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RESUMO

Estudamos a interação entre álgebras de Steinberg e skew álgebras de
grupos parciais e caracterizamos isomorfismos de skew álgebras de gru-
pos que preservam diagonal, sobre álgebras comutativas, em termos de
equivalência contínua de órbitas das ações parciais associadas. Mostra-
mos que qualquer álgebra de Steinberg, associada a um grupoide amplo
e Hausdorff, pode ser visto como uma skew álgebra de semigrupos in-
verso.
Provamos que dada uma ação parcial de um semigrupo inverso 𝑆 em
um anel comutativo 𝐴, o skew anel de semigrupo inverso 𝐴o 𝑆 é sim-
ples se, e somente se, 𝐴 é um subanel comutativo maximal de 𝐴o 𝑆 e
𝐴 é 𝑆-simples. Aplicamos este resultado no contexto de ações de semi-
grupos inversos topológicos para conectar a simplicidade do skew anel
de semigrupo inverso associado com propriedades topológicas da ação,
e apresentamos uma nova prova do critério de simplicidade para uma
álgebra de Steinberg associada a um grupoide amplo e Hausdorff (ver
[13, Corollary 4.6]).
De maneira semelhante à Exel em [28], construímos o grupoide de ger-
mes associado a uma ação parcial de semigrupo inverso. Descrevemos
a álgebra de Steinberg de um grupoide de germes amplo e Hausdorff
como uma skew álgebra de semigrupo inverso. Também provamos que,
sob hipóteses naturais, a direção oposta é válida. Finalizamos esta tese
com uma descrição e estudo de equivalência contínua de órbitas para
ações parciais topologicalmente principais de semigrupos inversos, e
aplicamos nossos resultados em álgebras de caminhos de Leavitt.
Esta tese for baseada nos artigos: [5], [3] and [2].

Palavras chaves: Semigrupos inversos. Ações parciais. skew algebras
de semigrupos inversos. Álgebras de Steinberg. Grupoides de germes.
Ações topologicalmente principais. Equivalência contínua de órbitas.





ABSTRACT

We study the interplay between Steinberg algebras and partial skew
group algebras and we characterize diagonal-preserving isomorphisms
of partial skew group algebras, over commutative algebras, in terms of
continuous orbit equivalence of the associated partial actions. We show
that any Steinberg algebra, associated to an ample Hausdorff groupoid,
can be seen as a skew inverse semigroup algebra.
We prove that given a partial action of an inverse semigroup 𝑆 on a
commutative ring 𝐴, the skew inverse semigroup ring 𝐴 o 𝑆 is simple
if, and only if, 𝐴 is a maximal commutative subring of 𝐴 o 𝑆 and 𝐴

is 𝑆-simple. We apply this result in the context of topological inverse
semigroup actions to connect simplicity of the associated skew inverse
semigroup ring with topological properties of the action, and we present
a new proof of the simplicity criterion for a Steinberg algebra associated
with a Hausdorff ample groupoid (see [13, Corollary 4.6]).
In a manner similar to Exel em [28] we construct the groupoid of germs
associated to a partial action of inverse semigroups. We describe the
Steinberg algebra of an ample Hausdorff groupoid of germs as a par-
tial skew inverse semigroup algebra. We also prove that, under natural
hypotheses, the converse holds. We finish this thesis with a description
and study of orbit equivalence for partial actions of inverse semigroups,
and we apply our results in Leavitt path algebras.
This thesis is built on the three articles: [5], [3] and [2].

Key-words: Inverse semigroups. Groupoids. Partial actions. Skew in-
verse semigroup algebras. Steinberg algebras. Groupoid of germs. Topo-
logically principal actions. Continuous orbit equivalence.





RESUMO EXPANDIDO

Introdução
A noção de ação parcial de grupos em C*-álgebras e a construção de
seu C*-produto cruzado associado foram inicialmente introduzidas por
Exel em [26]. Estas C*-álgebras se mostraram ferramentas poderosas no
estudo de diversas C*-álgebras, por exemplo, álgebras de Cuntz-Krieger
[31], álgebras de Cuntz-Li [6], C*-álgebras de grafos [11], C*-álgebras
de ultragrafos [41, 38] e álgebras associadas a diagramas de Bratteli
[34, 39], para citar algumas.
Os resultados de [28] provam que ações parciais de grupos podem ser
interpretadas como ações de semigrupos inversos, que foram introdu-
zidas em [68]. Além disso, ações de semigrupos inversos podem ser
usadas para descrever certas C*-álgebras como produtos cruzados [60,
Teorema 3.3.1]. Embora as abordagens acima sejam semelhantes em
alguns aspectos, cada uma delas tem suas vantagens e desvantagens -
por exemplo, ações de semigrupos inversos respeitam a operação com-
pletamente, enquanto grupos têm, em geral, uma estrutura algébrica
melhor do que semigrupos inversos.
Ações parciais de grupos e ações de semigrupos inversos podem ser
generalizadas simultaneamente pela noção de ações parciais de semi-
grupos inversos. Definida em [10], uma ação parcial de um semigrupo
inverso 𝑆 em um conjunto 𝑋 é um homomorfismo parcial 𝜃 de semigru-
pos inversos de 𝑆 no semigrupos inverso de todas as bijeções parciais
de 𝑋. Em contraste com as ações de semigrupos, não exigimos que a
operação do semigrupo 𝑆 seja completamente respeitada - apenas que
𝜃(𝑡𝑠) seja uma extensão de 𝜃(𝑡)𝜃(𝑠), para quaisquer 𝑡, 𝑠 ∈ 𝑆.
Em um contexto puramente algébrico, os skew anéis de grupos parciais
introduzidos por Dokuchaev e Exel em [24], são uma generalização dos
clássicos skew anéis de grupos, e também são um análogo algébrico de
C*-produtos cruzados parciais. Assim como no nível de C*-álgebras,
algumas classes importantes de álgebras, tais como álgebras de cami-



nhos de Leavitt de grafos e ultragrafos, podem ser descritas como skew
anéis de grupos parciais (ver [40, 43]). Dokuchaev apresenta uma visão
abrangente dos desenvolvimentos na teoria de ações parciais de grupos
em [23].
Baseado no trabalho de Nándor Sieben (ver [68]), a classe de skew
álgebras de semigrupos inversos foi introduzida por Exel e Vieira em
[33]. De fato, os resultados de [33] provam que as skew álgebras de
grupos parciais são isomorfas a certas skew álgebras de semigrupos
inversos (ver [33, Teorema 3.7]).
As álgebras de Steinberg, introduzidas em [73], são versões algébricas
das C*-álgebras de grupoides amplos (possivelmente não Hausdorff),
previamente introduzidas por Renault [64]. Independentemente, Clark
et al. introduziram em [16] a mesma classe de álgebras, porém restritas
à classe de grupoides amplos e Hausdorff. O desenvolvimento da teo-
ria das álgebras de Steinberg tem atraído muita atenção ultimamente,
em vista do fato que álgebras de Steinberg incluem, em particular, as
álgebras de Kumjian-Pask de grafos de grau alto (higher rank graphs)
introduzidas em [62] (que por sua vez incluem álgebras de caminhos de
Leavitt). Ver [13], [17] e [74] para mais detalhes sobre o desenvolvimento
da teoria.

Objetivos
Vincular a teoria dos skew anéis de grupos parciais com a teoria das
álgebras de Steinberg, da mesma forma que a teoria dos C*-produtos
cruzados parciais está ligada à teoria das C*-álgebras de grupoides.
Em particular, fornecer uma versão algébrica do resultado de Abadie
(ver [1]) que mostra que qualquer produto cruzado parcial, associado
a uma ação parcial de um grupo em um espaço topológico, pode ser
visto como uma C*-álgebra de grupoide. A versão algébrica desse teo-
rema nos permitirá unir resultados de Li (ver [52]), sobre equivalência
contínua de órbitas de ações parciais de grupos em espaços topológi-
cos, e resultados de Carlsen e Rout (ver [12]), sobre isomorfismo que
preservam diagonal entre álgebras de Steinberg, para apresentar re-



sultados referentes a isomorfismos de skew álgebras (comutativas) de
grupos parciais que preservam diagonais. Provar no contexto algébrico
os teoremas [60, Teorema 3.3.1] e [63, Teorema 8.1].
Estudar e caracterizar a simplicidade de skew anéis parciais associados
à ações parciais de semigrupos inversos em anéis comutativos, generali-
zando os resultados apresentados em [59] e [37]. Aplicar estes resultados
no contexto de ações parciais topológicas de semigrupos inversos para
conectar a simplicidade do skew anel de semigrupo inverso parcial as-
sociado com propriedades topológicas da ação parcial. Além disso, usar
nosso resultado e os resultados descritos no primeiro parágrafo para
apresentar uma nova prova do critério de simplicidade para uma álge-
bra de Steinberg associada a um grupoide amplo e Hausdorff (ver [13,
Corollary 4.6]).
Generalizar os primeiros resultados obtidos sobre ações topológicas par-
ciais de grupos para ações topológicas parciais de semigrupos inversos:
Descrever a álgebra de Steinberg de um grupoide de germes amplo e
Hausdorff como uma skew álgebra de semigrupo inverso parcial; Defi-
nir e estudar equivalência contínua de órbitas para ações parciais de
semigrupos inversos, e se possível, dar uma caracterização equivalente
em termos de isomorfismo de skew álgebras de semigrupos inversos que
preservam diagonais. Analisar sob quais condições as skew álgebras de
semigrupos inversos parciais podem ser realizados como álgebras de
Steinberg. Por fim, conectar as noções de equivalência contínua de ór-
bitas de ações de semigrupos inversos, equivalência contínua de grafos
(ver [9, Definição 3.1]), e isomorfismo entre álgebras de caminho de
Leavitt.

Metodologia
Pesquisa bibliográfica, principalmente artigos publicados em jornais
conceituados, e discussões frequentes sobre os objetivos e resultados
já obtidos, bem como os problemas a serem resolvidos e dificuldades
encontradas, com o orientador e demais pesquisadores envolvidos neste
trabalho.



Resultados e Discussão
Dada uma ação parcial de um grupo discreto em um espaço topológico
localmente compacto, Hausdorff e zero-dimensional, provamos que a ál-
gebra de Steinberg do grupoide de transformação associado a esta ação
parcial é isomorfo à skew álgebra de semigrupo inverso. Em seguida,
aplicamos esta interpretação e caracterizamos isomorfismos que preser-
vam diagonais entre skew álgebras (comutativas) de grupos parciais em
termos de equivalência contínua de órbitas quando considerando ações
parciais topologicamente principais (ver Teorema 2.2.16). Mostramos
que qualquer álgebra de Steinberg, associada a um grupoide amplo e
Hausdorff, pode ser descrita como uma skew álgebra de semigrupo in-
verso parcial (ver Teorema 2.3.1).
Provamos que dada uma ação parcial de um semigrupo inverso 𝑆 em
um anel comutativo 𝐴, o skew anel de semigrupo inverso parcial 𝐴o𝑆

é simples se, e somente se, 𝐴 é uma subanel comutativo maximal de
𝐴o𝑆 e 𝐴 é 𝑆-simples (ver Teorema 3.1.5). Aplicamos este resultado no
contexto de sistemas dinâmicos topológicos: dada uma ação parcial to-
pológica de um semigrupo inverso em um espaço localmente compacto,
Hausdorff e zero-dimensional, mostramos que o skew anel de semigrupo
inverso parcial associado é simples se, e somente se, a ação parcial é
minimal, topologicamente principal e satisfaz uma certa condição so-
bre a existência de funções com suporte não vazio nos ideais do skew
anel de semigrupo inverso. (ver Teorema 3.2.18). Além do mais, com
o resultado principal deste capítulo (ver Teorema 3.1.5), conseguimos
apresentar uma nova prova de [13, Corollary 4.6], como desejado.
Extendemos a construção de grupoides de germes de [28] para ações
parciais de semigrupos inversos, de modo a também extender grupoi-
des de transformação de ações parciais de grupos. Como desejado, des-
crevemos a álgebra de Steinberg de um grupoide de germes amplo e
Hausdorff como uma skew álgebra de semigrupos inverso parcial (ver
Teorema 4.3.4) e, portanto, generalizamos os Teoremas 2.1.1 e 2.3.1
apresentados anteriormente. Descrevemos equivalência contínua de ór-
bitas para ações parciais topologicamente principais de semigrupos in-



versos, e damos uma caracterização equivalente em termos da existência
de um isomorfismo preservando as diagonais entre as skew álgebras de
semigrupos inversos parciais associadas, de isomorfismos preservando
diagonais entre as álgebras de Steinberg dos grupoides de germes asso-
ciados, bem como de isomorfismos entre os pseudogrupos topológicos
plenos (ver Teorema 4.5.11). Finalizamos este trabalho com uma aplica-
ção de nossos resultados, interpretando álgebras de caminho de Leavitt
como skew álgebras de semigrupos inversos, e com isto caracterizamos
equivalência contínua de órbitas de gráfos em termos de equivalência
contínua de órbitas de certas ações de semigrupos inversos associadas.

Considerações Finais
A definição de uma skew álgebra de semigrupo inverso parcial envolve
um quociente por um certo ideal, que é motivado pela definição C*-
algébrica de produtos cruzados por semigrupos inversos. Em geral, este
quociente faz com que estas álgebras não sejam graduadas, diferente-
mente do caso das skew álgebra de grupos (e de fato só ocorre nesta
situação). Este fato amplia as dificuldades para provar resultados aná-
logos aos existentes no contexto de ações parciais de grupos.
De modo geral obtemos os resultados desejados, embora alguns pontos
tenham sido inesperados. À medida em que generalizamos alguns con-
ceitos, claramente perdemos alguns resultados, por exemplo, na carac-
terização de simplicidade do skew anel de um semigrupo inverso parcial
proveniente de uma ação parcial topológica de semigrupo inverso não
é suficiente que ação parcial envolvida seja minimal e topologicamente
efetiva (como no caso de ações parciais de grupos). Foi necessária a
adição de uma condição sobre o suporte de algumas funções (ver Teo-
rema 3.2.18). Aliás, fica a pergunta: Quais são as condições necessárias
e suficientes apenas sobre a ação parcial topológica para que o skew
anel de semigrupo inverso parcial associado seja simples? A teoria sobre
skew álgebras de semigrupos inversos (parciais) ainda é muito recente
e ainda há muito a ser explorada.
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INTRODUCTION

The well-know Wagner-Preston representation theorem states
that every inverse semigroup can be faithfully represented by an inverse
subsemigroup of ℐ(𝑋), where ℐ(𝑋) is the inverse semigroup formed by
all partial bijections for some set 𝑋. More precisely, an inverse semi-
group 𝑆 embeds into ℐ(𝑆) by means of the homomorphism 𝛾 : 𝑆 →
ℐ(𝑆) given by 𝛾(𝑠) = 𝛾𝑠 : 𝑋𝑠* → 𝑋𝑠, where 𝑋𝑠 = {𝑡 ∈ 𝑆 : 𝑡𝑡* ≤ 𝑠𝑠*}
and 𝛾𝑠(𝑥) = 𝑠𝑥 (see Theorem 1.1.7). An action of an inverse semi-
group 𝑆 on a set 𝑋 is simply an inverse semigroup homomorphism
𝜃 : 𝑆 → ℐ(𝑋). In particular, the map 𝛾 is an example of an inverse
semigroup action.

An inverse semigroup may act, for example, on a topological
space or on an algebra, and in these settings we consider actions which
preserve the topological or algebraic structure at hand. More specifi-
cally, we will be particularly interested in two classes of topological
actions: the canonical action of the inverse semigroup of compact-open
bisections 𝒢𝑎 of an ample Hausdorff groupoid 𝒢 on its unit space 𝒢(0)

(see Example 1.5.9); and, given a directed graph 𝐸, the canonical ac-
tion of the “graph inverse semigroup” 𝒮𝐸 on the boundary path space
𝜕𝐸 (see Example 1.5.13).

