and for any o > 0 with o integer or c— || € [0, 1), the function (x)9 (-A)° ¢
is also bounded.

The choice of this specific space CgO(R”), with g = n + 20 is justified by the
following lemma and its corollary. With these, we may show that a function in CgO(R”)
remains in the same space after the action of the Fractional Laplace operator (—A)°.
First, we recall the definition of the fractional Laplace operator and an alternative defini-
tion for non-integer powers, that is equivalent with the usual definition when the domain
is the whole space R".

Definition 4.1.2 For any o > 0, we may define the fractional Laplace operator (—A)° :
H20 5 [2 as

(~A)of = F1 (|a|20?) . (203)
If o € (0,1), then the operator (—A)° admits an integral representation. The identity

f(x +y)+ f(x—y)—2f(x)
n |y|n+2cr

-8)°f(x) =~C |

holds for any f € S. Also, the constant Cy is given by

1 1—cos(y4) —1
C(j:é(/nwdy >0.

Remark 4.1.3 The identity given in Definition 4.1.2 is shown in (NEZZA; PALATUCCI;
VALDINOCI, 2012).

dy (204)
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The fractional Laplace operator can be conveniently extended to more general
spaces. In particular, it may be extended by duality to the tempered distribution space S’'.
Using the above definitions, one can prove that the function (x)~9 remains in Cg°(R")
after the action of the fractional Laplacian, as done in (D’ABBICCO; FUJIWARA, 2021).
We provide a proof for the following Lemma in Appendix C.

Lemma 4.1.4 Assume f € C? bounded, with bounded derivatives. If there exists a
constant Cy such that the estimates

()] < Colf(x)I, sup [0%f(y)| < Cp sup [0%f(x)|
| =2 || =2

hold when |x| < |y|, then for |x| > 1, the following pointwise estimate holds:

(=A) F(x)| < C|x[2° / |f(y)ldy + CIf(x)||x|72°

yI<3lx]|
2-2 ||
+CIx|727 Y a|a<>‘f(§) , (205)
|x|=2
for any o € (0,1).
Proof: See Appendix C. [

As a consequence of Lemma 4.1.4, we derive the following corollary, which
bounds the action of the fractional Laplace operator on (x)~9 pointwisely. For the ease
of reading, we prove it also in Appendix C

Corollary 4.1.5 Let f(x) = (x)79, forq > n, and let c > 0. We set s = 0 —[o]. Then,
(=A)°f(x)| < C(x)™%, ¥ xeR",

where q; = q + 20 if o is an integer, or q = n + 2s otherwise.

Proof: See Appendix C. n

Remark 4.1.6 We observe that, choosing q = n + 20, with ® € [0,1) Corollary 4.1.5
says that f(x) = (x)™9 € Cg°(R"), and that (-A)°(x)™9 € Cg°(R") for every o > 0.

Having defined the appropriate function space to our problem, we may introduce
a definition of a weak solution to problem (1), locally and globally with respect to the
time variable.

Definition 4.1.7 Fixqg = n+20, andfix T € [0, c0). We say thatu c L‘IDOC([O, T),LP (R", (x)9 dx) )

is a weak solution to (1) if for any function\{ € cg([o, T]) satisfying W(0) = 1, P(T)
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V4(T) =0, and for any ¢ € Ca°(R"), it holds

/ le(t) F(t, u)p(x) dx dt (206)
0 R ;
_ / W(t) / u(t, X)(=A@)(x) dx ot
0 n
)
+/0 P(t) /R u(t, X)(A2)(x) dx dt
T
- [t [ w01 )0 dxat
0 RN
T
. /0 bt /R u(t, )o(x) dx o
_
+ /0 bt /R u(t, X)(~59)(x) o ot
- [ w8 9)) o
- [ wbeb) - [ nl-ae)n dx
Rn Rn
+0) ([ wtdodrs [ wioaoiax). (207

We say that the weak solution is locally-in-time defined if T < oo and is globally-
in-time defined if T = cc.
Equivalently, a function u € L@C([O, T),LP (R", (x)9 dx) ) is a global in-time so-

lution if, and only if, u|[0 T)xrn IS @ local in-time weak solution, for any T > 0.
Remark 4.1.8 We remark that it holds
LR ([0, T), LP(R", (x)Tax) ) c L, ([0, T), LP (R) ),

So the above defined weak solutions space is properly contained in a more conventional
solution space.

We may show with ease that classical solutions to problem (1) are also weak
solutions.

Proposition 4.1.9 Assume that ug, u; € S(R"). Also, assume that u € C2([0,T),S) is
a “classical” solution to problem (1). Then, u is also a weak solution to (1), according to
Definition 4.1.7.
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Proof: Multiplying the equation in (1) by ¥(t)@(x) and integrating in [0, T] x R", we get
T T
/ e(t) [ F(t, U)(p(X)dth=/ w(t)/ (—Au)(t, x)p(x) dx dt
0 R" 0 R"
T
2
+/0 1|)(t)/Rn(A u)(t, x)p(x)dxdt
T
R /0 0 [ (0 Uit X0 drt
;
e [t [ it 000 axor
;
+ /0 P(t) / n(—Auﬁ)(t, X)@(x)dxdt. (208)

Integrating by parts in space, due to u, us, uy € S and @ € C2°(R"),
T T
/0 w(t)/nF(t, u)cp(x)dxdt:/o w(t)/nu(t,x)(—Acp)(x)dxdt
T
+/0 w(t)/nu(t,x)(Ach)(x)dxdt
T
+ /0 W) [ unlt 00 ) ) dx
;
v [0 [ vt x)e0) dxot
;
+ /0 (1) /R un(t, X)(=D ) (x) dx dt. (209)

Now, integrating by parts in time as many times as needed to get rid of all time
derivatives of u, recalling that {(0) = 1, {(T) = P ¢(T) = 0, we obtain

/Tw(t) F(t, u)o(x) dx dt
0 RN
T T
=/0 Y(t) /Rn u(t,x)(—A<p)(x)dxdz‘+/0 Y(h /Rn u(t, X)(A2)(x) dx dt
T
- / U(0, X)((=A)° 9)(x) dx — / Di(t) / u(t, X)((=4)° @)(x) dx dit
RP 0 RN
- / Ur(0, X)p(x) dx + / D1(0)u(0, X)p(x) dx
RN Rn
T
o [ att) [ utt0e0adxdi= [ (0. 0-A0)00 ox
+ [ l0)u(0.0-Ae)(x) dx
i
+/0 V() /Rn u(t, x)(=A@)(x) dx dt. (210)

Lastly, applying the boundary conditions u(0, x) = ug(x) and u(0, x) = uq(x) we
arrive exactly at (206), thus concluding the proof.
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The idea of using polynomially decaying test functions instead of the usual com-
pactly supported test functions is quite recent, from D’Abbicco and Fujiwara in 2021
(D’ABBICCO; FUJIWARA, 2021). In the problem addressed in (D’ABBICCO; FUJI-
WARA, 2021), the nonlinearity is a p—power time-derivative of u, that is, |a§u|/°, with ¢
positive integer. Since in our case the nonlinearity is a memory term, we must change
the argument a little, specifically on the time-related part. To this end, we introduce the
fractional and differential operators as follows, as well as an adequate time-dependent
function. For the fractional and differential operators, we may follow the definition given
in (SAMKO; KILBAS; MARICHEV, 1993). We refer the reader to (SAMKO; KILBAS;
MARICHEV, 1993) for more properties related to these operators.

Definition 4.1.10 Let « € (0,1) and fix T > 0. We define, for any function f € L1(0, T),

t
Jgi (1) = ﬁ /0 (t—s)~(1=%f(s) ds, (211)

.
R A(t) = 1) /t (s—ty" (=% f(s)ds, (212)

I
called the left-sided and right-sided Riemann-Liouville fractional integrals of the order
X.

Definition 4.1.11 Let x € (0,1) and fix T > 0. We define, for any function f €
AC([0, T]), the space of all absolutely continuous functions on [0, T],

D f(t) = athrt“f(t), (213)

Ditrf(t) := =0 Ji71(1), (214)

which are called the left-sided and right-sided Riemann-Liouville fractional derivatives.

The following theorem asserts that the Riemann-Liouville Integral and Derivative
are, in some sense, inverse of each other. For its proof and a more detailed explanation,
the reader is addressed to (SAMKO; KILBAS; MARICHEV, 1993).

Theorem 4.1.12 ((SAMKO; KILBAS; MARICHEV, 1993), p.44) Let «x € (0,1). Then
the equality
Dg‘lth‘ltf(t) = f(t) (215)

is valid for any f € L1([0, T])., Also, the equality
Jg‘lth‘ltf(t) = f(t) (216)

is satisfied for f(t) € ngt(u ([0, T])).
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With this essential property, we can also prove a generalization of the integration
by parts formula.

Proposition 4.1.13 (Integration by Parts Formula) Assume that « € (0,1), ¢ €
LP([0, T]), ¥ € LY([0, T)), and ,1—) + 2—7 < 1 + . Then, the formula for fractional inte-
gration by patrts,

T 08 T [0 8
| et d = [ woured (217)

is valid.

Proof: The proof is based in interchanging the order of integration, by making use
of Fubini’'s Theorem. To justify its application, we argue as follows. First, from the
Hardy-Littlewood Theorem with limiting exponent (see (SAMKO; KILBAS; MARICHEYV,
1993),Th.3.5), the fractional integration operator Jg‘lt is bounded from LP([0, T]) into
L4([o, T]), with g = 1 Therefore one can apply Hoélder inequality in (217) and see
that both integrals are absolutely convergent, and thus we can use Fubini’s Theorem.

We have then

r T 1 ! o—1
| et /cp(t)m | =51 sjasar

/ / HX[0,4(S) (t = )~ 1(s) dsdt

- L / h(s) /0 o(t)x(s, 7y(D) (£ — 5 ditds

M«) Jo
1 T T
= —/ ¢(s)/ o(t)(t—s)*" dtds
S
/ P(s Jt|T(P s)d
where x 5(x) represents the indicator function of x € A, thatis, x4(x) =1, if x € Aand
xa(x) =0, if x & A. [

As a consequence, we can prove also a version of the integration by parts
formula with Riemann-Liouville Integrals in the argument of integration over [0, T].

Proposition 4.1.14 Assume that « € (0,1), f € J(‘)"“(LP([O, T]), g € t|T(Lq([O 7))

with 1 5t q <1+ «. Then, the formula

/(DO“ dt_/f (D§ra)(1) ot (218)

holds.
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Proof: Let o(t) = Dg,f(1) € LP(0, T]) and (1) = Diig(1) € LI([0, T]). Then,

using (216) and integration by parts, we get
-

/ (o8 (gt dt = / o(t)g(t) dt
o = oIt 0

.
= /0 o(1) (J,j‘TD;TTg) (t) dt
.

(i) (1) dt

(Jojr@) ()b (1) dt
.

I

(ot Doje) (Db () dt

/f Dt|Tg )) dt.

|
Definition 4.1.15 We define the auxiliary function, for a fixed T > 0 :
1-4, telo,T
wr(f) = T o1 (219)
0, t>T.

Remark 4.1.16 We remark that supp wt = [0, T] and that (wT(z‘))f3 € C’C‘([O, 00)), for
any 3 > k. It also has the following interaction with the fractional derivative, which is of
our interest:

Lemma 4.1.17 Forany « € (0, 1), it follows that

Dfrwr(t)? = Cop T %7 ()P, (220)
for every 3 > «, where

r(p+1)
(B+2=0)l(p—o)

Proof: We have initially that, making the change of variables t = s—i

Cup =

-
r(1 —oc)J;l‘T"‘wT(l‘)f3 =/t (s—™™(1 —%)B ds
1
=/ TXT =ty T BT =B (1 =B (T = ) dr
0

1
= (T —ty"o+B+1 rff”/ X1 -1)P dr
0

_ —otp1 1—a T =T (1 +B)
= wr(d) T rB+2-o)
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Hence, : )
_ 'l +p _ _
Jirort)P = TBrZ—o] T1=% wr(fo+B+1, (221)
We now differentiate with respect to ¢, obtaining

o+

Qw7 P = (—a 4 B+ 1) (1 - %>_ 7). (222)

Using (222) in (221), we get

« r+p) — —x+p ___
Dt|TWT(t)B=mT1 (—OC+B+1)<1—%> T 1
) r(B +1) N -~
NETEC I CEr A

We conclude this section remarking that the function D;’l‘Tw T(z‘)f3 satisfies all the
requirements to be chosen as a time-dependent test function according to Definition
4.1.7, for an appropriately chosen B. Indeed, supp Dz?fTwT(t)B = [0, T], and it is in C?,
for any 3 such that f — o > 2, or equivalently, B > 2 + «. Also, from the last lemma, we
have D§’|‘Tw 7(0)P = 0, and the same is true for its derivative, as we’'ll see later in (228).

4.2 NONEXISTENCE RESULTS

Since the Fractional Laplacian is a nonlocal operator, it is not easy, in general, to
prove the optimality of p by applying the test function method. This section is dedicated
to state the nonexistence theorem for the subcritical case.

Theorem 4.2.1 Let pc be as in Definition (2), define
- vy, Lifye (0,'%2]
pe, ifye(%21)
and fix g = n+ 20. Assume that ug, u; € L1(R", (x)9dx). Moreover, assume the sign

condition
/ Uq dx > 0.
If there exists a global in-time (nontrivial) weak solution
uelP ([O, o0), LP(R", (x>_qu))

to problem (1), then p > p.
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Proof: We assume p < p, and that u is a nontrivial global in-time weak solution to
(1). We put « = 1 —, fix B > (x + 2)p’ and fix suitable test functions depending on a
parameter R > 1 as follows.

Consider the function w7 as in Definition 4.1.15, and let ¢ € C*° be defined as

@(x) = (x)79.
Forany R > 1, and for a fixed T > 0, we define

0R(X) = o(A'X),  Wr(t) = D (wr(h?).

First of all, we observe that, for any o > 0,

((=8)°@R) (x) = A2%(=A) ().