In an algebraic context, inverse semigroup actions on algebras
(or rings) induce other algebras (rings), which we will call skew inverse
semigroup algebras (rings), which retain information about the initial
dynamical system. From the two actions mentioned in the previous pa-
ragraph (the first associated to a groupoid 𝒢 and the other associated
to a directed graph 𝐸) we obtain, in a similar manner, actions on the
algebras consisting of all locally constant, compactly supported func-
tions on 𝒢(0) and on 𝜕𝐸, respectively, taking values in a given (unital
commutative) ring 𝑅. The skew inverse semigroup algebras obtained in
this manner are isomorphic to the Steinberg algebra of 𝒢 and to the
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Leavitt path algebra of 𝐸, respectively (see Theorem 2.3.1 and Propo-
sition 4.6.6).

Closely related with actions of inverse semigroups are the partial
actions of groups. The notion of partial action of groups on C*-algebras,
and the construction of their associated crossed product C*-algebra was
initially introduced by Exel in [26]. These have proven to be a powerful
tool in the study of many C*-algebras, e.g. Cuntz-Krieger algebras [31],
Cuntz-Li algebras [6], graph C*-algebras [11], ultragraph C*-algebras
[41, 38], and algebras associated with Bratteli diagrams [34, 39], to
name a few. In fact, the results of [28] prove that partial group actions
can be regarded as actions of inverse semigroups, which were already
considered in [68]. Furthermore, actions of inverse semigroups can be
used to describe groupoid C*-algebras as crossed products by inverse
semigroups [60, Theorem 3.3.1]. Although the above approaches are si-
milar in some respects, each of them has its advantages and drawbacks
– for example, actions of inverse semigroups respect the operation com-
pletely, whereas groups have, overall, a better algebraic structure than
general inverse semigroups.

Partial actions of groups and actions of inverse semigroups can
be simultaneously generalized by the notion of partial actions of inverse
semigroups. Defined in [10], a partial action of the inverse semigroup 𝑆
on a set 𝑋 is a partial homomorphism (or dual pre-homomorphism) of
inverse semigroups 𝜃 : 𝑆 → ℐ(𝑋). In contrast with semigroup actions,
we require only that 𝜃(𝑡𝑠) is an extension of 𝜃(𝑡)𝜃(𝑠), for all 𝑡, 𝑠 ∈ 𝑆.

In a purely algebraic context, partial skew group rings were in-
troduced by Dokuchaev and Exel [24], as a generalization of classical
skew group rings and as an algebraic analogue of partial crossed pro-
duct C*-algebras. The theory has attracted strong interest lately, as
some important classes of algebra, such as graph and ultragraph Lea-
vitt path algebras, have been shown to be partial skew group algebras
(see [40, 43]). See [23] for a comprehensive overview of developments in
the theory of partial actions of groups.

Based on work by Nándor Sieben (see [68]), the class of skew
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inverse semigroup algebras was introduced first by Exel and Vieira in
[33], in the case of global actions, and then later by Shourijeh and
Rahni [67] in the case of partial actions. In fact, the results of [33]
prove that partial skew group algebras are isomorphic to certain skew
inverse semigroups algebras (see [33, Theorem 3.7]).

Steinberg algebras are isomorphic to a certain skew inverse se-
migroup algebras (see Theorem 2.3.1). These algebras, introduced by
Steinberg in [73], are associated to (possibly non-Hausdorff) ample
groupoids and are the “algebraisation” of Renault’s C*-algebras of
groupoids. Independently, Clark et al. in [16] introduced the same class
of algebras, however restricted to the class of Hausdorff ample grou-
poids. The development of the theory of Steinberg algebras has attrac-
ted a lot of attention lately. In particular, Steinberg algebras include
the Kumjian–Pask algebras of higher-rank graphs introduced in [62]
(which in turn include Leavitt path algebras). See [13], [17] and [74] for
a few examples of the development of the theory.

In this thesis, we shall be concerned with partial dynamical sys-
tems of inverse semigroups as well as the properties of their associa-
ted partial skew inverse semigroup algebras (rings). It is important to
emphasize that this thesis is built on three articles written during my
doctorate: [5], [3] and [2]). Chapters 2, 3 and 4 are similar to each of
these articles, respectively. The work is organized as follows:

In the first chapter we set up the notation and conventions that
we use throughout out the thesis. We recall some important properties
of inverse semigroups, topological groupoids and Steinberg algebras as-
sociated to ample groupoids. We discuss different ways of defining par-
tial actions of inverse semigroups, and the construction of the partial
skew inverse semigroup algebras (and rings). We present the universal
property for both Steinberg algebras as well as for skew inverse semi-
group algebras.

In the second chapter we study the interplay between Steinberg
algebras and skew group algebras: For a partial action of a group in a
Hausdorff, locally compact and zero-dimensional topological space, we
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realize the associated partial skew group algebra as a Steinberg alge-
bra over the transformation groupoid attached to the partial action.
We then apply this realization to characterize diagonal-preserving iso-
morphisms of partial skew group algebras, over commutative algebras,
in terms of continuous orbit equivalence of the associated partial ac-
tions. We finish this chapter by showing that any Steinberg algebra,
associated to an ample Hausdorff groupoid, can be seen as a partial
skew inverse semigroup algebra.

We have already mentioned that given a partial action 𝜃 of an
inverse semigroup 𝑆 on a ring 𝐴 one may construct its associated skew
inverse semigroup ring 𝐴 o𝛼 𝑆. In the third chapter, our main result
asserts that, when 𝐴 is commutative, the ring 𝐴 o𝛼 𝑆 is simple if,
and only if, 𝐴 is a maximal commutative subring of 𝐴 o𝛼 𝑆 and 𝐴

is 𝑆-simple (see Theorem 3.1.5). We apply this result in the context
of topological inverse semigroup actions to connect simplicity of the
associated skew inverse semigroup ring with topological properties of
the action. Furthermore, we use our result to present a new proof of
the simplicity criterion for a Steinberg algebra 𝐴𝑅(𝒢) associated with
a Hausdorff ample groupoid 𝒢.

In the last chapter, we construct the groupoid of germs associated
to a partial action of inverse semigroups in a manner similar to Exel’s
groupoid of germs and which generalize transformation groupoids. We
describe the Steinberg algebra of an ample Hausdorff groupoid of germs
as a partial skew inverse semigroup algebra (see Theorem 4.3.4), and
therefore we generalizae Theorems 2.1.1 and 2.3.1. We also prove that,
under natural hypotheses, the converse holds, that is, partial skew in-
verse semigroup algebras (of appropriate algebras) may be realized as
Steinberg algebras. We describe and study the orbit equivalence for
partial actions of inverse semigroups, and we give an equivalent charac-
terization in terms of diagonal preserving isomorphism of skew inverse
semigroup algebras, as well of topological full pseudogroups. We finish
this thesis with an application of our results, by realizing Leavitt path
algebras as skew inverse semigroup algebras, and we characterize orbit
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equivalence of directed graphs in terms of continuous orbit equivalence
of associated actions. This chapter generalizes previous work of the se-
cond chapter as well as from others, which dealt mostly with actions of
semigroups or partial actions of groups.
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1 PRELIMINARIES

In this chapter, we will introduce concepts and notations that
will be used throughout this thesis and several results, which are well-
known from the literature. The most important and used results will
be proven, while the trivial be referred.

Throughout this chapter, we will introduce the concepts of in-
verse semigroups, groupoids, Steinberg algebras, partial actions of in-
verse semigroup and the construction of partial skew inverse semigroup
algebras.

1.1 Inverse semigroups

We will start by presenting the basic theory of inverse semi-
groups. Before this, recall that a poset (partially ordered set ) (𝑃,≤)
is:

∙ ∧-semilattice (read “meet semilattice”) if every pair of elements
𝑠, 𝑡 ∈ 𝑃 admits infimum, and we denote it by 𝑠 ∧ 𝑡.

∙ ∨-semilattice (read “join semilattice”) if every pair of elements
𝑠, 𝑡 ∈ 𝑃 admits supremum, and we denote it by 𝑠 ∨ 𝑡.

∙ lattice if it is both ∧-semilattice and ∨-semilattice.

A semigroup is a set 𝑆 endowed with an associative binary ope-
ration

(𝑠, 𝑡) ↦→ 𝑠𝑡.

Many interesting semigroups have a zero element, that is, there is an
element 0 ∈ 𝑆 such that

0𝑠 = 𝑠0 = 0, for all 𝑠 ∈ 𝑆.
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We say that semigroup 𝑆 is a monoid if it has a unit, that is, if there
is an element 1 ∈ 𝑆 such that

1𝑠 = 𝑠1 = 𝑠, for all 𝑠 ∈ 𝑆.

Both the zero and unit of a semigroup are unique, when they exist.
An inverse of an element 𝑠 ∈ 𝑆 is an element 𝑡 ∈ 𝑆 such that

𝑠𝑡𝑠 = 𝑠 and 𝑡𝑠𝑡 = 𝑡.

A semigroup is regular if every element 𝑠 admits an inverse, and we say
that 𝑆 is an inverse semigroup if every 𝑠 ∈ 𝑆 admits a unique inverse,
which we denote by 𝑠* in this case. In an inverse semigroup, the inverse
operation defines an involution, that is,

(𝑠*)* = 𝑠 and (𝑠𝑡)* = 𝑡*𝑠*, for all 𝑠, 𝑡 ∈ 𝑆.

A subsemigroup of a semigroup 𝑆 is a subset 𝑃 ⊆ 𝑆 which is
closed under the semigroup operation. Every subsemigroup 𝑃 of an
inverse semigroup 𝑆, which is itself regular is, in fact, closed under
inverses of 𝑆, and so is an inverse semigroup on its own right. We call
such 𝑃 an inverse subsemigroup of 𝑆.

Given an inverse semigroup 𝑆, one may prove that the collection
of idempotent elements in 𝑆, namely

𝐸(𝑆) = {𝑒 ∈ 𝑆 | 𝑒2 = 𝑒},

is a commutative inverse subsemigroup of 𝑆 (see [48, Theorem 1.1.3]).
It immediately follows that if 𝑒 in 𝐸(𝑆), then 𝑒* = 𝑒, and hence 𝑒 can
be thought of as a “projection”. Notice that if 𝑠 ∈ 𝑆, then

(𝑠𝑠*)2 = 𝑠(𝑠*𝑠𝑠*) = 𝑠𝑠*,

so 𝑠𝑠* ∈ 𝐸(𝑆). On the other hand, if 𝑒 ∈ 𝐸(𝑆), then 𝑒 = 𝑒𝑒*. Hence,

𝐸(𝑆) = {𝑠𝑠* | 𝑠 ∈ 𝑆}.

Notice that meet semilattices are precisely the inverse semigroups in
which every element is an idempotent (see [48, Proposition 1.4.9]).
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Example 1.1.1. Groups are precisely the inverse semigroups which
have only one idempotent. Indeed the only idempotent of a group is its
unit. Conversely, if an inverse semigroup 𝑆 has only one idempotent,
denoted by 𝑒, then, for all 𝑠 ∈ 𝑆, 𝑠*𝑠 = 𝑒 = 𝑠𝑠*, and 𝑒𝑠 = (𝑠𝑠*)𝑠 = 𝑠 =
𝑠(𝑠*𝑠) = 𝑠𝑒, which means that 𝑆 is a group.

We define a partial order on 𝐸(𝑆) by

𝑒 ≤ 𝑓 ⇐⇒ 𝑒 = 𝑒𝑓, for all 𝑒, 𝑓 ∈ 𝐸(𝑆),

which makes 𝐸(𝑆) a ∧-semilattice, meaning that, for every 𝑒 and 𝑓

in 𝐸(𝑆), there exists a largest element which is smaller than 𝑒 and 𝑓,

namely 𝑒𝑓 . The order on 𝐸(𝑆) extends to 𝑆 as the so-called natural
partial order defined by

𝑠 ≤ 𝑡 ⇐⇒ 𝑠 = 𝑡𝑠*𝑠 ⇐⇒ 𝑠 = 𝑠𝑠*𝑡.

It is compatible with the product and inverse operations in the sense
that

𝑠 ≤ 𝑡, 𝑢 ≤ 𝑣 =⇒ 𝑠𝑢 ≤ 𝑡𝑣,

and,
𝑠 ≤ 𝑡 ⇐⇒ 𝑠* ≤ 𝑡*

(see [48, Proposition 1.2.7.(3)]).

Example 1.1.2. Groups are the inverse semigroups for which the na-
tural partial order is equality. Indeed, the natural partial order of a
group is easily seen to be equality. Conversely, suppose that 𝑆 is an
inverse semigroup whose natural partial order is the equality relation.
If 𝑒 and 𝑓 are two idempotents, then 𝑒𝑓 ≤ 𝑒 and 𝑒𝑓 ≤ 𝑓 , but the na-
tural partial order is equality, so 𝑒 = 𝑒𝑓 = 𝑓 . Thus 𝑆 has exactly one
idempotent and, by Example 1.1.1, 𝑆 is a group.

Example 1.1.3. Let 𝑋 be an arbitrary set. It is easy to see that the
power set 𝒫(𝑋) is a commutative inverse semigroup with respect to
intersection of sets. Moreover, 𝐸(𝒫(𝑋)) = 𝒫(𝑋), the natural partial
order is the inclusion of sets and 𝒫(𝑋) has unit and zero, which are 𝑋
and ∅, respectively.
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Example 1.1.4. Every ∧-semilattice is an inverse semigroup with the
meet as the operation: 𝑥𝑦 = 𝑥 ∧ 𝑦.

Example 1.1.5. Let 𝑆 = N ∪ {∞, 𝑧} be the disjoint union of the
lattice N and a two-elements set {∞, 𝑧} with the product given by, for
𝑚,𝑛 ∈ N,

𝑛𝑚 = min{𝑛,𝑚}, 𝑛∞ = ∞𝑛 = 𝑛𝑧 = 𝑧𝑛 = 𝑛,

𝑧∞ = ∞𝑧 = 𝑧 and 𝑧𝑧 = ∞∞ = ∞.

In other words, 𝑆 is the inverse semigroup obtained by adjoining the
lattice N to the group of order 2 {∞, 𝑧}, in a way that every element
of N is smaller than 𝑧 and ∞. Notice that 𝐸(𝑆) = N ∪ {∞}, 0 is the
zero element of 𝑆 and 𝑠* = 𝑠 for all 𝑠 ∈ 𝑆.

Inverse semigroups are most easily understood in terms of partial
bijections. Let 𝑋 be a set. By a partially defined map on 𝑋, we mean
a map 𝑓 : 𝐴 → 𝐵, where 𝐴 and 𝐵 are subsets of 𝑋. We denote the
set of all partial bijections of 𝑋, including the empty function ∅ → ∅,
by ℐ(𝑋). Given 𝑓 ∈ ℐ(𝑋), we denote the domain and image of 𝑓 by
dom(𝑓) and im(𝑓), respectively. Let 𝑓 and 𝑔 be two partial bijections
of 𝑋. Then their composite is a partial function 𝑓 ∘𝑔, where the domain
of 𝑓 ∘ 𝑔 is given by

𝑔−1(dom(𝑓) ∩ im(𝑔))

and if 𝑥 ∈ dom(𝑓 ∘ 𝑔) then (𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)). The image of 𝑓 ∘ 𝑔 is

𝑓(dom(𝑓) ∩ im(𝑔)).

The case where dom(𝑓) and im(𝑔) have an empty intersection causes no
problems: 𝑓 ∘ 𝑔 is just the empty function. All identity maps of subsets
of 𝑋 are partial bijections. If 𝑓 is a partial bijection of 𝑋 then the
inverse function 𝑓−1 is the inverse element of 𝑓 .

The composition operation defined above endows ℐ(𝑋) with a
structure of an inverse monoid with zero ∅ → ∅, called the symmetric
inverse semigroup of 𝑋. The idempotents of ℐ(𝑋) are precisely the
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identity maps defined of subsets of 𝑋. The partial order among general
elements of ℐ(𝑋) is the order given by “extension”, meaning that, for
any 𝑓 and 𝑔 in ℐ(𝑋), we have that 𝑓 ≤ 𝑔 if, and only if,

dom(𝑓) ⊆ dom(𝑔) and 𝑓(𝑥) = 𝑔(𝑥), for all 𝑥 ∈ dom(𝑓).