Since u is a global weak solution to (1), it satisfies, for any T > 0,
T
/ br(t) [ F(t, uea(x)dxd
0 RN
T
- [wr) | it 0-d0a) 0 dxat
0 RN
T
o [t [ a2 emo oxdt
)
- /0 npr(t) [ u(t ()" pr) () dx
)
. /0 our() [ ultx)on(x) dxdt
)
v [ ouwbrtt [ utx)-aenidxar
- [ w01 9a(x) dx

—/n u1(X)@r(x) dX—/n u1 (x)(=A@Rp)(x) dx. (223)

Firstly, we obtain the following identity: Since uy,u; € L1((x>qu) and ¢p,
(-A)° ¢ gr, Apg € L®((x)"9dx), Lebesgue’s Dominant Convergence Theorem ensures
that

lim (/ uo((—A)9<pR)dx+/ u1(p,qu+/ u1(—Ach)dx>
R— oo RN Rn R"

=/ U lim ((=A)%¢g) dx

R— oo

+/nU1 lim (deX+/nU1 RIi_r)noo(—A(pR)dx

R— oo

=/ up lim R‘ze(—A)ecpdx+/ uy lim @gpdx
n n R—oo

R— oo

+/ uy Iim R2(-Ag)dx

R—oco

= / uy dx. (224)
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Due to the sign assumption from hypothesis, the latter is positive. Hence, for R
large enough,

T T
/0 Dr(t) /R F(t,u)on(x) dxdt < /0 Dt / u(t, X)-ApR)(x) dxdt
T
. /0 Dt / u(t, (A% R)(x) dx dt
)
- / b r(t) / U(t, X)((~8)° pR)(x) dx dt
0 Rn
T
. /0 B r(t) /R u(t, X)o(x) dx ot
_
. /0 debr(t) /R Ut -AeR)X)dxdt.  (225)

Now, from the properties from Propositions 4.1.12 and 4.1.14, since F(t, u) =
F(oc)Jgjt|u|P, the left-hand side can be seen as

T T
/ Ur(f) | F(t, U)(PH(X)dth=r(‘X)/ wr(t)Plu(t, x)Pea(x) dxdt
0 RP 0 Jrn
= T()(u).

On the other hand, we estimate the five terms in the right-hand side. To do so,
we integrate in [0, T] in time and in B in space, and after that we control the speeds at
which we let T and R go to infinity.

We recall here the following estimates:

Vr(t) < CT *wr(MP™,  [(A)°eR)(X)| < CR?%|@R(X).

Applying Young’s inequality,

_
/ - / u(t, X)(~Apr)(x) dx dt
0 Br

)
Ss/ / wr(DPlulPordxdt
0 Bgr
T / _Lp' / _&l
C [ [ W wr I-Beal P loal > dxat
0 Bgr
T , ,
< el(u) + cg/ CT* wb™P 2P |pg| dx dt.
0o JBg

Since wr(t) <1, |eg(x)| < 1and B —ap’ >0, we get

)
/ Dr(t) / u(t, X)(~Apr)(x) dx dt
0 Bgr

.
< el(u) + C. TP R3¢ / dxdt
0 JBg

< el(u) + C. TP R3¢, (226)
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For the second integral in the right-hand side of (225), we proceed similarly,
obtaining

)
/ Dr(t) / u(t, x)(A2@R)(x) dx dt
0 n

]
<e / wr(t)P|uPerdxdt

0 Bgr

T / —Lpl 2 / _ﬂ/

+cf,/ / Wl [(A2R) (X oAl dxdt

0 Br

]
< el(u) + C; / CT P wb=P' B4F| o gl dx dit.
Br
(227)

Now, the third integral has a time derivative of 1 1(t). Differentiating (220) with
respect to t, we get

O 7(0) = Cap T (1 %)
=—Cop T wr(t)P (228)

With this identity, we estimate the third integral in the RHS of (225):

AP R)dxdt

opbr [ u((
R

;

ge/ / wr(t)P|uPerdxdt

_Be p _e
/ / 2w ? (A @R ()P [oal dxdt

< elu )+cs/ O P B+ P 5200, - i
0 JBg

< el(u) + C, T~ ()P’ gn-20p", (229)

since B —(cx + 1)p’ > 0. For the last two integrals, we differentiate (220) twice, obtaining

07 (t) = Cy g T 2wr(t)P~>2,
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and thus we obtain

;
/ attﬂ)T/ upprdxdt
0 Rn

;
ge/ / wr(t)PluPerdxdt
0 JBg

T p/ _L'D/ / _&/
+Cc [ [ ot wr” loallonl® dxat
0 JBg
)

< el(u) + Ce / CTH2P B2 g ol dx it
0 JBg

< el(u) + C, T2+ gn (230)
and lastly, using that B — (x + 2)p’ > 0,

y
/ dur / U(-Apg) dxdt
0 RN

)
ge/ / wr(t)?|ulPprdx dt
0 Bgr
T / —Lpl / _&/
+C. / /B 2wy ? |al” |(=A)pal > dxdt
0 R

< el(u) + Ce /0 ' ; CT (02" B2V 20 1) dix it
a
< el(u) + C, T'ox2p' gr=2p' (231)
Now, using (226), (227), (229),(230) and (231) in (225), we find
(F(oc)—SE)/OT/B wr(t)Plu(t, )P a(x) dx dt
< C (RT‘-“P’ R™20' 4 TP gn-4p
+ Tl gre20p’, il gy 712l gre2el), (232)
Choosing ¢ > 0 small enough we get, for R, T large enough,
/ " wrPlutt 0P oat dxat
0 Bgr
< o (1P 720 4 7100 gt
+ Tiles ! gre20p’, il gn .y Ti-(o2 gr2e’) - (233)

Now, first consider the case where y > ”‘72 We stress that this is always true for
n=1,2.Forn>0,weset T = R". Then, we have

/Rﬂ wr(t)P|u(t, )P @a(x) dx dt
0 Bgr

< Coc (R—(om+2)p’+n+n + R—(ocn+4)p/n+n

+ R—((cx+1)n+29)p’+n+n + H—(oc+2)np/+n+n

+ R—((oc+2)n+2)p/+n+n) _ (234)
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Now, we define, forn > 0,

g(m) =min {om +2, om + 4, (cc + 1)1 + 26, (c + 2)n, (x + 2N + 2}
=min {om + 2, (x + 1)n + 26, (o + 2)n }
B=vn, if n €[0,20]
=4 (@2-ym+20, if ne(20,2(1-0)], (235)
(1-ym+2, if ne(2(1-0),00),
where in the last step we used that « = 1 —+y. This function g(n) gives the fastest

possible decay for which we can control all five terms in (234). Below, we see a graphical
representation of it.

(2—7)n+20

T T
: 26 : 2(1-46)

Figure 1 — Function g(n)
Therefore, we have that
Rﬂ /
/ / wr(HPBu(t, x)|Pe p(x) dx dt < 5Cyx c RIMP+MN (236)
0 Br

To conclude the argument, it is sufficient that the exponent above is negative.
This will happen if

gm)p’ = (n+n) >0, (237)
or equivalently,
; nN+m n+mn g(n)
NI N L S B AU ) 238
P>gm = P nan—gm - T nen—gmy ~ (238)

In particular, forn = 2(1 —0), we have

21—-vy)(1—-0)+2
n+2(1-0)-2(1-vy)(1-0)-2
2+2(1—-vy)(1-0)

=1+ n—2+2y(1-9) _Fe (239)

h(2(1-90)) =1+
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Moreover, we can see that pc is the greatest value for which we can prove
nonexistence in this case. In other words, h(n) reaches its maximum in y = 2(1 — 0),
assuming that y > ==,

Indeed, since

h/(n) — _g(n) + (n + n)g/(n)
(n+n-gm))>?
its sign is determined by the sign of its numerator —g(n) + (n +m)g’(n), which is given by

n3-vy) >0, if n € (0, 20)
sgn(—gm) + (n+m)g'M)) =< n2-v)—-20 >0 ifn € [20,2(1-0))
-2+ (1=vy)n, ifn e (2(1-0),0),
and in the last case, we have
n-2

—2+(1-y)n<0 <= v> et

Since h(n) is continuous by parts, it has a local maximum point at n = 2(1 —0) when
v >R
Returning to (236), if p < p¢, then applying Beppo-Levi's Monotone Convergence

Theorem, since wr(t), or(x) 1 when T, R ~ oo, we obtain
o0
/ lu(t, x)Pdxdt < 0= u=0, (240)
0 JRr

a contradiction.
Now, assume that y < ”;,72 In this case, the auxiliary function h(n) is always

non-decreasing. Since

lim h(m) =y,

n—00

it is expected that v~ will replace pc in this case. Below, we show both cases for h(n);
the first shows the case where p¢ is the maximum of h(n), that is, when vy > ”‘TQ; the
second illustrates the case where h(n) does not achieve its maximum, but monotonically
tends to its supremum y~'.

Figure 2 — h(n), v > 222 Figure 3 — h(n), y < 2
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We set R =InT in (233), thus obtaining

)
//wT(f)Blu(l‘,X)lpch(x)dxdt
0o JBg
< Cae TP (I )20 4 (I T)™ 4 T#(In )20

+ T2 (InNT)"+ T2P(In T)”‘ZP’>. (241)

For T large enough, the logarithmic terms are bounded by Cj T3, for any 5 > 0.
Hence,

.
/ / wr(t)Plu(t, X)PeR(x)dxdt < Cy o s TP, (242)
0 JBg

If p < 1 then ap’ > 1. Then, choosing & € (0, xp’ — 1), we obtain again (240), which
contradicts the assumption that v is nontrivial.
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5 FINAL REMARKS

In this thesis, we proposed and analyzed a class of evolution PDEs that possess
several terms that are already difficult to deal with separately, and these difficulties
add up and even overlap in some cases. The presence of the rotational inertia term,
—Auy, makes it so one does not have exponential decay rates in the high-frequency
region, which makes us having to worry about these high-frequency LP estimates for
the fundamental solutions vy, uy and for the convolution with the operator (/— A)K;.
The fractional dissipation term, (-A)%u;, interferes in the eigenvalues’s profile, which
changes the whole set of estimates we obtained through all of our work. It is important
to remark that the case where 6 € <% 1) , often called the non-effective damping
case, leads to a very different approach. Lastly, the memory nonlinearity has its own
particular influence in the problem, leading to a completely different critical exponent in
some cases.

In order to summarize the results and strategies employed in the several cases
considered, we provide a table that displays the different ranges for the parameters
0, v and p, as well as the correspondent spaces required for the initial data ug and uy.
Here, we recall

20+ -NA=0) o 5 (y,0) =2+ 2(1-0)

Pc = pc(n,v,0) =1+

n-2+2y(1-0) ’
0. . 18=V145 —y0(6) = 202 -30+7
. 14-100

Pe =7 oy(1-0)-20
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nl 6 1 v [ p | Ug | Uy |
1 1 C c—
1110.3) | (zimp 1) | (P o0) Hse L1 He=1 A 1
2/ [0.3) | ©1) | (pex) HSe L1 He=1 A 1
[ 1 1 1 Sc 1 Sc—1 1
3| [0d) (03] |(Re)| HenL H= N L
3 [0.2) | (38| | peoo) | HEAL HS 1 A L1
0 1 3-2 . : — 172,
3110 2) <4(1-3), 1) (pc,2) | HS L' nWap | HS= 1 1 o w2pe
0 1 3-2 o —
3| [0.3) | (&25:1) | 2.o%) Hse L1 Hse L1
0.1 1 1 So 1 se=1 /1
4l [03) ] (03] |(Re)| HeEnL HS= 1L
41103 (31) | 2o Hse L1 He=1 A 1
4| [0,00) (%,vo} (e, 2) | HSn L' nW3p | S L1 A w2pe
41100,3) | (31) | (pe2) |HeNLI nWBP | KTt nLl o w2e
4100,00) | (vo.1) | (Be2] | N L' A W3R | HS1 A L1 o W2p

Table 1 — Obtained Results

The strategies we used to estimate norms in each theorem are briefly described

below:

In Theorems 3.1.1 and 3.2.1, we used Gagliardo-Nirenberg, with k = 1; For the
specialcase n=1,0 > JT’ we used Sobolev Embedding into LP instead; We also
applied Sobolev Embedding into L9(P~1) and L’ with g — oo and r — 2, in order
to improve the decay rate;

In Theorems 3.4.1 and 3.5.1, we used Sobolev embedding into LP, as well as
Sobolev embeddings into L"(P~1) and L27(-2);

In Theorem 3.4.2, we used fractional Gagliardo-Nirenberg with k = % to reach the
critical exponent, and Sobolev embedding into LP for larger values of p. Sobolev
embeddings into L3(P~1) and L® were also necessary (as in Theorem 3.4.1);

In Theorem 3.4.3, we asked for regularity in LP for the initial data, and applied
Sobolev embedding into L2P and LP®;

In Theorem 3.5.2, we used Sobolev embedding into LP and Sobolev embeddings
into L4P=1) and L4 (by the same reason as in Theorems 3.4.1 and 3.4.2);
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« In Theorems 3.5.3 and 3.5.4, we again required additional LP regularity for initial
data, and applied Sobolev embedding into LP* and into L4P~1) and L4,

There are several possible generalizations and extensions to this problem that
can be explored in the future. For instance, changing the rotational inertia term into
(—A)°uy, with o € (0, 1), would yield similar results without great modifications in the ap-
proach. Adding and changing terms concerning Laplace operators (—A)%u can also be
done, since the estimates depend only on the smallest of such § for the low-frequency
region and on the greatest 6 for the high-frequency region.

One can also investigate cases of higher dimensions and obtain directly some
partial results with the same techniques, although some new problems may arise; for
examples, the fact that for n > 4, the critical exponent is no longer greater than /2,
hence the argument used in the last two theorems can not be replicated. Also, the
nonlinearity can be changed to F(t, u;) instead of F(t, u). This modification changes the
profile of the solution, leading to different estimates and results.

Lastly, one can study generalizations in the order of time-dependent derivatives
of u, leading to a problem like

m-1
of'u+ Y Aju+(-A)°u; = Fu,

j=0
where mis a non-negative integer, A; = a;(-A)% a; € R, 0; > 0, and Fu can represent
any of T(1 —vy) JT™Y(|u|P) or T(1 —v) J1=Y(Jus|P), with J being the Riemann-Liouville
fractional integral of order 1 —+y as defined in the text. This generalization includes many
classical PDEs, like the heat, wave and plate equations, as well as models for many
problems in solid mechanics and for the vibrations of thin plates as the full von Karméan
system and the Timoshenko’s model.
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APPENDIX A - A LEMMA FOR BOUNDING INTEGRALS

A.1 AN AUXILIARY LEMMA

Lemma A1.1 Letw e R, a>1, vy €(0,1). Then, it holds

t (1+07, w > 1
/ 1+ t—'t)'w/ (t=8)Y(1+8) ¥ dsdr S (1+)Ylog(2+1t), w=1

0 0
(1+t)1-o, w<1.