Just as an analogue to Cayley’s theorem for groups, the Wagner-
Preston representation theorem states that every inverse semigroup can
be realized as an inverse subsemigroup of some ℐ(𝑋) (see Theorem 1.1.7
below).

Example 1.1.6. Let 𝑋 be a non-empty set and let 𝑓 be a bijection
of 𝑋. We denote by [[𝑓 ]] the subset of ℐ(𝑋) consisting of all partial
bijections 𝑔 of 𝑋 for which there is a finite partition 𝑋1, · · · , 𝑋𝑘 of
dom(𝑔) and a set of integers {𝑛1, · · · , 𝑛𝑘} such that 𝑔|𝑋𝑖

= 𝑓𝑛𝑖 |𝑋𝑖
, for

all 𝑖 ∈ {1, · · · , 𝑘}. Then [[𝑓 ]] is an inverse subsemigroup of 𝐼(𝑋).

1.1.1 Partial homomorphisms

Homomorphisms between inverse semigroups 𝑆 and 𝑇 are just
semigroup homomorphisms, that is, maps 𝜙 : 𝑆 → 𝑇 such that

𝜙(𝑠𝑟) = 𝜙(𝑠)𝜙(𝑟), for all 𝑠, 𝑟 ∈ 𝑆.

It is easy to see that if 𝜙 : 𝑆 → 𝑇 is a homomorphism between
inverse semigroups then:

∙ if 𝑒 ∈ 𝐸(𝑆), then 𝜙(𝑒) ∈ 𝐸(𝑇 );

∙ 𝜙 preserves the involution, that is, 𝜙(𝑠*) = 𝜙(𝑠)*, for all 𝑠 ∈ 𝑆;

∙ 𝜙 preserves the order, that is, 𝜙(𝑠) ≤ 𝜙(𝑟) whenever 𝑠 ≤ 𝑟;

∙ im(𝜙) is an inverse subsemigroup of 𝑇 ;

∙ if 𝑅 is an inverse subsemigroup of 𝑇 , then 𝜙−1(𝑅) is an inverse
subsemigroup of 𝑆.
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Theorem 1.1.7. (Wagner-Preston representation theorem) Let 𝑆 be
an inverse semigroup. Then there is a set 𝑋 and an injective homo-
morphism 𝜙 : 𝑆 → ℐ(𝑋).

Proof. For each element 𝑠 ∈ 𝑆, we define 𝐷𝑠 = {𝑡 ∈ 𝑆 : 𝑡𝑡* ≤ 𝑠𝑠*}, and
a map 𝛾𝑠 : 𝐷𝑠* → 𝐷𝑠 by

𝛾𝑠(𝑟) = 𝑠𝑟.

This is well-defined, since for all 𝑠 ∈ 𝑆 and 𝑟 ∈ 𝐷𝑠* ,

(𝑠𝑟)(𝑠𝑟)* = 𝑠𝑟𝑟*𝑠* ≤ 𝑠𝑠*.

Notice that 𝛾𝑠* is a map from 𝐷𝑠 to 𝐷𝑠* , that 𝛾𝑠* ∘ 𝛾𝑠 is the identity
on 𝐷𝑠* and that 𝛾𝑠 ∘ 𝛾𝑠* is the identity on 𝐷𝑠. Hence 𝛾𝑠 is a bijection
and 𝛾−1

𝑠 = 𝛾𝑠* . We may thus define 𝛾 : 𝑆 → ℐ(𝑆) by 𝛾(𝑠) = 𝛾𝑠.
In order to prove that 𝛾𝑡 ∘ 𝛾𝑠 = 𝛾𝑡𝑠, we need to check that the

domains coincide, that is,

𝛾−1
𝑠 (𝐷𝑠 ∩𝐷𝑡*) = 𝐷(𝑡𝑠)* .

If 𝑟 ∈ 𝛾−1
𝑠 (𝐷𝑠 ∩ 𝐷𝑡*) = 𝐷𝑠* ∩ 𝛾−1

𝑠 (𝐷𝑡*), then 𝑟 ∈ 𝐷𝑠* and
𝑠𝑟 = 𝛾𝑠(𝑟) ∈ 𝐷𝑡* , which implies, respectively,

𝑟𝑟* ≤ 𝑠*𝑠 and 𝑠𝑟(𝑠𝑟)* ≤ 𝑡*𝑡.

Then

𝑟𝑟* = 𝑟𝑟*(𝑠*𝑠)(𝑠*𝑠) = 𝑠*(𝑠𝑟𝑟*𝑠*)𝑠 ≤ 𝑠*𝑡*𝑡𝑠 = (𝑡𝑠)*(𝑡𝑠),

and so 𝑟 ∈ 𝐷(𝑡𝑠)* .
On the other hand, if 𝑟 ∈ 𝐷(𝑡𝑠)* , then 𝑟𝑟* ≤ (𝑡𝑠)*(𝑡𝑠) = 𝑠*𝑡*𝑡𝑠

and 𝑟𝑟* ≤ 𝑠*𝑠. This implies that 𝑟 ∈ 𝐷𝑠* , and

𝛾𝑠(𝑟)(𝛾𝑠(𝑟))* = 𝑠𝑟𝑟*𝑠* ≤ 𝑠(𝑠*𝑡*𝑡𝑠)𝑠* = 𝑡*𝑡,

that is, 𝛾𝑠(𝑟) ∈ 𝐷𝑡* . We can conclude that 𝑟 ∈ 𝐷𝑠* ∩ 𝛾−1
𝑠 (𝐷𝑡*) =

𝛾−1
𝑠 (𝐷𝑠 ∩𝐷𝑡*).

It is immediate from the definitions that 𝛾𝑡𝛾𝑠 and 𝛾𝑡𝑠 have the
same effect on elements of 𝐷(𝑡𝑠)* and so 𝛾 is a homomorphism.
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Finally, suppose that 𝛾𝑠 = 𝛾𝑡. Then

𝑡 = 𝛾𝑡(𝑡*)𝑡 = 𝛾𝑠(𝑡*)𝑡 = 𝑠𝑡*𝑡 ≤ 𝑠,

and symmetrically, 𝑠 ≤ 𝑡. Therefore, 𝛾 : 𝑆 → ℐ(𝑆) is an isomorphism
of 𝑆 on to inverse subsemigroup of ℐ(𝑆).

Partial homomorphisms are a generalization of homomorphisms
of inverse semigroup.

Definition 1.1.8. [10, Definition 2.11] Let 𝑆 be an inverse semigroup
and let 𝑇 be a semigroup (not necessarily inverse). A partial homo-
morphism of 𝑆 on 𝑇 is a map 𝜙 : 𝑆 → 𝑇 that satisfies, for all 𝑠, 𝑟 ∈ 𝑆,

(i) 𝜙(𝑠)𝜙(𝑟)𝜙(𝑟*) = 𝜙(𝑠𝑟)𝜙(𝑟*),

(ii) 𝜙(𝑠*)𝜙(𝑠)𝜙(𝑟) = 𝜙(𝑠*)𝜙(𝑠𝑟),

(iii) 𝜙(𝑠)𝜙(𝑠*)𝜙(𝑠) = 𝜙(𝑠).

Notice that, if 𝑇 happens to be an inverse semigroup, then Defi-
nition 1.1.8 (iii), applied to both 𝑠 and 𝑠*, together with the uniqueness
of inverses, immediately implies that

𝜙(𝑠*) = 𝜙(𝑠)*, for all 𝑠 ∈ 𝑆. (iii’)

Hence, if 𝑇 is an inverse semigroup, the axioms (i) - (iii) in Defini-
tion 1.1.8 are equivalent to (i)-(ii) plus (iii’).

Lemma 1.1.9. Let 𝑆 be an inverse semigroup, let 𝑇 be a semigroup
and let 𝜙 : 𝑆 → 𝑇 be a partial homomorphism. Then

(a) 𝜙(𝑒) ∈ 𝐸(𝑇 ), for all 𝑒 ∈ 𝐸(𝑆),

(b) 𝜙(𝑒)𝜙(𝑠) = 𝜙(𝑒𝑠) and 𝜙(𝑠)𝜙(𝑒) = 𝜙(𝑠𝑒), for all 𝑠 ∈ 𝑆 and 𝑒 ∈
𝐸(𝑆).

Proof. (a) If 𝑒 ∈ 𝐸(𝑆), then

𝜙(𝑒) (𝑖𝑖𝑖)= 𝜙(𝑒)𝜙(𝑒*)𝜙(𝑒) (𝑖)= 𝜙(𝑒𝑒*)𝜙(𝑒) = 𝜙(𝑒)𝜙(𝑒) = 𝜙(𝑒)2.
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(b) If 𝑠 ∈ 𝑆 and 𝑒 ∈ 𝐸(𝑆), then

𝜙(𝑒)𝜙(𝑠) (𝑎)= 𝜙(𝑒)𝜙(𝑒)𝜙(𝑠) (𝑖𝑖)= 𝜙(𝑒)𝜙(𝑒𝑠)
(𝑖𝑖𝑖)= 𝜙(𝑒)𝜙(𝑒𝑠)𝜙((𝑒𝑠)*)𝜙(𝑒𝑠) (𝑖)= 𝜙(𝑒𝑠)𝜙((𝑒𝑠)*)𝜙(𝑒𝑠)
(𝑖𝑖𝑖)= 𝜙(𝑒𝑠).

Similarly, 𝜙(𝑠)𝜙(𝑒) = 𝜙(𝑠𝑒).

Proposition 1.1.10. [10, Proposition 3.1] Let 𝑆, 𝑇 be inverse semi-
groups and let 𝜙 : 𝑆 → 𝑇 be a map. Then 𝜙 is a partial homomorphism
if, and only if, for all 𝑠, 𝑟 ∈ 𝑆,

(i’) 𝜙(𝑠)𝜙(𝑟) ≤ 𝜙(𝑠𝑟),

(ii’) 𝜙(𝑠) ≤ 𝜙(𝑟) whenever 𝑠 ≤ 𝑟,

(iii’) 𝜙(𝑠*) = 𝜙(𝑠)*.

Proof. We assume that 𝜙 is a partial homomorphism. We have already
seen that (𝑖𝑖𝑖′) holds. Let 𝑠, 𝑟 ∈ 𝑆. Then

𝜙(𝑠)𝜙(𝑟) (𝑖𝑖𝑖)= 𝜙(𝑠)𝜙(𝑟)𝜙(𝑟*)𝜙(𝑟) (𝑖)= 𝜙(𝑠𝑟)𝜙(𝑟*)𝜙(𝑟)
(𝑖𝑖𝑖′)= 𝜙(𝑠𝑟)𝜙(𝑟)*𝜙(𝑟) ≤ 𝜙(𝑠𝑟),

proving (𝑖𝑖′). For (𝑖′), suppose that 𝑠 ≤ 𝑟. Then 𝑠 = 𝑟𝑠*𝑠, and by
Lemma 1.1.9 (𝑎), 𝜙(𝑠*𝑠) is idempotent. Thus

𝜙(𝑠) = 𝜙(𝑟𝑠*𝑠) 1.1.9 (𝑏)= 𝜙(𝑟)𝜙(𝑠*𝑠) ≤ 𝜙(𝑟).

Conversely, suppose that (𝑖′) - (𝑖𝑖𝑖′) hold. The axiom (iii) is im-
mediate from (𝑖𝑖𝑖′). Given 𝑠, 𝑟 ∈ 𝑆, we have that

𝜙(𝑠)𝜙(𝑟)𝜙(𝑟*)
(𝑖)
≤ 𝜙(𝑠𝑟)𝜙(𝑟*) (𝑖𝑖𝑖′)= 𝜙(𝑠𝑟)𝜙(𝑟*)𝜙(𝑟)𝜙(𝑟*)
(𝑖′)
≤ 𝜙(𝑠𝑟𝑟*)𝜙(𝑟)𝜙(𝑟*) ≤ 𝜙(𝑠)𝜙(𝑟)𝜙(𝑟*),

where, in the last step, we used (𝑖𝑖′) and the fact that 𝑠𝑟𝑟* ≤ 𝑠. This
proves (i), and (ii) follows similarly.
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Remark 1.1.11. Maps 𝜙 : 𝑆 → 𝑇 satisfying conditions (i’) - ((iii’))
of Proposition 1.1.10 are sometimes called dual pre-homomorphisms by
some authors (for instance, in [51]).

Example 1.1.12. Let 𝜙 : 𝑆 → 𝑇 be a homomorphism between inverse
semigroups and let 𝑒 be an idempotent of 𝑇 . Then the map 𝜙𝑒 : 𝑆 →
𝑇 , defined by 𝜙𝑒(𝑠) = 𝑒𝜙(𝑠)𝑒, is a partial homomorphism, called the
“restriction” or “compression” of 𝜙 to 𝑒.

1.2 Groupoids

A groupoid consists of sets 𝒢 and 𝒢(2) ⊆ 𝒢 × 𝒢, endowed with a
product map (𝑏, 𝑐) ↦→ 𝑏𝑐 from 𝒢(2) to 𝒢, and an inverse map 𝑏 ↦→ 𝑏−1

from 𝒢 to itself, such that the following conditions hold:

(i) if (𝑏, 𝑐) and (𝑐, 𝑑) are in 𝒢(2), then so are (𝑏𝑐, 𝑑) and (𝑏, 𝑐𝑑), and
the equality (𝑏𝑐)𝑑 = 𝑏(𝑐𝑑) holds,

(ii) for all 𝑏 ∈ 𝒢, the pairs (𝑏, 𝑏−1) and (𝑏−1, 𝑏) belong to 𝒢(2) and, if
(𝑏, 𝑐) ∈ 𝒢(2), then 𝑏−1(𝑏𝑐) = 𝑐 and (𝑏𝑐)𝑐−1 = 𝑏.

There are two maps associated to a groupoid, called range and
source, which are defined from 𝒢 to itself by

r(𝑏) = 𝑏𝑏−1 and s(𝑏) = 𝑏−1𝑏,

respectively. We call the common image of r and s the unit space of 𝒢
and denote it by 𝒢(0). The set 𝒢(2) is called the set of composable pairs
of the groupoid. The product 𝑏𝑐 of elements 𝑏, 𝑐 of 𝒢 is defined if, and
only if, s(𝑏) = r(𝑐).

Basic facts that follow immediately are:

∙ 𝑏s(𝑏) = 𝑏 = r(𝑏)𝑏, for all 𝑏 ∈ 𝒢,

∙ s(𝑏−1) = r(𝑏) and r(𝑏−1) = s(𝑏), for all 𝑏 ∈ 𝒢,

∙ if 𝑢 ∈ 𝒢(0) then 𝑢−1 = 𝑢,
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∙ if 𝑢, 𝑣 ∈ 𝒢(0) then (𝑢, 𝑣) ∈ 𝒢(2) if, and only if, 𝑢 = 𝑣,

∙ if 𝑏𝑐 = 𝑑 ∈ 𝒢, then (𝑐−1, 𝑏−1) ∈ 𝒢(0), 𝑑−1 = 𝑐−1𝑏−1, r(𝑑) = r(𝑏),
and s(𝑑) = s(𝑐),

∙ 𝒢(0) = {𝑏 ∈ 𝒢 | (𝑏, 𝑏) ∈ 𝒢(2) and 𝑏2 = 𝑏}.

An elegant way to specify a groupoid is to define it as a small
category with inverses. Let 𝒢 be such a category. Since the category
is “small”, its objects form a set 𝒢(0) of 𝒢. The groupoid 𝒢 is then
identified with its set of morphisms, whose elements are “arrows” 𝑏

from one object s(𝑏) to another r(𝑏).

𝑏

r(𝑏)s(𝑏) s(𝑏) = r(𝑏)

𝑏

The product operation is simply the composition of arrows. Since
the category 𝒢 has inverses, every member 𝑏 of 𝒢 has an inverse 𝑏−1.