Proof:
We first deal with the inner integral, and show that

T
/ (t—8)Y(1+8) ™ ds< Cy(1+1)77,
0
for some positive constant Cy.
« if T <2, then

T T =Y ol—y
/ (t—=8)Y(1+s)™@ds< / (t—s)™Y ds = < - (243)
0 0 1-vy -y

From here, one can easily estimate the above constant by the desired continuous
function (1 + 7)™ over a compact set [0, 2] :

T<2=37V<(1+7)V=1<3Y1+1)7,

T 1—y
(243) / (t—8)Y(1 + 8% ds < f—ysv 1+17, ifr<2
A -

/OT(T—S)_VU +8)%ds= /O;+/TT.

For the first integral, we have

e iftT> 2,

x

/Z(T— s\ Y(1+ 8™ ds < (
0

>_y /05(1 +s)*ds
( >_y /000(1 +s)*ds
T 1

e =

here we used the fact that t— s > % and y > 0. The partial result comes from straight-
forward calculations:

IN
NDlA Nl A

T
T>2=3=-=T+

5 >1+1= <—>_y <31 +1)77,

NI A
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T Y
(244) /Z(T—S)_Y('I +s) % ds < —“3 7 1+, ifr>2
A -

For the second integral,

1 1—y—a
< (I) . (245)
Once more, a little bit of computation gives us the partial result:

1—
T22:><£) Yoy,

T — Y
(2_i>5>/ (T= )V (1 + 5 ds§11_y () <2 e, iz

. 1= .
Choosing Cy = max {213”, 2y %} , we obtain

t

t T
/ (1+ t—T)_w/ (t—s)7Y(1+s)%dsdr < CO/ (1+t-1)"®(1+7)7Vdr.
0 0 0

We now proceed on a similar way as above to bound the integral
t
/ 1+t—-1)"°(1+1) 7V dT.
0

The case w < 0 is immediate, because the function s — (1 + s)™® is increasing,

hence
t T
/(1 +t—1)_w/ (1= s)Y(1 + s *dsdr
0 0
t

< Co(1+ t)_“’/ (1+71)Ydr

0
_ Co —W 1—y t
= Tt ) (0
Co 1-w—y

Now, assume vy > 0. If t < 2, then
t t
/ (1+t=7) Y1 +17)Vdr < / dr=t<2,
0 0

and now, we must only bound this constant 2 by the functions we desire in our result,
which is only a matter of finding the right constants:
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S 1<2= 21+ )0 <2.30 5 2< (2.39)(1 + )7

2.3% - 21+ H«
log2 — log(2 + 1)

e <2 =>

< 2 < (2I0932 ) log(2 + t)(1 + t)™%;

c0<t<2=1<(1+H<3=

{1 < (145170 = 2 < 2(1 + -0, f1—w—y >0

31w < (144797 = 2 < (2. 37+ +) (1 £ 1)1V, if 1—w—y <0,

Hence, for t < 2, we have

t Cy(1+1)7, w > 1
/0 (A+t=1)" 1 +1)7VdT < { Cylog+H 1+, w=1 (247)
Ci(1+t)1m@y, w<1.

If t > 2, we break the integration interval in two halves again,

t i t
/ (1+t—1)"(1 +T)_Vd'c=/ +/ )
0 o Ji
For the first integral,
% t\™® [z
/ (1+t=7) Y1 +17)Vdr < (—) / (1+71)7Ydr
0 2 0
1 (t\7v £\ 1Y
t

Since the functions <§> , <1 + %) and (1 + t) are equivalent for large values of t,
the partial result follows:

IA

t
/2(1 =1 (1 + 1)V dr
0
Co(1+18)7, w > 1
<G+ <{CologR+ 1+, w=1  (249)

Co (1 +t)1_w_y, w<1,
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fot t > 2. For the second integral,

/t(1 +t=1)"Y(1+1)7Ydt

2 < (1+;>_v[t(1+t—1)‘“’d1
=( >_y/2(1+s) ® g

1+ (1+s)“ds= 1 1+£ 7 w>1
T w-—1 2)

(1 > Iog1+) w=1 (250)

)1 w—y

l\)\'ﬂ-

IN

5 , w<1.

1-w

Again, the equivalence of the functions (%) , (1 + %) and (1 +1), for large t gives

us
CL(1+1‘)_y w > 1
t 3(1)- ,
/t(1+l‘—T)_w(1+T)_ydT§ Cslog+tH(1+8)7Y, w=1 (251)
2 1 1—w—y
C31_w(1+t) , w<1,
for t > 2.

Finally, combining (247) with the sum of (249) and (251), we are done.
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APPENDIX B - ESTIMATES FOR FUNDAMENTAL SOLUTIONS AND THEIR
DERIVATIVES IN FOURIER SPACE

We recall from vector calculus that, for any « = («1, ...ocy) multi-index,
oFlelk| < JefF e, (252)
We also recall the multivariate version of the Leibniz’s rule,

d%(fg) = Z Cp <65f> (a“ Bg) (253)

where 3 < « is in the sense of multi-indexes, that is, 3; < «; for all i. Another
useful identity is Faa di Bruno’s formula for higher order derivatives: Let y = g(&),
E = (&1 3 meny ‘t—,n) E Rn- Then,

ol olBl
dgf(y) = fy)=> 1) Tl === (254)
& A% Eq...0%E % l;lnnjeBaaj
where 7 runs through the set TT of all the partitions of the set {1, ..., ||} and “B € ="
means that B runs through the list of all blocks of the partition 7t. Observe that || =

a4 + ... + xp, While |7t| is the number of blocks in the partition 7t and |B| is the size of the
block B.

Applying Faa di Bruno with y(&) = 1£]2 and f(y) = (1 + y)g, we get
k—|0(|’ > 15
ok 4 o= (255)
g, e <t
Lastly, we’ll need Young’s Inequality for products: If a,b > 0 and p,q > 1 with
1,1 _
D + gq= 1, then -
ab< L 2 (256)
p g

Our objective is to collect estimates for the derivatives of the fundamental so-
lutions Ky, Ky defined in (41) and the operator E; defined in (45), which are given in
terms of |&| and (&). The different behavior of (&) in low and high-frequency regions
makes it necessary for us to look for estimates separately in these two regions.

B.1 ESTIMATES FOR THE LOW-FREQUENCY REGION

Lemma B.1.1 For any multi-index «, |&| small enough and A,B € R, 0 € [O, %)

) [og (1814(&)B) | 5 lefA;

i) [og (4162 - 12/ ()4)? | 5 Jef2eted;
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Proof:

124

) From Leibniz’s rule (253), with f(§) = |£|A and g(&)
(255), it follows that

o (1ere)

= (£)B, and from (252) and

)| X oo foliert|foi )

< Z |5|A—|l3||5| o]

B<a

< || Al

(257)
ii) Observe that, for f(y)

1
=y2,

5T 2k - 1 - -
I (y) = (( INIHT> y—%‘zu - Cﬂy—a‘u

2

Also, observe that, taking & small enough so that 4|£[2~49 <

8 we have
_ _ _ 1
|£|4e<a> 4_4|£|2 _ |a|4e (<£> 4_4|£|2 49) > §|£l4e,
therefore, forany k > 0

(1E[40 ()™ — 4]g]2) 2 < |g2K°

With these estimates in mind, we'll apply (254) with y(&) = 4[¢|2
1
fly)=yz:
o!BI
£ 11
nell

|- 11y (4P
< Z |£|-4e|n|+2e H (|E|46—|B| + |£|2—|B|)
mtell

Bemn

5 Z |£|—49|7t|+29 H |E|46—|B|

mell

—&]49(&)™* and

2 Cn <4|‘t“|2— |£]49¢ >—4)‘a%

Bem

g Z |£|-49|7’[|+29|£|49|7’[|-|0(|

mell
5 |£|29—|oc|.

(258)
Notice that, for each fixed 7t € TT, there are || terms inside the product, and that

the sum of the |B|’s as B runs through 7t is equal to |«|, by the definition of a partition. m
We recall the definition of the eigenvalues for problem (1) in the Fourier space

1
At = —§|a|29<a>—2 +

=

O

(259)
Therefore, using the previous lemma, we can bound the derivatives of A
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Lemma B.1.2 Let A1 asin (259), « any multi-index and & € R" with |&| < ¢q. Then,
AL 5 g2,
Proof: Directly from the estimates of the previous lemma, it follows that

o o ()« o (-l
< |20, (260)

Lemma B.1.3 Let A+ asin (259), « any multi-index and & € R" with |&| < ¢q. Then,
) [0 —A)| S lef2eed,
—1
i) [0 =M 5 le2e.
Proof:

i) The result follows immediately from Lemma B.1.1 and the fact that

n|—=

(e =A) =i (4lE = e[ *0(e)*)*.

i) We'll apply (254) with f(y) = y=! and y(&) = A, — A

Here, we have
A (y) = () y T = Coy T,

SO we get, using item i),

0% (A ‘

|B|
Cre (\y = A) 7 0 -\
é;r H H;esa‘51 )
S Z |)\+_}\_| |7t]—1 H IEIZG |B|

7ell Bemn
< Z |£|—29|ﬂ|—29|5|l29ﬂ|—|a|
ntell
< lg2ored, (261)

|
Now, we proceed similarly to estimate the exponential terms that appear in the
definition of E;.

Lemma B.1.4 Let A+ asin (259), « any multi-index and & € R" with |&| < ¢q. Then,

‘ag‘en‘i) < (gl gmzh
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Proof: We will work separately with A, and A_.
Applying (254), with y(&) = tA; and f(y) = & :
’aget)n, S Z C7-[9D\+ H t|£|2(1—6)—|B|
niell Bemn
< Z et7\+tl7rl|5|2(1—9)|ﬂ|—locl
niell
< et?\+|5|—|oc| Z tlﬂl|£|2(1—9)l7fl
nell
—|(X|et7\+, t 2(1—9) <1
€] |E] < (262)

|£|(1—26)|oc|t|oc|et7\+, t|£|2(1—9) > 1,

Since it holds that

t o, 2(1-0) ¢ t
tlodgfhe g (1=20) o < <§|5|2—29> g2l & gah gl < (gl gz

we have

oget™ | 5 fg[1¥lez.

For A_, calculations are similar. We apply (254) with y(&) = tA- and f(y) = €Y,

resulting in

|71 etA-, 11?0 <1

‘a(xel?\_‘ <
|E|(29—1)|oc|t|oc|et7\_, t|a|26 > 1.

(263)

[0 8
And since tldletr-|g|(@8=Dlal < (§|E|29)| | e 2l8|g el gz < (g2 we get also

t
oge™| 5 jaried.

Summarizing, we have until now proved the following estimates in the low-

frequency region:
o] 5 1g20-lel;

t
. ageﬂ\i‘ < |g| ol g2+

1
+ RO =) 1 S lere,

Our goal is to use these estimates to bound the derivatives of K;, Ky and Ej :

Lemma B.1.5 Let A+ asin (259), « any multi-index and & € R" with |&| < ¢q. Then,

i) ‘O?f(o(t, 5)‘ < |5|_|“|e_§|5|2(1—9);
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i) [0k (2, £)| 5 1ef20-lalgmaIEE,
i) [03Eq(t, &) < 2e-lolerle

Proof: Using (253) and the estimates above, we have:

i)
‘agko(t, E)‘ S ‘62‘7\+e”‘—(7\+_7\_)—1‘
+ ‘ag}\_et}H ()\+ _ )\_)—1 ‘
B | [A0—B 1
S > [obase™| fos o -]
B<e
p<a
S D0 D (PO Blelvljg20-ladelBl (20, g2M)
B<ay<p
S lged (72l gmele)
< gl gzl (264)
i)

’agfﬁ (t, a)’ < ’age’“—(x+ ) ‘ + ‘agem(m ) )

<y ‘ag‘eﬂ—‘ ‘ag“ﬁ(m ) ‘

B<a
B AtAL | |40 4 -1
=S (aae X P -2 ‘
<«
5 |£|—29—|al (e‘%l&lzﬁ_e) + e_£|£|2e>
< [g[20led g2l (265)
iif) Using item ii), we have
OFE(t.6)| = [08(8) 2K (1. )
<3 [ofe2|os Pkt &)
<
< (&1l |g[20-IBl+led g=5 £
< |g 20 g3l (266)
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B.2 ESTIMATES FOR THE HIGH-FREQUENCY REGION

Lemma B.2.1 For any multi-index «, || > 1 and A,B € R, 0 € [0, %)
) [og (1€14(&)B) | < eABIal;

i) [og (4le2 - e (64

Proof:

i) From Leibniz’s rule (253), with f(&) = |E,|A and g(¢) = <£)B, and from (252) and
(255), it follows that

o (1e*@®) | < 3 s obier|foi )

< Z |£|A—|BI|£|B—I(X—BI

<
< |g|A B, (267)

i) We'll apply (254) with y(&) = 4]£[2 —|£]49(£)~* and f(y) = y2. Observe that

|7I| 12k—1 2mj1 21
I (yy = (( |7T|HT> y 2 =Cpy 2

)

therefore

0¢1(y)]| =

> Cr (41E[F - 1E1*(E) H

nell Bemn

4Iél2 |£I49<6>4)' : (268)

H,es

Now, since || > 1 and 0 € [O, %) ,

1 3
(1 - 4|a|49‘2<a>*‘) > 7 = 4leP gt
1
- 4fef (1 glel*o (e ) > ale?,
which means that, for any nonnegative k,
_k
(4122 - 161%0e)™) # S 1k

Also, using item /), one can estimate

o (4122 - 110 ()7*)| < [og1el?| + g1l ()~
S eI 4 g0l
< lefFied. (269)
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Using these two on (268), one gets
0xf(y)| 5 3 g2 T 218, (270)
mell Bern

Notice that, for each fixed 7t € TI, there are || terms inside the product, and that
the sum of the |B|'s as B runs through 7t is equal to |«|, by the definition of a
partition. Thus,

08 ((HeP — £1%0(e)™) | < 3 ef2mie? g 2mited

mtell
< |g e, (271)

Using the previous lemma, we can bound the derivatives of A...

Lemma B.2.2 Let A+ as in (259), « any multi-index, 0 € [o, %) and & € R" with | > 1.
Then,
AL < l&y,

Proof: Directly from the estimates of the previous lemma, it follows that
1
0As| 5 [0 (162%(e)2) | + [og (416 - 1210 ()~
< JefPOEled g i
< lg)t e, (272)

Lemma B.2.3 LetA. asin (259), « any multi-index, © € [O, %) and & € R" with |&] > 1.
Then,

) [0 =) 5 g1l
i) [0 AT 5 Je.
Proof:

i) Since

(e =) =1 (4lEP—Je[*(e)™)?,

the result follows immediately from Lemma B.2.1.

i) We'll apply (254) with f(y) = y‘1 and y(&) = Ay —A—.
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Here, we have
A (y) = (Ot) Y1 = Cry I,
SO we get, using item i),

5!Bl
0¥ (A+ ST Cra =AM ] = (A=A

‘ mell Ben HjEB ag’j

< Z (A —A_)7Imi=1 H 1118l
el Ben

S D Me=A T e
mtell Bem

<> &= g =l
mtell

< Jgtled, (273)

|
Now, we proceed similarly to estimate the exponential terms that appear in the
definition of E;.