𝑏

𝑏−1

r(𝑏)s(𝑏)

By identifying objects with their respective identity morphisms,
we see that the source and range maps act from 𝒢 onto 𝒢(0).

Obviously, a product 𝑏𝑐 of elements 𝑏, 𝑐 of 𝒢 makes sense if, and
only if, s(𝑏) = r(𝑐), since the equality just says that the range of 𝑐 is the
same as the source of 𝑏, so that the morphisms 𝑏, 𝑐 can be composed.

r(𝑐) = s(𝑏)
s(𝑐) r(𝑏)𝑏𝑐

𝑏𝑐

Example 1.2.1. The diagram below represents the groupoid 𝒢 =
{𝑢, 𝑣, 𝑏, 𝑐} with unit space 𝒢(0) = {𝑢, 𝑣}.
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𝑢 𝑣

𝑏

𝑐

This diagram uniquely determines the product and inverse operation
of 𝒢. Notice that 𝑢−1 = 𝑢, 𝑣−1 = 𝑣, 𝑏−1 = 𝑐 and 𝑐−1 = 𝑏.

Example 1.2.2. Every group is a groupoid in which all pairs are com-
posable and the unit space has only one element, which is the unit of
the group.

Example 1.2.3. Let 𝑋 be a set. Then an equivalence relation 𝑅 on 𝑋
has a groupoid structure as follows: (𝑥, 𝑦), (𝑦′, 𝑧) ∈ 𝑅 are composable if
𝑦 = 𝑦′ and (𝑥, 𝑦)(𝑦′, 𝑧) = (𝑥, 𝑧), and (𝑥, 𝑦)−1 = (𝑦, 𝑥). Then, r(𝑥, 𝑦) =
(𝑥, 𝑥) and s(𝑥, 𝑦) = (𝑦, 𝑦). The unit space of 𝑅 is the diagonal {(𝑥, 𝑥) |
𝑥 ∈ 𝑋} and may be identified with 𝑋.

Example 1.2.4. Suppose that the group 𝐺 acts on the set 𝑋. The
image of the point 𝑥 ∈ 𝑆 by the transformation associated to 𝑔 ∈ 𝐺

is denoted 𝑔𝑥. We let 𝒢 = 𝐺 × 𝑋 and define the following groupoid
structure: (𝑔, 𝑥) and (ℎ, 𝑦) are composable if, and only if, 𝑥 = ℎ𝑦 and
(𝑔, 𝑥)(ℎ, 𝑦) = (𝑔ℎ, 𝑦), and (𝑔, 𝑥)−1 = (𝑔−1, 𝑔𝑥). Then r(𝑔, 𝑥) = (1, 𝑔𝑥)
and s(𝑔, 𝑥) = (1, 𝑥). The map (1, 𝑥) ↦→ 𝑥 identifies 𝒢(0) with 𝑋.

Example 1.2.5. [48, Proposition 3.1.4] An inverse semigroup 𝑆 is a
groupoid 𝒢(𝑆) when its product is sutiably restricted. More precisely,
as a set, 𝒢(𝑆) is just the inverse semigroup 𝑆. The set of composable
pairs 𝒢(𝑆)(2) is the set {(𝑠, 𝑡) ∈ 𝑆 × 𝑆 | 𝑠*𝑠 = 𝑡𝑡*}. The product map
on 𝒢(𝑆)(2) is just the (restricted) product in 𝑆 and, for 𝑠 ∈ 𝑆, we take
𝑠−1 = 𝑠*. Then s(𝑠) = 𝑠*𝑠, r(𝑠) = 𝑠𝑠*, and 𝒢(𝑆)(0) = {𝑠*𝑠 | 𝑠 ∈
𝑆} = 𝐸(𝑆). We call 𝒢(𝑆) the associated groupoid or restricted product
groupoid of 𝑆.
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Let 𝒢 and ℋ be groupoids. A map 𝜙 : 𝒢 → ℋ is a groupoid
homomorphism if (𝑏, 𝑐) ∈ 𝒢(2) implies (𝜙(𝑏), 𝜙(𝑐)) ∈ ℋ(2) and

𝜙(𝑏)𝜙(𝑐) = 𝜙(𝑏𝑐).

A homomorphism 𝜙 : 𝒢 → ℋ between groupoids satisfies the
following assertions:

∙ 𝜙(𝑏−1) = 𝜙(𝑏)−1, for all 𝑏 ∈ 𝒢,

∙ if 𝑢 ∈ 𝒢(0), then 𝜙(𝑢) ∈ 𝒢(0),

∙ 𝜙(s(𝑏)) = s(𝜙(𝑏)) and 𝜙(r(𝑏)) = r(𝜙(𝑏)), for all 𝑏 ∈ 𝒢,

∙ if 𝜙 is invertible, then 𝜙−1 is also a groupoid homorphism. In this
case we say 𝜙 is an isomorphism.

For each unit 𝑢 ∈ 𝒢(0), we define

𝒢𝑢 = {𝑏 ∈ 𝒢 : s(𝑏) = 𝑢} and 𝒢𝑢 = {𝑏 ∈ 𝒢 : r(𝑏) = 𝑢}.

It is easy to see that 𝒢𝑢
𝑢 := 𝒢𝑢 ∩ 𝒢𝑢 is a group when endowed with the

product operation coming from 𝒢, and it is called the isotropy group at
𝑢. We say that a unit 𝑢 in 𝒢(0) has trivial isotropy if 𝒢𝑢

𝑢 = {𝑢}.
Notice that the set

Iso(𝒢) = {𝑏 ∈ 𝒢 | s(𝑏) = r(𝑏)} =
⋃︁

𝑢∈𝒢(0)

𝒢𝑢
𝑢 ,

is a groupoid, where two elements may be composed if, and only if,
they lie in the same isotropy group 𝒢𝑢

𝑢 . The groupoid Iso(𝒢) is called
the isotropy subgroupoid of 𝒢.

A groupoid is principal if Iso(𝒢) = 𝒢(0). Every equivalence rela-
tion 𝑅 on set 𝑋 is a principal groupoid. Conversely, if 𝒢 is a principal
groupoid, then the image of the map (r, s) : 𝒢 → 𝒢(0) × 𝒢(0), defined
by (r, s)(𝑏) = (r(𝑏), s(𝑏)), is an equivalence relation on 𝒢(0), and (r, s)
is a isomorphism of 𝒢 on its image.
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1.2.1 Topological groupoids

A topological groupoid is a groupoid 𝒢 endowed with a topology
such that composition and inversion are continuous, where we consider
the product topology on 𝒢(2).

Notice that if 𝒢 is a topological groupoid, then the maps r, s are
continuous. Moreover, if we assume that 𝒢 is Hausdorff, then the unit
space 𝒢(0) is closed in 𝒢.

An étale groupoid is a topological groupoid 𝒢 such that 𝒢(0) is
locally compact and Hausdorff in the relative topology, and its range
map is a local homeomorphism from 𝒢 to 𝒢(0) (the source map will
consequently share such property).

For any étale groupoid 𝒢, the unit space 𝒢(0) is an open subset of
𝒢. Indeed, let 𝑥0 ∈ 𝒢(0). There is an open subset 𝐵 of 𝒢 containing 𝑥0,
such that r(𝐵) is open in 𝒢(0) and r : 𝐵 → r(𝐵) is a homeomorphism.
Notice that 𝑥0 = r(𝑥0) ∈ 𝐵. Let 𝑈 = r−1(𝐵) ∩ 𝐵. Then 𝑈 is an open
subset of 𝒢 containing 𝑥0, and we claim that 𝑈 ⊆ 𝒢(0). Given 𝑦 ∈ 𝑈 ,
we have 𝑦 ∈ 𝐵, and r(𝑦) ∈ 𝐵. Since r(𝑦) = r(r(𝑦)) and r is injective on
𝐵 then 𝑦 = r(𝑦) ∈ 𝒢(0).

In the next steps, we will describe an inverse semigroup which
is intrinsic to an étale groupoid, and which will be of fundamental
importance for this thesis.

We define the product and inverses for subsets of a groupoid 𝒢
as follows: If 𝐵 and 𝐶 are subsets of a groupoid 𝒢, one may form the
following subsets of 𝒢:

𝐵𝐶 = {𝑏𝑐 ∈ 𝒢 | 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 and s(𝑏) = r(𝑐)} ,

and
𝐵−1 = {𝑏−1 | 𝑏 ∈ 𝐵}.

A subset 𝐵 of a groupoid 𝒢 is called a bisection if the restrictions
of r and s to 𝐵 are both injective. Equivalently, 𝐵 is a bisection if, and
only if, 𝐵𝐵−1 and 𝐵−1𝐵 are contained in 𝒢(0).

Since the source and range maps are local homeomorphisms from
an étale groupoid 𝒢 to its unit space 𝒢(0), for every open bisection 𝐵
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of 𝒢, we have that s and r are homeomorphisms from 𝐵 onto s(𝐵) and
r(𝐵). Moreover, the collection consisting of all open bisections of 𝒢,
denoted by 𝒢𝑜𝑝, forms a basis for the topology of 𝒢 (see [28, Proposi-
tion 3.5]).

Proposition 1.2.6. [60, Proposition 2.2.3 and 2.2.4] Let 𝒢 be an étale
groupoid. Then 𝒢𝑜𝑝 is an inverse semigroup under set product and with
set inversion as involution. Moreover,

(a) 𝒢(0) is the unit of 𝒢𝑜𝑝,

(b) ∅ is the zero for 𝒢𝑜𝑝,

(c) 𝐸(𝒢𝑜𝑝) is the family of open subsets of 𝒢(0),

(d) the natural order of the inverse semigroup 𝒢𝑜𝑝 is set inclusion.

Using the notation of [60], we denote by 𝒢𝑎 the set of all bisecti-
ons of 𝒢 which are simultaneously compact and open (compact-open).

Definition 1.2.7. An étale groupoid 𝒢 is ample if it admits a basis of
compact-open bisections.

Proposition 1.2.8. [49, Proposition 2.18(7)] Let 𝒢 be an ample grou-
poid. Then 𝒢𝑎 is an inverse subsemigroup of 𝒢(𝑜𝑝). Moreover, 𝒢(0) is
compact if, and only if, the inverse semigroup 𝒢𝑎 has a unit.

Proof. We have already seen that the product of two open bisections is
an open bisection, then, only the compactness remains to be checked.
Since 𝒢(0) is Hausdorff, then

𝒢(2) = {(𝑎, 𝑏) ∈ 𝒢 × 𝒢 | s(𝑎) = r(𝑏)} = (s × r)−1
(︁{︁

(𝑢, 𝑢) | 𝑢 ∈ 𝒢(0)
}︁)︁

is closed in 𝒢 × 𝒢.
If 𝐴,𝐵 ∈ 𝒢𝑎, then 𝐴 × 𝐵 is a compact subset of 𝒢 × 𝒢, and

thus (𝐴× 𝐵) ∩ 𝒢(2) is compact as well. Denoting by 𝑚 : 𝒢(2) → 𝒢 the
product map, we have

𝐴𝐵 = 𝑚
(︁

(𝐴×𝐵) ∩ 𝒢(2)
)︁
,
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which is then image of a compact set under a continuous function, hence
compact.

Recall that a topological space 𝑋 is said to be zero-dimensional
if the topology of 𝑋 admits a basis consisting of clopen sets. If, in
addition, 𝑋 is locally compact, it is easy to see that 𝑋 also admits a
basis formed by compact-open sets.

Proposition 1.2.9. [29, Proposition 4.1] Let 𝒢 be an étale groupoid.
Then 𝒢(0) is zero-dimensional if, and only if, 𝒢 is ample.

Proof. Suppose that 𝒢(0) is zero-dimensional and that 𝑐 ∈ 𝑈 ⊆ 𝒢, with
𝑈 open. Choose an open bisection 𝐵 such that 𝑐 ∈ 𝐵 ⊆ 𝑈 . Thus,
as s(𝐵) is open and 𝒢(0) is zero-dimensional, there is a compact-open
subset 𝑇 of 𝒢(0) such that s(𝑐) ∈ 𝑇 ⊆ s(𝐵). Since s is a homeomorphism
from 𝐵 to 𝑠(𝐵), we have that the set 𝐾 = 𝐵∩s−1(𝑇 ) is homeomorphic
to 𝑇 and, therefore, 𝐾 is a compact-open bisection as required.

The converse follows immediately from the source map s : 𝒢 →
𝒢(0) being open and Hausdorff. With more details: If 𝒢 is ample, then
let 𝑈 be an open subset of 𝒢(0). Since 𝒢(0) is open in 𝒢, then 𝑈 is open
in 𝒢 is well, so we may write it as a union 𝑈 =

⋃︀
𝑖∈𝐼 𝐶𝑖, where each

𝐶𝑖 is compact-open. Since 𝒢(0) is Hausdorff, then each 𝐶𝑖 is clopen in
𝒢(0). This proves that 𝒢(0) is zero-dimensional.

Example 1.2.10. A topological group 𝐺 is étale if, and only if, 𝐺 is
ample if, and only if, 𝐺 is a discrete group.

Example 1.2.11. A Hausdorff, locally compact and zero-dimensional
topological space 𝑋 seen as a unit groupoid (this means that 𝑋 = 𝑋(0))
is a Hausdorff ample groupoid.

Example 1.2.12. If 𝐺 is a discrete group acting continuously on a
Hausdorff, locally compact and zero-dimensional topological space 𝑋,
then the transformation groupoid 𝐺 n 𝑋 endowed with the product
topology is a Hausdorff ample groupoid.
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Example 1.2.13. Let 𝑋 be a discrete topological space. Then the
equivalence relation 𝑅 = 𝑋 ×𝑋 endowed with the product topology is
an ample Hausdorff groupoid.

Example 1.2.14. It is not necessarily true that an ample groupoid is
Hausdorff. For example, let 𝑆 = N ∪ {∞, 𝑧} as in the Example 1.1.5,
and let 𝒢(𝑆) = N ∪ {∞, 𝑧} be the restricted product groupoid (see
Example 1.2.5). We see N ∪ {∞, 𝑧} as a topological groupoid with the
topology whose open sets are either cofinite or contained in N. Notice
that N ∪ {∞, 𝑧} is ample groupoid, but in this case, there are no open
subsets of 𝑋 which separate the elements ∞ and 𝑧.

Example 1.2.15. (Deaconu–Renault groupoids) Let 𝑋 be a Hausdorff
locally compact topological space and let 𝜙 be a local homeomorphism
from an open subset dom(𝜙) of 𝑋 onto an open subset im(𝜙) of 𝑋.
The Deaconu-Renault groupoid associated to 𝜙 is

𝒢(𝑋,𝜙) = {(𝑥,𝑚− 𝑛, 𝑦) ∈ 𝑋 × Z ×𝑋 | 𝜙𝑚(𝑥) = 𝜙𝑛(𝑦)}.

Two elements (𝑥,𝑚, 𝑦) and (𝑧, 𝑛, 𝑤) of 𝒢 are composable if, and only
if, 𝑦 = 𝑧 and, in this case, their product is

(𝑥,𝑚, 𝑦)(𝑧, 𝑛, 𝑤) = (𝑥,𝑚+ 𝑛,𝑤).

The inverse map on 𝒢 is defined by

(𝑥, 𝑛, 𝑦)−1 = (𝑦,−𝑛, 𝑥).

Thus the range and source maps are given by

r(𝑥, 𝑛, 𝑦) = (𝑥, 0, 𝑥) and s(𝑥, 𝑛, 𝑦) = (𝑦, 0, 𝑦).

Hence the unit space 𝒢(0) may be identified with 𝑋 via the map

(𝑥, 0, 𝑥) → 𝑥.