Lemma B.2.4 LetA. asin (259), « any multi-index, © € [O, %) and & € R" with |&] > 1.
Then,

u\ageﬂi

< (ol 4 fefHol) g tlEe

i) o3 (e -6 | < (dol 4 feplod) et

Proof:

i) Applying again (254), with f(y) = eV and Y(&) = A+,

a | I AfAs oAl
’aae = %t e H HjGBaE'j
< Z 7l gtA+ H |£|1—|B|
mell Bemn
- Z i gt g |Iml—ad (274)
mell
Now, from (256) with a = tI™, b = |g|I™-1ol p = JI—Il and g = |TxHF| it holds that

g g lmi-ted < 17 I o |, lod =17 |Ial o,
IOCI |
for every || < |«]. (for |7| = |«|, the inequality above still holds trivially, t/ < ¢ld)
Thus, one gets

‘ag‘eﬁ‘i

< (tleI + |5|—|“|> et
< (H“' + |£|‘|°‘|) g HEPE, (275)



APPENDIX B. Estimates for Fundamental Solutions and their Derivatives in Fourier Space 131

ii) Directly from item i),

o8 Ay _ AfA- & AP
o (0~ < e

— _ 2(0-1
N ‘age“-‘ < (t|a| L1 |a|> g tIEP™
|

Lemma B.2.5 LetA as in (259), x any multi-index, © € [o, %) and & € R" with |£] > 1.
Also, let KO, K1 , E1 be as in (41) and (45). Then,

) 5gK0(t, IS (t|0¢| + |£|—|cx|) e—t|g|2(9—1);

I/) 62‘& (t, a) 5 |£|—1 (t|(x| + |£|—|o¢|> e_t|£|2(e—1);

iii) 9% E4(t, &

~—

< 1673 (e 4 fgpled ) etEF,
Proof:

i) Applying (253) and using Lemmas B.2.3 and B.2.4,
02 Ko(t, &)l = [0F (Are™ ) (e =2y = 0% (6™ ) (A =) |

<3t () o |
B<x

B A,

+ ﬁ;{)ai <)\_e )

S22 [N

Y<B B

£ 30 oA [ofve™

Y<P B

<SSO gt (tIBI—IvI + |£|—|B|+|v|> g HIEP O | g |1l al+IBl

Y<B B

_ — — - _ (6-1)
<Y Y (|£| o+ BHYIAIBIYI | [g] |oc|) G HIERC

Y<B BLa

< (Mo e period) e, (276)

‘ag—ﬁ (A=A ‘

287 e™ | 057 (v —A )|

%P (A, —A) ‘

ii) Applying (253) and using Lemmas B.2.3 and B.2.4,
¢ K (¢, £)] = |3 (6™ — &™) (A —A)"|

(-0
<

_ {12201 | = o—
< Z (tlﬁl + & |f-’>|> g HEl Y g 1-lo=Bl

B<a

< Z <t|f3||gv|—1—|oc|+|f3| + |E,|_1_|°‘|> e_t|£|2(e—1)

B<o

< (g™ fegrod) e

= [ (el g ety g I (277)



APPENDIX B. Estimates for Fundamental Solutions and their Derivatives in Fourier Space 132

iif) Another application of (253), making use of Lemma B.2.1 and item i), yields

[OFEx (¢, £)| = [08(8) 2Ky (1. )|
< 3 [of e ?|or Pyt
P<x

< 3 (2Bl (el e rlobl) e

p<a
= lgePl (t'fxl—lﬁl N |5|—|o<|+|rs|> o H1EPE
<
= Z <t|06|—|f3||a|—3—|f5| + |£|—1—|a|) e_t|£|2(e-1)
p<o
< (tlocl|£|—3 + |E|_3_|“|> o HIEO
= [ef® (1o 4 g Iod) e (278)

iv) Now, using (253) and item ii),

OREx(t. 0)E 1 < 3 ofEvt, )| [P e

<o
< 37 163 (P11 fefIP) g tE g sl
B<o
= Z |5|_S—3 <t|f5||£|—|oc|+|f5| + |£|—|oc|> e‘t|5|2(9_”
<
< Jgs3 (t'“' + |g|-|<x|> o t1ERO 279)

Lemma B.2.6 Let Ay as in (259), x any multi-index, 0 < [o, %) & € R" with |£] > 1
and s € R. Also, let Ky, Ky, E1 be as in (41) and (45). Then,

) [ogKo(t, E)lers| < lers (dol + jggrial) eere,

i) |02K (8, E)ler| S g5 (1o 4 ferlal ) et

i) [0 B4 (8, E)|E| < 167572 (de) + g1 ) e

Proof: The previous Lemma gave us three similar estimates for Ko, Ki and Ej, in the

form
“ 2(0-1
\a%f(é)\ S Je7H (0 4 eIl e (280)

with k = 0,1, 3, for Ky, K1, E1, respectively. We'll strike all cases at once with a generic

a.
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Assume that (280) holds for some f(&). Using again (253) and item ii),
pgfENer < Y- [of(e)| [ap Pl
B<a

< ek <t|f5| + |g|—|fil> e tEPO g sl

<o
= Z |£|_3—k <t|f3||£|—|a|+|ﬁ| + |£|—|a|> o HERe
B<o
< g[S (t'“' + |a|—loc|> oHEPe 081

Lemma B.2.7 Let k > 0, x any multi-index, 6 € [o, %) L& c R with |£] > 1. Assume
that
~ o _ _ 2(0-1)
OFFE)| < lersH (de 4 ele ) o7 tE Y,
for every t > 1. Then, for every b < s + K, the following estimate holds

Ss+k—b

og#e)| 5 1 (18200 (1 4 75,

Proof: We have, using the fact that x — (2x + 1)e X and x — x™Me™* are bounded
for m> 0,

0T(E)| < el (H1+ grI™T) e
o :
< g (t+ |,g|—1) o e
sk g IERO (1 2(1-0)) 1™ 2(6-1 20-3\1% __t|g20-1)
< leshend T (10 (e PO 4 [g200) T el

< Je ke R ((gp-0) ™ (fge-n 1 1) npiene
bounded
—ok —L1z2e-1) _on
S [gsHgr IR (g 2-00) T (282)

Now, let b < s+ k. Then,

7 - oV T e p bR

‘agf(a)‘ < |g® (|g|2(1 9)) [|E| s—k+b g— 5[] 1)]
=S—k+b

< lere (20" [<é|5|2(9-1>) o e‘é'ﬁlz‘e_”] % i

< |&[? (|E|2(1—e)>locl t_%, (283)

provided that the exponent of the term inside the square brackets is positive, that is,
-S—k+b
—_— Kk — K.
20-1) >0 < s+ b>0 < b<s+
|
Finally, a direct application of the previous two lemmas provides us the following

estimates:
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Corollary B.2.8 Let A+ as in (259), «x any multi-index, © € [0, %) , &€ R with |E] > 1
and s € R. Also, let Ky, Ky, E4 be as in (41) and (45). Then, for every t > 1,

) ke 0] < 02 (1220-9) 75

i) [o2Ks (1 1el| < le® (122" (1 4 5

i) |8y (1 01| < 1ef (1ef20-0) ™ (1 4 5
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APPENDIX C - FRACTIONAL LAPLACIAN AND ITS ACTION ON THE TEST
FUNCTION

C.1 POINTWISE CONTROL OF A TEST FUNCTION UNDER THE ACTION OF THE
FRACTIONAL LAPLACE OPERATOR

The following Lemma and its Corollary ensure that the test function ¢ = (x)™9
and the space Cg° defined in the text are suitable for our purposes in the task of proving
the non-existence results.

Lemma C.1.1 Assume f ¢ C? bounded, with bounded derivatives. If there exists a
constant Cy such that the estimates

()] < Colf(x)], sup [0%f(y)| < Cq sup [0%F(x)]
|o|=2 |o|=2
hold when |x| < |y|, then for |x| > 1, the following pointwise estimate holds:

(A)°F(x)] < C|x|72° /|y| i If(y)ldy + CIf(x)||x|72°

- o]
+Clx[#20 3y aya“f(g) I (284)
|oe|=2
forany o € (0,1).

Proof: Using Definition 4.1.2 with o € (0.1), we get

(_A)O‘f(x) =_Co_/n f(X+y) |f|i](+2)0-+ f(X y) dy

From Taylor’'s theorem, we have

f(x+y)—f(x)=VIFx) -y / 0)0*f(x + 0y) do,
| | 2 !
and

’
f(x—y)—f(x)==VI(x) - y+ Z l(%l(—y)"‘/0 (1-0)0%f(x—0y) db.

|o|=2
Therefore, by the symmetry, (—A)° is given by

o f(x)—f(x+Y)
(—A)9F(x) = 2C4 /|y|>rW

lof y* [T x
-2Cs Y — /0(1—9)a f(x + 20y) do dy, (285)

forany r > 0. We set r = %l We now estimate the terms of the right-hand side of (285).
For the first term, we break the integral in two and estimate both separately:

F(x) o
dy = f(x) / Y20 dy.
/|y|>% |y|n+20 y|>k
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Evaluating the latter integral over shells of fixed radii, we obtain

oo
|y|—n—20 dy — / / p—n—20 dSydp
/|y|>J§ B Jyl=p

0
= /m 0 2% (Bp)p™ " dp

e 20-1
- u(Bn) [ 0 dp

2

where u(Bp) denotes the volume of the unit ball in R”. Therefore, we get

f(X) —20
dy = C1f(x)|x[=7, (286)
/|y|>%[ |y|n+20

with Cy = ;éggl On the other hand, we have the estimate

f
/ 1+ y) dyS/ 1) dy+/ LLESTI
=l [y|m=e K<yl<2lx| |y|™=0 yl=2lx| [y

= I1 + /2. (287)

For I, we change variables, y < x + y. We remark that |y| < 2|x| implies
x + y| < x| +|y| < 3|x|, and that ¥l < |y| implies |y|7™2 < 2720 |x|="2 Therefore,

h<OlEe [yl dy. (288)
lyI<3|x|

For I, we change variables again, y <> x + y. But here, |y| > 2|x| implies

|x+y| > |yl—|x| > |x|, and we can use the estimate from the assumption over f to obtain

Il < Colf(x)| Y729 dy < CColf(x)]IxI2°. (289)
| |

yI>|x
Using (288) and (289) in (287),

1f(x+ )] 2o /
22 dy < Clx f d
/W% yge SO [ iilay

+ CColF(x)||x|72°. (290)

Now, we estimate the second term of (285). Since for any 6 € (0,1) and |y| < %l
it holds that |x + 0y| > |x|—0|y| > %l we can apply the second assumption over f to
obtain the estimate

1 1 C
0
/()(1—6)ao‘f(x+6y)d6 gco‘a“f(g)‘/o 1—6d6=?‘a°‘f(§)‘,
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hence
Iocl % /1 M
(1-0)o%f(x +0y) dody
lzlzz lyl< Ll |y|n+2cr 0
<oy P [ wrreetoy,
jog=2 & dat:

And evaluating the latter integral over shells again, we obtain

x|
/ |y|—n—20+2 dy=/2 / p—n—20+2dSydp
ly|<lgl 0 Jlyl=p

1l
2 —_— }—
=/0 ) n—20+2u(Bn)pn 1 dp

220—2 oo
= - u(Bn)lx2,
which gives us
o o 1
> o ' s |y|’,’7+20/0 (1= 0)0%f(x + Oy) dedy‘
PR
< Colx20 Y """a“f (%) ] (291)

IfXI =2

262

with Co = 2 55 H(Bhn).
Finally, using (286), (290) and (291) in (285), we get the desired result, that is
|(=8)°1(x)] < 2CoCy [f(x)| IXI727 +2C5 CColf(x)] IxI72°

+2C,CCy |f(y)[dy |x|7"2°
ly|>3|x|

+2CsCp '“"a“f (%) ’|x|2_2“
=2

= Clf(x)| ||+ C f(y)ldy |x|7"2°
ly|>3]x|

+CY %‘a“f (3) |22,
|x|=2

where C = max {2CsCq + 2C5CCy,2C5CCy,2CsCo} . n
Corollary C.1.2 Letf(x) = (x)™9, forq > n, and let o > 0. We set s = o0 —[o]. Then,
(=8)°f(x)| < C(x)™%,  VxeR",

where q; = q + 20 if o is an integer, or q = n + 2s otherwise.
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Proof: Initially, we have the identity

j=1
n
=g (T2 - (g +2xF () )
j=1
= gn(x)"92 - q(q + 2)|x|?(x)"T™*
= gn(x)" 92 - q(q + 2)(x)"92 + q(g + w)(x)"T*

= q(g+2-n)(x)" "2 +q(q+2) ()"
= Gox) ™+ ey (x) 7T,

with ¢y, ¢4 depending only on n, o, q. After [o] iterations of this identity, we get
(-A) [G]f Z Cr (X CI—2[G]—2/<, (292)

for some c¢i = c(n, 0,q) € R.
Now, if we assume that o is an integer, then [o] = 0 and s = 0. Therefore, (292)
implies
(8)°1(x)| < Cix)m2e,
which is what we wanted to prove in this case. Next, assume o non-integer, that is,
s € (0,1). We have

)71 = |2) ()00 |
_A)S % ¢y (x)~9-2lo1-2k

[]
< Z Ickl ) (=A)S (x)~9-2lol-2k ] (293)

Then, applying Lemma 4.1.4 for each g(x) = (x)~92l91=2k with k = 0, ...[0]
(plugging s in the place of o), we obtain the estimates

(~A)S(x) 74212k | < O|x| 28 / 19(y)Idy + Clg(y)lIx|2S

lyI<3|x]|

+CIx[725%2 3™ [a%g (%) |,
|x|=2

for every |x| > 1. Now, since g and 0%g are bounded, we must show only that the
integral on the right-hand side is bounded. But this is a consequence of (x)~@ e L1(R")
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for a > n. Indeed,
[ teidy< [ lawiay
|y1<3|x]| R"
<[ lowdy+ [ lgwldy
lyl<1 ly[>1
g/ dy+/ ly|"@dy < +o00, for a> n.
lyl<1 ly[>1
Since for |x| > 1 we have |x| ~ (x), we get the estimates
[(8)3x)7a-2lok2k) < o(x)2s, (294)
for k =0,1,...[c]. Therefore, using (294) in (293), we obtain
(CA)7Fx)| < Cx)S, (295)

which concludes our proof.
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