We endow 𝒢 with the topology generated by the basis consisting of sets
of the form

𝒢(𝑈,𝑚, 𝑛, 𝑉 ) = {(𝑥,𝑚− 𝑛, 𝑦) | 𝜙𝑚(𝑥) = 𝜙𝑛(𝑦), 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 },
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where 𝑚 and 𝑛 ∈ N, 𝑈 and 𝑉 are open subsets of 𝑋 such that both
𝜙𝑚|𝑈 and 𝜙𝑛|𝑉 are injective and 𝜙𝑚(𝑈) = 𝜙𝑛(𝑉 ). Notice that the
range map r induces a homeomorphism 𝒢(𝑈,𝑚, 𝑛, 𝑉 ) ≃ 𝑈 . Hence, with
this topology 𝒢 is an étale groupoid. Moreover, if 𝑋 is zero-dimensional,
then 𝒢(𝑋,𝜙) is ample. It easy see that the unit space 𝒢(0) is closed,
then we can also conclude that the groupoid 𝒢(𝑋,𝜙) is Hausdorff (see
[20], [65].)

Example 1.2.16. (Boundary path groupoid) Let 𝐸 = (𝐸0, 𝐸1, 𝑟, 𝑠) be
a directed graph with vertex set 𝐸0 and edge set 𝐸1. For each edge 𝑒,
𝑠(𝑒) is the initial vertex (source) of 𝑒 and 𝑟(𝑒) is terminal vertex (range)
of 𝑒. A countable graph is one where 𝐸0 and 𝐸1 are countable sets.

A finite path is a sequence 𝜇 of edges 𝜇1, . . . , 𝜇𝑘, where 𝑠(𝜇𝑖+1) =
𝑟(𝜇𝑖) for 1 ≤ 𝑖 ≤ 𝑘 − 1. We write 𝜇 = 𝜇1𝜇2 · · ·𝜇𝑘. The length |𝜇| of
𝜇 is just 𝑘. Each vertex 𝑣 is regarded as a finite path of length 0. The
set of finite paths in 𝐸 is denoted by 𝐸⋆. We define 𝑟(𝜇) = 𝑟(𝜇𝑘) and
𝑠(𝜇) = 𝑠(𝜇1). For 𝑣 ∈ 𝑉 , we set 𝑟(𝑣) = 𝑣 = 𝑠(𝑣).

A vertex 𝑣 is called a sink if 𝑠−1(𝑣) = ∅ and it is called an
infinite emitter if |𝑠−1(𝑣)| = ∞. If 𝑣 ∈ 𝐸0 is either a sink or an infinite
emitter then it is called singular. An infinite path is an infinite sequence
𝑥 = (𝑥𝑖)𝑖∈N, where 𝑥𝑖 ∈ 𝐸1 and 𝑟(𝑥𝑖) = 𝑠(𝑥𝑖+1), for all 𝑖 ∈ N. We
denote by 𝐸∞ the collection of all infinite paths in 𝐸.

Paths can be concatenated if their ranges and sources agree: if
𝜇, 𝜈 ∈ 𝐸⋆ with 𝑟(𝜇) = 𝑠(𝜈), then 𝜇𝜈 = 𝜇1 · · ·𝜇|𝜇|𝜈1 · · · 𝜈|𝜈| ∈ 𝐸⋆ and,
if 𝑥 ∈ 𝐸∞ with 𝑟(𝜇) = 𝑠(𝑥), then 𝜇𝑥 = 𝜇1 · · ·𝜇|𝜇|𝑥1𝑥2 · · · ∈ 𝐸∞. For
any finite path 𝜇, we specify that 𝑠(𝜇)𝜇 = 𝜇 = 𝜇𝑟(𝜇).

We define the boundary path space of 𝐸 as

𝜕𝐸 := 𝐸∞ ∪ {𝜇 ∈ 𝐸⋆ | 𝑟(𝜇) is singular}.

For a finite path 𝜇 ∈ 𝐸⋆, we define the cylinder set

𝑍(𝜇) = {𝜇𝑥 | 𝑥 ∈ 𝜕𝐸 and 𝑟(𝜇) = 𝑠(𝑥)} ⊆ 𝜕𝐸,

and for a finite set 𝐹 ⊆ 𝑠−1(𝑟(𝜇)) (possibly empty), we define a neigh-
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bourhood base for 𝜇 ∈ 𝐸⋆ consisting of generalised cylinder sets

𝑍(𝜇, 𝐹 ) = 𝑍(𝜇) ∖
⋃︁

𝑒∈𝐹

𝑍(𝜇𝑒) = {𝜇𝑥 | 𝑥 ∈ 𝜕𝐸, 𝑥1 /∈ 𝐹 and 𝑟(𝜇) = 𝑠(𝑥)}.

The generalised cylinder sets provide a basis of compact-open sets for
a Hausdorff topology on 𝜕𝐸 (see [77, Theorems 2.1 and Theorem 2.2]).

For 𝑛 ∈ N, let 𝜕𝐸≥𝑛 = {𝑥 ∈ 𝜕𝐸 | |𝑥| ≥ 𝑛}. Then 𝜕𝐸≥𝑛 =⋃︀
𝜇∈𝐸𝑛 𝑍(𝜇) is an open subset of 𝜕𝐸. We define the one-sided shift

map 𝜎 : 𝜕𝐸≥1 → 𝜕𝐸 as follows:

𝜎(𝑥) =

⎧⎪⎨⎪⎩
𝑟(𝑥), if 𝑥 ∈ 𝐸⋆ ∩ 𝜕𝐸 and |𝑥| = 1
𝑥2 · · ·𝑥|𝑥|, if 𝑥 ∈ 𝐸⋆ ∩ 𝜕𝐸 and |𝑥| ≥ 2
𝑥2𝑥3 · · · , if 𝑥 ∈ 𝐸∞.

(1.1)

The 𝑛-fold composition 𝜎𝑛 is defined on 𝜕𝐸≥𝑛 and we understand
𝜎0 : 𝜕𝐸 → 𝜕𝐸 as the identity map. We define the boundary path
groupoid

𝒢𝐸 = {(𝑥,𝑚− 𝑛, 𝑦) ∈ 𝜕𝐸 × Z × 𝜕𝐸 | 𝜎𝑚(𝑥) = 𝜎𝑛(𝑦)}

= {(𝜇𝑥, |𝜇| − |𝜈|, 𝜈𝑥) | 𝜇, 𝜈 ∈ 𝐸⋆, 𝑥 ∈ 𝜕𝐸, 𝑟(𝜇) = 𝑟(𝜈) = 𝑠(𝑥)},

and view (𝑥, 𝑘, 𝑦) ∈ 𝒢𝐸 as a morphism with domain 𝑦 and codomain
𝑥. The composition of morphisms and their inverses are defined by the
formulae

(𝑥, 𝑘, 𝑦)(𝑦, 𝑙, 𝑧) = (𝑥, 𝑘 + 𝑙, 𝑧) and (𝑥, 𝑘, 𝑦)−1 = (𝑦,−𝑘, 𝑥).

𝒢𝐸 is a groupoid with unit space 𝒢(0)
𝐸 = {(𝑥, 0, 𝑥) : 𝑥 ∈ 𝜕𝐸}, which we

identify with 𝜕𝐸. To put a topology on 𝒢𝐸 , we consider finite paths
𝜇, 𝜈 ∈ 𝐸⋆ with 𝑟(𝜇) = 𝑟(𝜈), and a finite set of edges 𝐹 ⊆ 𝑠−1(𝑟(𝜇)).
Then we define the open sets

𝑍(𝜇, 𝜈) := {(𝜇𝑥, |𝜇| − |𝜈|, 𝜈𝑥) | 𝑥 ∈ 𝜕𝐸, 𝑟(𝜇) = 𝑠(𝑥)}

and

𝑍(𝜇, 𝜈, 𝐹 ) := 𝑍(𝜇, 𝜈) ∖
⋃︁

𝑒∈𝐹

𝑍(𝜇𝑒, 𝜈𝑒)

= {(𝜇𝑥, |𝜇| − |𝜈|, 𝜈𝑥) | 𝑥 ∈ 𝜕𝐸, 𝑥1 /∈ 𝐹 and 𝑟(𝜇) = 𝑠(𝑥)}.



1.2. Groupoids 43

The collection of these sets provides a basis of compact-open bisections
for a Hausdorff topology on 𝒢𝐸 (see [47, Proposition 2.6] for more
details in the case of row-finite graphs and [61, Section 3] for the general
case).

Definition 1.2.17. Let 𝒢 be a topological groupoid. We say that

1. 𝒢 is topologically principal if the set of points in 𝒢(0) with trivial
isotropy is dense in 𝒢(0),

2. 𝒢 is effective if the interior of Iso(𝒢) is just 𝒢(0).

Notice that if 𝒢 is étale, then 𝒢(0) is open, and we automatically
already have the inclusion 𝒢(0) ⊆ int(Iso(𝒢)).

Proposition 1.2.18. [66, Proposition 3.6] Let 𝒢 be an étale groupoid.
Then the following assertions hold:

(a) If 𝒢 is Hausdorff and topologically principal, then 𝒢 is effective.

(b) If 𝒢 is effective, second countable, then 𝒢 is topologically principal.

Example 1.2.19. Consider the groupoid 𝒢 = N∪ {∞, 𝑧} as in Exam-
ple 1.2.14. Notice that 𝒢(0) = N ∪ {∞} and

{𝑥 ∈ 𝒢(0) | 𝒢𝑥
𝑥 = {𝑥}} = N,

which is dense N ∪ {∞} = 𝒢(0), and therefore, 𝒢 is topologically prin-
cipal. However, 𝒢 is not effective since

𝒢(0) = N ∪ {∞} $ N ∪ {∞, 𝑧} = int(Iso(𝒢)).

Example 1.2.20. Let 𝐸 = (𝐸0, 𝐸1, 𝑟, 𝑠) be a directed graph (see
Example 1.2.16). A cycle in 𝐸 is a path 𝜇 ∈ 𝐸⋆ such that |𝜇| ≥ 1
and 𝑠(𝜇) = 𝑟(𝜇). An edge 𝑒 is an exit to the cycle 𝜇 if there exists 𝑖
such that 𝑠(𝑒) = 𝑠(𝜇𝑖) and 𝑒 ̸= 𝜇𝑖. A graph is said to satisfy condition
(L) if every cycle has an exit.

By [71, Proposition 5.2], the boundary path groupoid 𝒢𝐸 (see
Example 1.2.16) is effective if, and only if, the graph 𝐸 satisfies con-
dition (L). In particular, if 𝐸 is a countable graph, 𝒢𝐸 is topologically
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principal if, and only if, the graph 𝐸 satisfies condition (L) (see [9,
Proposition 2.3]).

A subset 𝑈 of the unit space 𝒢(0) of 𝒢 is invariant if any 𝑏 ∈ 𝒢
such that s(𝑏) ∈ 𝑈 then r(𝑏) ∈ 𝑈 , or equivalently, r(s−1(𝑈)) = 𝑈 . We
say that 𝒢 is minimal if 𝒢(0) has no nontrivial open invariant subset.

Example 1.2.21. Let 𝑋 be a discrete topological space. Then the
equivalence relation 𝑅 = 𝑋×𝑋 with the product topology is a minimal
groupoid.

1.3 Steinberg algebras

To an ample groupoid we can associate an algebra, known as
Steinberg algebra. Such algebras were independently introduced by Stein-
berg in [73] and by Clark et al. in [16]. They are the “algebraisation” of
Renault’s C*-algebras of groupoids. The development of the theory of
Steinberg algebras has attracted a lot of attention lately. In particular,
Steinberg algebras include the Kumjian–Pask algebras of higher-rank
graphs introduced in [62], which in turn include Leavitt path algebras.
See [74], [13], [17], [12], [75] and [15] for a few examples of the develop-
ment of the theory.

Let 𝑅 be a unital commutative ring and let 𝒢 be an ample grou-
poid. Consider 𝐴𝑅(𝒢) the 𝑅-module of 𝑅-valued functions on 𝒢 gene-
rated by the characteristic functions of the compact-open bisections of
𝒢, that is,

𝐴𝑅(𝒢) = Span𝑅{1𝐵 | 𝐵 ∈ 𝒢𝑎},

where 1𝐵 denotes the characteristic function of 𝐵.
Let 𝑓, 𝑔 ∈ 𝐴𝑅(𝒢). Then their convolution product 𝑓 *𝑔 is defined

by
(𝑓 * 𝑔)(𝑥) =

∑︁
𝑏𝑐=𝑥

𝑓(𝑏)𝑔(𝑐), for all 𝑥 ∈ 𝒢. (1.2)

Of course, one must show that this sum is really finite and 𝑓 * 𝑔
belongs to 𝐴𝑅(𝒢). Since the functions of 𝐴𝑅(𝒢) are linear combinations
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of characteristic functions of the compact-open bisections it is enough
to prove that, for every 𝐵,𝐶,𝐷 ∈ 𝒢𝑎,

(1𝐵 + 1𝐶) * 1𝐷 = 1𝐵 * 1𝐷 + 1𝐶 * 1𝐷, (1.3)

1𝐷 * (1𝐵 + 1𝐶) = 1𝐷 * 1𝐵 + 1𝐷 * 1𝐶 , (1.4)

and
1𝐵 * 1𝐶 = 1𝐵𝐶 . (1.5)

Equations (1.3) and (1.4) follow directly from the convolution
product definition in (1.2). In order to prove (1.5), first suppose 𝑥 ∈
𝐵𝐶. Then we can find 𝑏 ∈ 𝐵 and 𝑐 ∈ 𝐶 so that 𝑥 = 𝑏𝑐. Notice that
r(𝑏) = r(𝑥) and s(𝑐) = s(𝑥). Since 𝐵 and 𝐶 are bisections, we get that
𝑏 and 𝑐 are the unique elements of 𝐵 and 𝐶, respectively, with these
properties. Then

1𝐵 * 1𝐶(𝑥) = 1 = 1𝐵𝐶(𝑥).

Clearly, if 𝑥 /∈ 𝐵𝐶 then

1𝐵 * 1𝐶(𝑥) = 0 = 1𝐵𝐶(𝑥).

Therefore, the equality (1.5) holds, as required.
Notice that the convolution product gives us that, for 𝑓, 𝑔 ∈

𝐴𝑅(𝒢),

supp(𝑓 *𝑔) ⊆ 𝑚 ((supp(𝑓) × supp(𝑔))∩𝒢(2)) = supp(𝑓) supp(𝑔), (1.6)

where 𝑚 : 𝒢(2) → 𝒢 is the product map in 𝒢. Moreover, it is easy to
see that with appropriate change of variables, we obtain

(𝑓 * 𝑔)(𝑥) =
∑︁

s(𝑐)=s(𝑥)

𝑓(𝑥𝑐−1)𝑔(𝑐) =
∑︁

r(𝑏)=r(𝑥)

𝑓(𝑏)𝑔(𝑏−1𝑥).

Proposition 1.3.1. Let 𝑅 be a unital commutative ring and let 𝒢 be an
ample groupoid. Then the 𝑅-module 𝐴𝑅(𝒢) is an associative 𝑅-algebra
with the convolution product defined in (1.2).
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Proof. The distributivity in 𝐴𝑅(𝒢) follows from (1.3) and (1.5). For
associativity, take 𝐵,𝐶 and 𝐷 in 𝒢𝑎. Then

(1𝐵 * 1𝐶) * 1𝐷
(1.5)= 1𝐵𝐶 * 1𝐷.

By Proposition 1.2.8, 𝐵𝐶 is also a compact-open bisection. Again, using
(1.5), we obtain

(1𝐵 * 1𝐶) * 1𝐷 = 1𝐵(𝐶𝐷)
1.2.8= 1𝐵𝐶𝐷.

For the same reasons, 1𝐵 * (1𝐶 * 1𝐷) = 1𝐵𝐶𝐷, that is,

(1𝐵 * 1𝐶) * 1𝐷 = 1𝐵 * (1𝐶 * 1𝐷). (1.7)

Therefore, the associativity in 𝐴𝑅(𝒢) follows from the facts that any
function 𝑓 ∈ 𝐴𝑅(𝒢) is a linear combination of characteristic functions of
the compact-open bisections and by equalities (1.3), (1.4) and (1.7).

Definition 1.3.2. Let 𝑅 be a unital commutative ring and let 𝒢 be
an ample groupoid. The algebra 𝐴𝑅(𝒢), with the structure of the Pro-
position 1.3.1, is called the Steinberg algebra associated to 𝒢.

For 𝑓 ∈ 𝐴𝑅(𝒢), we define the support of 𝑓 by

supp(𝑓) = {𝑏 ∈ 𝒢 | 𝑓(𝑏) ̸= 0}.

We say that an 𝑅-valeud function 𝑓 : 𝒢 → 𝑅 is locally constant
if, for every 𝑏 ∈ 𝒢, there is an open subset 𝑈 of 𝒢 such that 𝑓 |𝑈 is
constant. Notice that a function 𝑓 : 𝒢 → 𝑅 is locally constant if, and
only if, it is continuous once we equip 𝑅 with the discrete topology.

Remark 1.3.3. We are more interested in Steinberg algebras 𝐴𝑅(𝒢)
in the case where the groupoid 𝒢 is Hausdorff.

Proposition 1.3.4. Let 𝑅 be a unital commutative (discrete) ring
and let 𝒢 be an ample Hausdorff groupoid. Then, the Steinberg alge-
bra 𝐴𝑅(𝒢) associated to 𝒢 consists of all functions from 𝒢 to 𝑅 that
are locally constant and have compact support. In particular, 𝑠𝑢𝑝𝑝(𝑓)
is clopen, for all 𝑓 ∈ 𝐴𝑅(𝒢).
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Proof. If 𝐵 is a compact-open bisection of 𝒢, then its characteristic
function 1𝐵 is locally constant, because 𝐵 is closed (since 𝒢 is Haus-
dorff), and has compact support (namely, 𝐵). As 𝑓 ∈ 𝐴𝑅(𝒢) is a linear
combination of functions 1𝐵𝑖

, where 𝐵1, . . . , 𝐵1 ∈ 𝒢𝑎, then 𝑓 is also
locally constant. From the above comments, we can conclude that 𝑓 is
continuous.

Now, let us prove that supp(𝑓) is clopen. Indeed, since 𝑓 is locally
constant, for any 𝑏 ∈ 𝒢 with 𝑓(𝑏) = 0, there is an open subset 𝑈𝑏

containing 𝑏 such that 𝑓 |𝑈𝑏
is constant equal to 0. Hence,

{𝑏 ∈ 𝒢 | 𝑓(𝑏) = 0} =
⋃︁

𝑓(𝑏)=0

𝑈𝑏

is open. By continuity of 𝑓 , we get that {𝑏 ∈ 𝒢 | 𝑓(𝑏) = 0} is closed.
Therefore, supp(𝑓) is clopen.

As 𝑓 ∈ 𝐴𝑅(𝒢) is a linear combination of functions 1𝐵𝑖 , where
𝐵1, · · · , 𝐵1 ∈ 𝒢𝑎, then the supp(𝑓) is a clopen subset of the compact⋃︀𝑛

𝑖=1 𝐵𝑖, hence itself compact. Thus every function in 𝐴𝑅(𝒢) is locally
constant and compactly supported.

Conversely, suppose that 𝑓 : 𝒢 → 𝑅 is a locally constant and
compactly supported function. Since 𝒢 has a basis of compact-open
bisections and supp(𝑓) is compact, we may find finitely many compact-
open bisections𝐵1, · · · , 𝐵𝑛 such that supp(𝑓) =

⋃︀𝑛
𝑖=1 𝐵𝑖. As 𝑓 is locally

constant, we can suppose that 𝑓 |𝐵𝑖 is constant equal to 𝑟𝑖 ∈ 𝑅, for all
𝑖 = 1, · · · , 𝑛. By Hausdorffness of 𝒢 the following pairwise disjoint
subsets

𝐷1 = 𝐵1 and 𝐷𝑗 = 𝐵𝑗 ∖ ∪𝑗−1
𝑖=1𝐵𝑖

are also compact-open bisections, and so,

𝑓 =
𝑛∑︁

𝑖=1
𝑟𝑖1𝐷𝑖

∈ 𝐴𝑅(𝒢).

Remark 1.3.5. The last part of the proof of the above proposition,
show that any 𝑓 ∈ 𝐴𝑅(𝒢) can be written as a linear combination of
characteristic functions of pairwise disjoint compact-open bisections.
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Definition 1.3.6. [16, Definition 3.10] Let 𝒢 be an ample Hausdorff
groupoid and let 𝑅 be a unital commutative ring. A representation1 of
𝒢𝑎 in an 𝑅-algebra 𝐵 is a family {𝑡𝐷 | 𝐷 ∈ 𝒢𝑎} ⊆ 𝐵 satisfying

(i) 𝑡∅ = 0,

(ii) 𝑡𝐶𝑡𝐷 = 𝑡𝐶𝐷, for all 𝐵,𝐶 ∈ 𝒢𝑎,

(iii) 𝑡𝐶 + 𝑡𝐷 = 𝑡𝐶∪𝐷, whenever 𝐶 and 𝐷 are disjoint elements of for
𝒢𝑎.

Theorem 1.3.7. [16, Theorem 3.11] and [19, Theorem 4.4.8] Let 𝒢 be
an ample Hausdorff groupoid and let 𝑅 be a unital commutative ring.
Then {1𝐷 | 𝐷 ∈ 𝒢𝑎} ⊆ 𝐴𝑅(𝒢) is a representation of 𝒢𝑎 in 𝐴𝑅(𝒢).
Moreover, 𝐴𝑅(𝒢) is universal for representations of 𝒢𝑎 in the sense
that, for every representation {𝑡𝐷 | 𝐷 ∈ 𝒢𝑎} of 𝒢𝑎 in an 𝑅-algebra 𝐵,
there is a unique 𝑅-homomorphism Φ : 𝐴𝑅(𝒢) → 𝐵 such that Φ(1𝐷) =
𝑡𝐷, for all 𝐷 ∈ 𝒢𝑎.

Proof. Clearly the family {1𝐵 | 𝐵 ∈ 𝒢𝑎} satisfies (i) and (ii), and it
satisfies (iii) by Equation 1.5.

Given 𝑓 ∈ 𝐴𝑅(𝒢), we can write 𝑓 as a linear combination 𝑓 =∑︀𝑛
𝑖=1 𝑟𝑖1𝐶𝑖 , for certain 𝑟1, · · · , 𝑟𝑛 ∈ 𝑅∖{0} and pairwise disjoint compact-

open bisections 𝐶1, · · · , 𝐶𝑛 of 𝒢. Define Φ : 𝐴𝑅(𝒢) → 𝒢𝑎 by

Φ(𝑓) = Φ
(︃

𝑛∑︁
𝑖=1

𝑟𝑖1𝐶𝑖

)︃
=

𝑛∑︁
𝑖=1

𝑟𝑖𝑡𝐶𝑖
.

We need to prove that Φ is well-defined. Suppose that
𝑛∑︁

𝑖=1
𝑟𝑖1𝐶𝑖 =

𝑚∑︁
𝑗=1

𝑠𝑗1𝐷𝑗 ,

where 𝑠1 · · · , 𝑠𝑚 ∈ 𝑅∖{0} and 𝐶1, · · · , 𝐶𝑚 are pairwise disjoint compact-
open bisections in 𝒢𝑎. Let us first to show that, for every pair 𝑖, 𝑗, we
have

𝑟𝑖𝑡(𝑈𝑖∩𝑉𝑗) = 𝑠𝑗𝑡(𝑈𝑖∩𝑉𝑗). (1.8)
1 It is in fact a Boolean inverse monoid representation of 𝑆, for more details see

[19] and also [69].
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There are two possibilities:

∙ If 𝑈𝑖 ∩ 𝑉𝑗 = ∅, then 𝑡𝑈𝑖∩𝑉𝑖
= 0, and so Equation (1.8) is valid.

∙ If 𝑈𝑖 ∩ 𝑉𝑗 ̸= ∅, choose 𝑎 ∈ 𝑈𝑖 ∩ 𝑉𝑗 . Then 𝑟𝑖 = 𝑓(𝑎) = 𝑠𝑗 , and so
the Equation (1.8) is valid too.

Since
⋃︀𝑛

𝑖=1 𝐶𝑖 = supp(𝑓) =
⋃︀𝑚

𝑗=1 𝐷𝑗 , we can partition each 𝐶𝑖

as 𝐶𝑖 =
⋃︀𝑚

𝑗=1 𝐶𝑖 ∩ 𝐷𝑗 , and similarly we can partition each 𝐷𝑗 =⋃︀𝑛
𝑖=1 𝐶𝑖 ∩ 𝐷𝑗 . Then using the Equation (1.8) and the proprieties of

the representation of 𝒢𝑎 in 𝐵, we get∑︁
𝑖

𝑟𝑖𝑡𝑈𝑖 =
∑︁
𝑖,𝑗

𝑟𝑖𝑡𝑈𝑖∩𝑉𝑗 =
∑︁
𝑖,𝑗

𝑠𝑗𝑡𝑈𝑖∩𝑉𝑗 =
∑︁

𝑗

𝑠𝑗𝑡𝑈𝑖∩𝑉𝑗 ,

proving that Φ is well-defined.
In order to prove that Φ is a 𝑅-homomorphism, we apply an

argument similar to the one above: If 𝑓, 𝑔 ∈ 𝐴𝑅(𝒢) have representations
𝑓 =

∑︀𝑛
𝑖=1 𝑟𝑖1𝐶𝑖

and
∑︀𝑚

𝑗=1 𝑠𝑗1𝐷𝑗
, we can, if necessary, add terms of the

form 0 · 1𝐷𝑗∖supp(𝑓) to the representation of 𝑓 , and similarly for 𝑔, add
terms of the form 0 · 1𝐶𝑖∖supp(𝑔), and assume that

⋃︀𝑛
𝑖=1 𝐶𝑖 =

⋃︀𝑚
𝑗=1 𝐷𝑗 .

Therefore we may rewrite

𝑓 =
∑︁
𝑖,𝑗

𝑟𝑖1𝐶𝑖∩𝐷𝑗 and 𝑔 =
∑︁
𝑖,𝑗

𝑠𝑗1𝐶𝑖∩𝐷𝑗 ,

hence, for all 𝜆 ∈ 𝑅,

𝑓 + 𝜆𝑔 =
∑︁
𝑖,𝑗

(𝑟𝑖 + 𝜆𝑠𝑗)1𝐶𝑖∩𝐷𝑗 ,

and the definition of Φ readily implies Φ(𝑓 + 𝜆𝑔) = Φ(𝑓) + 𝜆Φ(𝑔). If
𝐶,𝐷 ∈ 𝒢𝑎, then

Φ(1𝐶1𝐷) (1.5)= Φ(1𝐶𝐷) = 𝑡𝐶𝐷 = 𝑡𝐶𝑡𝐷 = Φ(1𝐶)Φ(1𝐷),

and since {1𝐷 | 𝐷 ∈ 𝒢𝑎} generates𝐴𝑅(𝒢), then Φ is an𝑅-homomorphim
as required.

Uniqueness of such Φ is immediate as 𝐴𝑅(𝒢) is generated by the
family {1𝐷 | 𝐷 ∈ 𝒢𝑎}.
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Definition 1.3.8. Let 𝒢 be an ample Hausdorff groupoid. We de-
fine the diagonal of 𝐴𝑅(𝒢), denoted by 𝐷𝑅(𝒢), as the 𝑅-subalgebra of
𝐴𝑅(𝒢) generated by all characteristic functions of compact-open sub-
sets of the unit space 𝒢(0).

Notice that if 𝑈, 𝑉 are compact-open subsets of 𝒢(0), then 𝑈, 𝑉

are compact-open bisections of 𝒢 and 1𝑈 * 1𝑉 = 1𝑈𝑉 = 1𝑈∩𝑉 , and
therefore,

𝐷𝑅(𝒢) = Span𝑅{1𝑈 | 𝑈 is compact-open subset of 𝒢(0)}.

Moreover, if 𝑓 ∈ 𝐷𝑅(𝒢) then clearly supp(𝑓) ⊆ 𝒢(0). The converse is
also true. In fact, if 𝑓 =

∑︀𝑛
𝑖=1 𝑟𝑖1𝐷𝑖

∈ 𝐴𝑅(𝒢) with supp(𝑓) ⊆ 𝒢(0) then

𝑓 = 𝑓*1supp(𝑓) =
𝑛∑︁

𝑖=1
𝑟𝑖

(︀
1𝐷𝑖 * 1supp(𝑓)

)︀
=

𝑛∑︁
𝑖=1

𝑟11𝐷𝑖∩supp(𝑓) ∈ 𝐷𝑅(𝒢(0)).

Therefore,
𝐷𝑅(𝒢) = {𝑓 ∈ 𝐴𝑅(𝒢) | supp(𝑓) ⊆ 𝒢(0)}.

The convolution product on 𝐷𝑅(𝒢) coincides with the pointwise
product: given 𝑓, 𝑔 ∈ 𝐷𝑅(𝒢) and 𝑥 ∈ 𝒢(0), we get that s−1(𝑥) ∩ 𝒢(0) =
{𝑥} and hence

𝑓 * 𝑔(𝑥) =
∑︁

s(𝑐)=s(𝑥)

𝑓(𝑥𝑐−1)𝑔(𝑐) =
∑︁

𝑐∈s−1(𝑥)∩𝒢(0)

𝑓(𝑥𝑐−1)𝑔(𝑐)

= 𝑓(𝑥𝑥−1)𝑔(𝑥) = 𝑓(𝑥)𝑔(𝑥).

Since 𝑅 is a commutative ring, we can conclude that 𝐷𝑅(𝒢) is a com-
mutative subalgebra of 𝐴𝑅(𝒢).

Since 𝒢(0) is clopen, there is an embedding

𝜄 : 𝐴𝑅(𝒢(0)) → 𝐴𝑅(𝒢) (1.9)

such that 𝜄(𝑓)|𝒢∖𝒢(0) = 0. With this embedding, 𝐴𝑅(𝒢(0)) is isomorphic
to 𝐷𝑅(𝒢) as commutative subalgebra of 𝐴𝑅(𝒢).

Definition 1.3.9. For ample Hausdorff groupoids 𝒢1 and 𝒢2, we say
that an isomorphism 𝜑 : 𝐴𝑅(𝒢1) → 𝐴𝑅(𝒢2) is diagonal-preserving if
𝜑(𝐷𝑅(𝒢1)) = 𝐷𝑅(𝒢2).
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Example 1.3.10. Let 𝑅 be a unital commutative ring and let 𝑋 be a
Hausdorff, locally compact and zero-dimensional topological space seen
as a unit groupoid (i.e., 𝑋 = 𝑋(0)). Then the Steinberg algebra 𝐴𝑅(𝑋)
is the 𝑅-algebra of all locally constant, compactly supported R-valued
functions on 𝑋, with pointwise operations (since 𝐴𝑅(𝑋) = 𝐷𝑅(𝑋)).

Example 1.3.11. Recall that the Leavitt path algebra 𝐿𝑅(𝐸) of a di-
rected graph 𝐸 with coefficients in a unital commutative ring 𝑅 is the
𝑅-algebra generated by a set {𝑣 ∈ 𝐸0} of pairwise orthogonal idempo-
tents and a set of variables {𝑒, 𝑒* | 𝑒 ∈ 𝐸1} satisfying the relations:

(i) 𝑠(𝑒)𝑒 = 𝑒 = 𝑒𝑟(𝑒) for all 𝑒 ∈ 𝐸1;

(ii) 𝑟(𝑒)𝑒* = 𝑒* = 𝑒*𝑠(𝑒) for all 𝑒 ∈ 𝐸1;

(iii) 𝑒*𝑓 = 𝛿𝑒,𝑓𝑟(𝑒) for all 𝑒, 𝑓 ∈ 𝐸1;

(iv) 𝑣 =
∑︀

𝑒∈𝑠−1(𝑣) 𝑒𝑒
* whenever 𝑣 is not a sink and not an infinite

emitter.

Let 𝐸 = (𝐸0, 𝐸1, 𝑟, 𝑠) be a directed graph. The boundary path
groupoid 𝒢𝐸 , as in Example 1.2.16, comes with a canonical Z-grading
given by the continuous functor 𝜙 : (𝑥, 𝑘, 𝑦) → 𝑘. The Steinberg algebra
𝐴𝑅(𝒢𝐸) associated to the boundary path groupoid 𝒢𝐸 is isomorphic to
the Leavitt path algebra 𝐿𝑅(𝐸), and such graded isomorphism 𝜋𝐸 :
𝐿𝑅(𝐸) → 𝐴𝑅(𝒢𝐸) is given by

𝜋𝐸(𝜇𝜈* −
∑︁
𝑒∈𝐹

𝜇𝑒𝑒*𝜇*) = 1𝑍(𝜇,𝜈,𝐹 )

(see [17, Example 3.2]).

1.4 Inverse semigroup actions

Definition 1.4.1. An action of an inverse semigroup 𝑆 on a set 𝑋 is
a semigroup homomorphism

𝜃 : 𝑆 −→ ℐ(𝑋)
𝑠 ↦−→ 𝜃𝑠.
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If 𝑆 has a zero element 0, then one assumes that 𝜃0 is the empty bijec-
tion ∅ → ∅.

It follows immediately from Definition 1.4.1 that, for every 𝑠 ∈ 𝑆,

𝜃𝑠 : dom(𝜃𝑠) → im(𝜃𝑠)

is a bijection between subsets of 𝑋, and

𝜃𝑠* = 𝜃*
𝑠 = 𝜃−1

𝑠 .

By this reason, we will denote by 𝑋𝑠* and 𝑋𝑠, respectively, the domain
and range of 𝜃𝑠.

It also follows from Definition 1.4.1 that, for every 𝑠, 𝑡 ∈ 𝑆,

𝜃𝑠𝑡 = 𝜃𝑠 ∘ 𝜃𝑡,

that is,

𝑋(𝑠𝑡)* = dom(𝜃𝑠𝑡) = 𝜃−1
𝑡 (im(𝜃𝑡) ∩ dom(𝜃𝑠)) = 𝜃−1

𝑡 (𝑋𝑡 ∩𝑋𝑠*),

𝑋𝑠𝑡 = im(𝜃𝑠𝑡) = 𝜃𝑠(im(𝜃𝑡) ∩ dom(𝜃𝑠)) = 𝜃𝑠(𝑋𝑡 ∩𝑋𝑠*),

and
𝜃𝑠𝑡(𝑥) = 𝜃𝑠(𝜃𝑡(𝑥)),

for all 𝑥 ∈ dom(𝜃𝑠𝑡) = 𝑋(𝑠𝑡)* .
Since 𝜃 is an inverse semigroup homomorphism from 𝑆 to ℐ(𝑋),

we easily get the following proprieties:

∙ 𝑋(𝑠𝑡)* = 𝜃𝑡*(𝑋𝑡 ∩𝑋𝑠*), for all 𝑠, 𝑡 ∈ 𝑆,

∙ 𝑋𝑠*𝑠 = 𝑋𝑠* , for all 𝑠 ∈ 𝑆,

∙ 𝜃𝑒 = id𝑋𝑒 , for all 𝑒 ∈ 𝐸(𝑆),

∙ if 𝑠, 𝑡 ∈ 𝑆 and 𝑠 ≤ 𝑡, then 𝑋𝑠 ⊆ 𝑋𝑡 and 𝜃𝑠(𝑥) = 𝜃𝑡(𝑥), for all
𝑥 ∈ 𝑋𝑠* .

From the comments above, we obtain the following characteri-
zation of an inverse semigroup action:
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Proposition 1.4.2. Let 𝑆 be an inverse semigroup, let 𝑋 be a set,
and let 𝜃 : 𝑆 → ℐ(𝑋) be a map. For each 𝑠 ∈ 𝑆, let 𝑋𝑠* and 𝑋𝑠 be the
domain and the image of 𝜃𝑠, respectively. Then 𝜃 is an action of 𝑆 on
𝑋 if, and only if, for all 𝑠, 𝑡 ∈ 𝑆, the following holds:

(i) 𝜃𝑠* = 𝜃−1
𝑠 ,

(ii) 𝑋(𝑠𝑡)* = 𝜃𝑡*(𝑋𝑡 ∩𝑋𝑠*),

(iii) 𝜃𝑠(𝜃𝑡(𝑥)) = 𝜃𝑠𝑡(𝑥), for all 𝑥 ∈ 𝑋(𝑠𝑡)* .

𝑋𝑠*

𝑋𝑡

𝑋𝑡* 𝑋𝑠𝑋(𝑠𝑡)* 𝑋𝑠𝑡

𝜃𝑡 𝜃𝑠

𝜃𝑠 ∘ 𝜃𝑡

𝜃𝑡*(𝑋𝑡 ∩𝑋𝑠*) 𝜃𝑠(𝑋𝑡 ∩𝑋𝑠*)

Figure 1 – Inverse semigroup action.

When it is necessary to make explicit each 𝜃𝑠 with its domain
and image we will describe an action 𝜃 of 𝑆 on 𝑋 by

𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) .

By a dynamical system we shall mean a quadruple

(𝑋,𝑆, {𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) ,

where 𝑋 is a set, 𝑆 is an inverse semigroup, and ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) is
an action of 𝑆 on 𝑋.

Remark 1.4.3. If 𝜃 is an action of an inverse semigroup 𝑆 on a set 𝑋,
we do not necessarily have that 𝑋𝑠 = 𝑋, for all 𝑠 ∈ 𝑆 (as in the case
of a group action).
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Example 1.4.4. If 𝒢 is a group, then an action of 𝐺, regarded as an
inverse semigroup, is the same as an action of 𝐺 on a set 𝑋.

Example 1.4.5. Let 𝑋 be any set. We have a natural action 𝜃 of the
inverse semigroup of partial isometries ℐ(𝑋) on the set 𝑋, given by, for
every 𝑓 ∈ ℐ(𝑋),

𝜃𝑓 : 𝑋𝑓−1 −→ 𝑋𝑓

𝑥 ↦−→ 𝑓(𝑥),

where 𝑋𝑓−1 = dom(𝑓), 𝑋𝑓 = im(𝑓).

Example 1.4.6. Let 𝜃 : 𝑆 → ℐ(𝑋) be an action of an inverse semi-
group 𝑆 on set 𝑋 and let 𝑇 be an inverse subsemigroup of 𝑆. Then,
the restriction 𝜃|𝑇 : 𝑇 → ℐ(𝑋) is an action of 𝑇 on 𝑋.

Example 1.4.7. Let 𝑋 be a non-empty set, let 𝑓 be a bijection of 𝑋,
and let [[𝑓 ]] be the inverse semigroup defined in Example 1.1.6. Then
[[𝑓 ]] acts naturally on 𝑋, as in the Example 1.4.5.

Example 1.4.8. There is a natural action 𝜃 of any inverse semigroup
𝑆 on its idempotent semilattice 𝐸(𝑆) given as follows: for every 𝑠 ∈ 𝑆,
set

𝑋𝑠 = {𝑒 ∈ 𝐸(𝑆) | 𝑒 ≤ 𝑠𝑠*},

and 𝜃𝑠(𝑒) = 𝑠𝑒𝑠*, for all 𝑒 ∈ 𝑋𝑠* . This action is known as the Munn
representation of 𝑆 (see [58]).

Example 1.4.9. Given an action 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) of 𝑆 on 𝑋,
we say that a subset 𝑌 ⊆ 𝑋 is invariant under 𝜃 if

𝜃𝑠(𝑌 ∩𝑋𝑠*) ⊆ 𝑌, for all 𝑠 ∈ 𝑆.

Given 𝑌 ⊆ 𝑋 an invariant subset, let

𝑌𝑠 := 𝑌 ∩𝑋𝑠, for all 𝑠 ∈ 𝑆,

and let 𝛾𝑠 be the restriction of 𝜃𝑠 to 𝑌𝑠* . Then

𝛾 = ({𝑌𝑠}𝑠∈𝑆 , {𝛾𝑠}𝑠∈𝑆)
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is an action of 𝑆 on 𝑌 . This is simply the compression of 𝜃 to id𝑌 , the
identity of 𝑌 (see Example 1.1.12).

1.5 Inverse semigroup partial actions

In this section we will be concerned with partial actions of inverse
semigroups, defined in [10], which are a common generalization of both
partial actions of groups and actions of inverse semigroups. We restrict
our study to partial inverse semigroup actions on topological spaces,
algebras and rings, although the same theory can be developed with
appropriate modifications – if any at all – to other classes of algebraic
or topological structures. This already leads to an immediate generali-
zation of crossed products to so-called “partial skew inverse semigroup
algebras” (or rings).

Definition 1.5.1. A partial action of the inverse semigroup 𝑆 on the
set 𝑋 is a partial homomorphism

𝜃 : 𝑆 −→ 𝐼(𝑋)
𝑠 ↦−→ 𝜃𝑠

.

If 𝑆 has a zero element 0, we assume that 𝜃0 is the empty bijection
∅ → ∅.

It follows immediately from Definition 1.5.1 and Proposition 1.1.10
that, for each 𝑠 ∈ 𝑆, 𝜃𝑠 is a bijection and 𝜃𝑠* = 𝜃−1

𝑠 . In the same way as
for inverse semigroup actions, we denote by 𝑋𝑠* and 𝑋𝑠, respectively,
the domain and range of 𝜃𝑠.

It also follows from Definition 1.5.1 and Proposition 1.1.8 that,
for each pair 𝑠, 𝑡 ∈ 𝑆, 𝜃𝑠 ∘ 𝜃𝑡 is a restriction of 𝜃𝑠𝑡, that is,

dom(𝜃𝑠 ∘ 𝜃𝑡) ⊆ dom(𝜃𝑠𝑡),

and
𝜃𝑠 ∘ 𝜃𝑡(𝑥) = 𝜃𝑠𝑡(𝑥), for all 𝑥 ∈ dom(𝜃𝑠 ∘ 𝜃𝑡).

Hence, for every 𝑠, 𝑡 ∈ 𝑆,

𝜃𝑡*(𝑋𝑡 ∩𝑋𝑠*) = 𝜃−1
𝑡 (𝑋𝑡 ∩𝑋𝑠*) = dom(𝜃𝑠 ∘ 𝜃𝑡) ⊆ dom(𝜃𝑠𝑡) = 𝑋(𝑠𝑡)* ,
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Furthermore,

𝜃𝑡*(𝑋𝑡 ∩𝑋𝑠*) = dom(𝜃𝑠 ∘ 𝜃𝑡) ⊆ dom(𝜃𝑡) = 𝑋𝑡* .

Therefore,
𝜃𝑡*(𝑋𝑡 ∩𝑋𝑠*) ⊆ 𝑋𝑡* ∩𝑋(𝑠𝑡)* . (1.10)

In fact, (1.10) is an equality of sets. In order to prove it, apply 𝜃𝑡 to
both sides of (1.10)

𝑋𝑡 ∩𝑋𝑠* ⊆ 𝜃𝑡(𝑋𝑡* ∩𝑋(𝑠𝑡)*). (1.11)

Notice that the suitable change of variables, 𝑡 ↔ 𝑡* and 𝑠 ↔ 𝑠𝑡, in
(1.11) yields

𝑋𝑡* ∩𝑋(𝑠𝑡)* ⊆ 𝜃𝑡*(𝑋𝑡 ∩𝑋𝑠*).

which happens to be precisely the converse of the inclusion in (1.10).
Therefore

𝜃𝑡*(𝑋𝑡 ∩𝑋𝑠*) = 𝑋𝑡* ∩𝑋(𝑠𝑡)* ,

and 𝜃𝑠(𝜃𝑡(𝑥)) = 𝜃𝑠𝑡(𝑥), for all 𝑥 ∈ 𝑋𝑡* ∩𝑋(𝑡𝑠)* .

𝑋𝑠*

𝑋𝑡

𝑋(𝑠𝑡)*

𝑋𝑡*
𝑋𝑠

𝑋𝑠𝑡

𝜃𝑡 𝜃𝑠

𝜃𝑠 ∘ 𝜃𝑡

𝜃𝑡*(𝑋𝑡 ∩𝑋𝑠*) 𝜃𝑠(𝑋𝑡 ∩𝑋𝑠*)

Figure 2 – Inverse semigroup partial actions

Proposition 1.5.2. [10, Proposition 3.4] Let 𝑆 be an inverse semi-
group, let 𝑋 be a set and let 𝜃 : 𝑆 → ℐ(𝑋) be a map. For each 𝑠 ∈ 𝑆,
let 𝑋𝑠* and 𝑋𝑠 be the domain and image of 𝜃𝑠, respectively. Then 𝜃 is
a partial action of 𝑆 on 𝑋 if, and only if, for all 𝑠, 𝑡 ∈ 𝑆, the following
holds:
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(a) 𝜃𝑠* = 𝜃−1
𝑠 ,

(b) 𝜃𝑡*(𝑋𝑡 ∩𝑋𝑠*) = 𝑋𝑡* ∩𝑋(𝑠𝑡)* ,

(c) 𝜃𝑠(𝜃𝑡(𝑥)) = 𝜃𝑠𝑡(𝑥), for all 𝑥 ∈ 𝑋𝑡* ∩𝑋(𝑠𝑡)* .

Proof. It follows from previous observations that if 𝜃 : 𝑆 → ℐ(𝑋) is a
partial action of 𝑆 on 𝑋, then the three axioms (𝑎) - (𝑐) are satisfied.

Now, we assume that 𝜃 : 𝑆 → ℐ(𝑋) is a map and that the axioms
(𝑎) - (𝑐) hold. Let us prove that 𝜃 satisfies the three axioms (𝑖′) - (𝑖𝑖𝑖′)
of the Proposition 1.1.10.

Proposition 1.1.10 (𝑖𝑖𝑖′) immediately follows from (𝑎).
To show that the Proposition 1.1.10 (𝑖′) is satisfied, take 𝑠, 𝑡 in

𝑆. Notice that, by (𝑎) and (𝑏), the domain of 𝜃𝑠 ∘ 𝜃𝑡 coincides with

𝜃𝑡*(𝑋𝑡 ∩𝑋𝑠*) = 𝑋𝑡* ∩𝑋(𝑠𝑡)* .

Evidently this is contained in 𝑋(𝑠𝑡)* , which is the domain of 𝜃𝑠𝑡. By
(𝑐), we see that 𝜃𝑠 ∘ 𝜃𝑡 coincides with 𝜃𝑠𝑡 on the domain of the former
set, which means that

𝜃𝑠 ∘ 𝜃𝑡 ≤ 𝜃𝑠𝑡,

as desired.
Let 𝑒 ∈ 𝑆, and take any 𝑥 ∈ 𝑋𝑒 = 𝑋𝑒* ∩𝑋(𝑒𝑒)* . By (𝑐) and (𝑎),

we have that

𝑥 = 𝜃−1
𝑒 (𝜃𝑒(𝑥)) = 𝜃𝑒(𝜃𝑒(𝑥)) = 𝜃𝑒2(𝑥) = 𝜃𝑒(𝑥),

which shows that 𝜃𝑒 = id𝑋𝑒 .
To finish, we take 𝑠, 𝑡 ∈ 𝑆 with 𝑠 ≤ 𝑡, so that 𝑠 = 𝑡𝑠*𝑠. As seen

above 𝜃𝑠*𝑠 is the identity on 𝑋𝑠*𝑠, so

𝑋𝑠*𝑠 ∩𝑋𝑡* = 𝜃𝑠*𝑠(𝑋𝑠*𝑠 ∩𝑋𝑡*) (𝑏)= 𝑋𝑠*𝑠 ∩𝑋𝑠*𝑠𝑡* = 𝑋𝑠*𝑠 ∩𝑋𝑠*

(𝑏)= 𝜃𝑠*(𝑋𝑠 ∩𝑋𝑠) = 𝜃𝑠*(𝑋𝑠) = 𝑋𝑠* .

This implies that 𝑋𝑠* ⊆ 𝑋𝑡* , and, for every 𝑥 ∈ 𝑋𝑠* , we have
𝑥 ∈ 𝑋𝑠*𝑠 ∩𝑋𝑠*𝑠𝑡* , hence by (𝑐).

𝜃𝑠(𝑥) = 𝜃𝑡𝑠*𝑠(𝑥) = 𝜃𝑡 ∘ 𝜃𝑠*𝑠(𝑥) = 𝜃𝑡(𝑥),
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proving that 𝜃𝑠 ≤ 𝜃𝑡, that is, Proposition 1.1.10 (𝑖𝑖′).

Notice that in the case of partial actions we only have the inclu-
sion 𝑋𝑠* ⊆ 𝑋𝑠*𝑠, and no longer the equality as in the case of actions.
This happens because 𝜃𝑠* ∘ 𝜃𝑠 is only a restriction of 𝜃𝑠*𝑠, and so the
domain of 𝜃𝑠* ∘ 𝜃𝑠 is only contained in the domain of 𝜃𝑠*𝑠.

Remark 1.5.3. The definition of a partial action of an inverse semi-
group 𝑆 on a set 𝑋 can be reformulated in several ways. For example,
another way can be found in [10], which requires minimal effort to check
if a map is a partial action. More precisely, by [10, Proposition 3.4] one
can replace equality in Proposition 1.5.2 (𝑏) by the inclusion

𝜃𝑡*(𝑋𝑡 ∩𝑋𝑠*) ⊆ 𝑋𝑡* ∩𝑋(𝑠𝑡)* ,

and add the following condition

𝑋𝑠 ⊆ 𝑋𝑡, whenever 𝑠 ≤ 𝑡.

Again, if we need to make explicit each bijection 𝜃𝑠 with its
domain we will denote a partial action by

𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) .

By a partial dynamical system we shall mean a quadruple

(𝑋,𝑆, {𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) ,

where 𝑋 is a set, 𝑆 is a group, and ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) is a partial
action of 𝑆 on 𝑋.

Example 1.5.4. In particular, any inverse semigroup action is an in-
verse semigroup partial action.

Example 1.5.5. Any partial group action (see [24, Definition 1.1. (i)]),
where the group is regarded as an inverse semigroup, is the same as an
inverse semigroup partial action.



1.5. Inverse semigroup partial actions 59

Example 1.5.6. Suppose we are given an action 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆)
of an inverse semigroup 𝑆 on a set 𝑋. Suppose further that 𝑌 is a given
subset of 𝑋 which is not necessarily 𝜃-invariant (this means that there
may be a 𝑠 ∈ 𝑆 such that 𝜃𝑠(𝑋𝑠* ∩ 𝑌 ) ̸⊆ 𝑌 ). By setting

𝑌𝑠 = 𝜃𝑠(𝑋𝑠* ∩ 𝑌 ) ∩ 𝑌,

we may let
𝛾𝑠 : 𝑌𝑠* −→ 𝑌𝑠

be the restriction of 𝜃𝑠 to 𝑌𝑠* , for each 𝑠 in 𝑆. Since

𝜃𝑠(𝑌𝑠*) = 𝜃𝑠(𝜃𝑠*(𝑋𝑠 ∩ 𝑌 ) ∩ 𝑌 ) = 𝜃𝑠(𝜃𝑠*(𝑋𝑠 ∩ 𝑌 ) ∩ (𝑋𝑠 ∩ 𝑌 ))

= (𝑋𝑠 ∩ 𝑌 ) ∩ 𝜃𝑠*(𝑋𝑠 ∩ 𝑌 ) = 𝑌 ∩ 𝜃𝑠*(𝑋𝑠 ∩ 𝑌 ) = 𝑌𝑠,

𝛾𝑠 is a bijection, for all 𝑠 ∈ 𝑆. We get that 𝛾 = ({𝑌𝑠}𝑠∈𝑆 , {𝛾𝑠}𝑠∈𝑆) is a
partial action of 𝑆 on 𝑌 .

Notice that id𝑌 is an idempotent element of ℐ(𝑋) and that 𝛾 :
𝑆 → ℐ(𝑌 ) is exactly the partial homomorphism given by

𝛾𝑠 = id𝑌 ∘𝜃𝑠 ∘ id𝑌 ,

for all 𝑠 ∈ 𝑆, as in the Example 1.1.12.

An inverse semigroup 𝑆 may act partially on a topological space,
an algebra, a C*-algebra, among other objects. For each situation we
add some conditions in the definition of a partial action to be in accor-
dance with the characteristics of each of these objects.

1.5.1 Topological partial actions

Definition 1.5.7. A (non-degenerate) topological partial action of an
inverse semigroup 𝑆 is a partial action 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑋𝑠) of 𝑆
on a topological space 𝑋 which satisfies:

(i) 𝑋𝑠 is an open subset of 𝑋 and 𝜃𝑠 : 𝑋𝑠* → 𝑋𝑠 is a homeo-
morphism, for all 𝑠 ∈ 𝑆,
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(ii) 𝑋 =
⋃︀

𝑒∈𝐸(𝑆) 𝑋𝑒.

Remark 1.5.8. Condition (ii) is usually called “non-degeneracy”, and
we will assume this condition in all partial actions that appear in
our work. If just the condition (i) is satisfies, we can change 𝑋 to⋃︀

𝑒∈𝐸(𝑆) 𝑋𝑒.

Notice that if 𝑆 has unit 1, then 𝑒 ≤ 1 for every idempotent 𝑒
of 𝑆. Thus 𝑋𝑒 ⊆ 𝑋1, 𝑋 =

⋃︀
𝑒∈𝐸(𝑆) 𝑋𝑒 = 𝑋1 and 𝜃1 = id𝑋 , what is

exactly the required condition in partial group actions of [24, Definition
1.1. (i)]

Example 1.5.9. Let 𝒢 be an étale groupoid and 𝒢𝑜𝑝 the semigroup of
all open bisections of 𝒢. There is a canonical action of 𝒢𝑜𝑝 on the locally
compact Hausdorff space 𝒢(0) as follows: Given an open bisection 𝐵,
we have that s(𝐵) and r(𝐵) are open subsets of 𝒢(0), and moreover the
maps

s𝐵 : 𝐵 → s(𝐵) and r𝐵 : 𝐵 → r(𝐵),

obtained by restricting s and r, respectively, are homeomorphisms. Gi-
ven 𝑢 ∈ s(𝐵) we define

𝜃𝐵(𝑢) = r𝐵(s−1
𝐵 (𝑢)), (1.12)

that is, 𝜃𝐵(s(𝑏)) = r(𝑏), for all 𝑏 ∈ 𝒢 with s(𝑏) ∈ s(𝐵).

s−1
𝐵 (𝑏)

𝐵

r(s−1
𝐵 (𝑏))

r(𝐵)

𝑏

s(𝐵)

𝜃𝐵

Figure 3 – Canonical action of the bisections
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Clearly 𝜃𝐵 is a homeomorphism from s(𝐵) to r(𝐵). The collec-
tion 𝜃 =

(︀
{r(𝐵)}𝐵∈𝒢𝑜𝑝 , {𝜃𝐵}𝐵∈𝒢𝑜𝑝

)︀
is an action of 𝒢𝑜𝑝 on the unit

space 𝒢(0).

As 𝒢(0) = r(𝒢(0)), 𝜃 is non-degenerate. Then it remains only to
prove that, for every 𝐵,𝐶 ∈ 𝒢𝑜𝑝,

𝜃𝐶 ∘ 𝜃𝐵 = 𝜃𝐶𝐵 ,

that is, 𝜃𝐵*(r(𝐵) ∩ s(𝐶)) = s(𝐶𝐵) and 𝜃𝐶 ∘ 𝜃𝐵(𝑢) = 𝜃𝐶𝐵(𝑢), for all
𝑢 ∈ s(𝐶𝐵). We have that

𝜃𝐵*(r(𝐵) ∩ s(𝐶)) = s
(︀
r−1
𝐵 (r(𝐵) ∩ s(𝐶))

)︀
= s ({𝑏 ∈ 𝐵 | r(𝑏) ∈ s(𝐶)})

= {s(𝑏) ∈ 𝐵 | r(𝑏) ∈ s(𝐶)}

= {s(𝑐𝑏) ∈ 𝐵 | 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 and r(𝑏) = s(𝑐)}

= s(𝐶𝐵).

Suppose that 𝑢 ∈ s(𝐶𝐵). Take 𝑐 ∈ 𝐶 and 𝑏 ∈ 𝐵 such that
𝑢 = s(𝑐𝑏). Thus

𝜃𝐵𝐶(𝑢) = 𝜃𝐵𝐶(s(𝑐𝑏)) = r(𝑐𝑏) = r(𝑐) = 𝜃𝐶(s(𝑐)) = 𝜃𝑐(r(𝑏))

= 𝜃𝐶(𝜃𝐵(s(𝑏)) = 𝜃𝐶(𝜃𝐵(s(𝑐𝑏)) = 𝜃𝐵(𝜃𝐶(𝑢)),

as required.
We can replace 𝒢𝑜𝑝 by the inverse semigroup 𝒢𝑎 of the compact-

open bisections and obtain, likewise, an action of 𝒢𝑎 on 𝒢(0).

Example 1.5.10. Let 𝒢 be an étale groupoid. There is an action of the
inverse semigroup 𝒢𝑜𝑝 on the locally compact Hausdorff space Iso(𝒢(0))
as follows: Given 𝐵 ∈ 𝒢𝑜𝑝, we define

𝑋𝐵 = {𝑥 ∈ Iso(𝒢(0)) | s(𝑥) ∈ r(𝐵)} = s−1(r(𝐵)) ∩ Iso(𝒢)

and

𝑋𝐵* = {𝑥 ∈ Iso(𝒢(0)) | s(𝑥) ∈ s(𝐵)} = s−1(s(𝐵)) ∩ Iso(𝒢),
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which are open subsets of Iso(𝒢(0)). Notice that, for each 𝑥 ∈ 𝑋𝐵* ,
𝐵𝑥𝐵−1 is a subset of 𝑋𝐵 with only one element. In fact, 𝐵𝑥𝐵−1 is
only defined when s(𝑥) ∈ r(𝐵−1) = s(𝐵), and in this case, 𝑦 ∈ 𝐵𝑥𝐵−1

if there are 𝑏, 𝑐 ∈ 𝐵 such that s(𝑏) = r(𝑥) = s(𝑥) = r(𝑐−1) = s(𝑐) and
𝑦 = 𝑏𝑥𝑐−1. Since 𝐵 is an open bisection, 𝑏 = 𝑐 and 𝑏 is unique element
of 𝐵 with this proprieties, and so, 𝐵𝑥𝐵−1 = {𝑏𝑥𝑏−1}.

For each 𝐵 ∈ 𝒢𝑜𝑝, we define 𝜃𝐵 : 𝑋𝐵* → 𝑋𝐵 by

𝜃𝐵(𝑥) = 𝐵𝑥𝐵−1.

Then, 𝜃 = ({𝑋𝐵}𝐵∈𝒢𝑜𝑝 , {𝜃𝐵}𝐵∈𝒢𝑜𝑝) is an action of 𝒢𝑜𝑝 on Iso(𝒢(0)).
Moreover, the open subsets int(Iso(𝒢)) and 𝒢(0) are invariant

under 𝜃. Indeed, for the first open subset, take 𝐵 ∈ 𝒢𝑜𝑝 and 𝑥 ∈
int(Iso(𝒢)) ∩ 𝑋𝐵* . Then, there is an open subset 𝑈 of Iso(𝒢) ∩ 𝑋𝐵*

containing 𝑥. As 𝐵𝑈𝐵−1 is an open subset of Iso(𝒢) ∩𝑋𝐵 , we get that

𝜃𝐵(𝑥) ∈ 𝐵𝑈𝐵−1 ⊆ int(Iso(𝒢)) ∩𝑋𝐵 ,

proving that int(Iso(𝒢)) is 𝜃-invariant.
In the case of the unit space 𝒢(0), notice that, for each 𝐵 ∈ 𝒢𝑜𝑝,

𝑋𝐵 = s(𝐵), 𝑋𝐵* = r(𝐵) and 𝜃𝐵 is exactly the homeomorphism of the
previous example defined in (1.12).

Example 1.5.11. Let 𝑋 be a topological space and let 𝜙 : 𝑋 → 𝑋

be a homeomorphism. Consider [[𝜓]] the subset of ℐ(𝑋) consisting of
all partial homeomorphisms 𝜙 of 𝑋 for which there are a finite parti-
tion 𝑋1, · · · , 𝑋𝑘 of dom(𝜙) and a set of integers {𝑛1, · · · , 𝑛𝑘} such that
𝜙|𝑋𝑖

= 𝜓𝑛𝑖 |𝑋𝑖
, for all 𝑖 ∈ {1, · · · , 𝑘}. Then [[𝜓]] is an inverse subsemi-

group of ℐ(𝑋), similarly as in Example 1.1.6. In particular [[𝜓]] acts
naturally on 𝑋 as in Example 1.4.5.

Example 1.5.12. Using the previous example we can get a partial
topological inverse semigroup action of the inverse semigroup [[𝜓]] on
an open subset 𝑌 of 𝑋 by restriction, as in Example 1.5.6.
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Example 1.5.13. To the directed graph 𝐸 = (𝐸0, 𝐸1, 𝑟, 𝑠) (see Exam-
ple 1.2.16) we can associate an inverse semigroup. Let

𝒮𝐸 = {(𝜇, 𝜈) | 𝜇, 𝜈 ∈ 𝐸⋆ and 𝑟(𝜇) = 𝑟(𝜈)} ∪ {0}.

The product is defined by

(𝜇, 𝜈)(𝜁, 𝜂) =

⎧⎪⎨⎪⎩
(𝜇, 𝜂𝛾), if 𝜈 = 𝜁𝛾 for some 𝛾 ∈ 𝐸⋆

(𝜇𝛾, 𝜂), if 𝜁 = 𝜈𝛾 for some 𝛾 ∈ 𝐸⋆

0, otherwise

and involution on 𝒮𝐸 is defined by (𝜇, 𝜈)* = (𝜈, 𝜇) and 0* = 0. By
[61, Proposition 1], the set 𝒮𝐸 with the operations above is an inverse
semigroup.

Notice that the product of two pairs (𝜇, 𝜈), (𝜁, 𝜂) is non-zero if,
and only if, 𝜈 is an initial segment of 𝜁 or conversely. In this case, we
say that 𝜈, 𝜁 are comparable. Moreover, if 𝜇𝛼, 𝜁𝛽 are comparable, then
so are 𝜇, 𝜁. It is easy see that if (𝜇, 𝜈) ≤ (𝜁, 𝜂) then there is 𝛾 ∈ 𝐸⋆ such
that (𝜇, 𝜈) = (𝜁𝛾, 𝜂𝛾) or (𝜇, 𝜈) = 0. The set 𝐸(𝒮𝐸) of all idempotents
of 𝒮𝐸 is just the set of pairs (𝜇, 𝜇), where 𝜇 ∈ 𝐸⋆.

Now, we will associate to a graph 𝐸 an action of the inverse
semigroup 𝒮𝐸 on the boundary path space 𝜕𝐸. As in Example 1.2.16,

𝜕𝐸 = 𝐸∞ ∪ {𝜇 ∈ 𝐸⋆ | 𝑟(𝜇) is singular},

for a finite path 𝜇 ∈ 𝐸⋆,

𝑍(𝜇) = {𝜇𝑥 | 𝑥 ∈ 𝜕𝐸 and 𝑟(𝜇) = 𝑠(𝑥)} ⊆ 𝜕𝐸,

and for a finite set 𝐹 ⊆ 𝑠−1(𝑟(𝜇)),

𝑍(𝜇, 𝐹 ) = 𝑍(𝜇) ∖
⋃︁

𝑒∈𝐹

𝑍(𝜇𝑒).

Recall that the collection of all sets of the form 𝑍(𝜇, 𝐹 ) is basis for
a topology on 𝜕𝐸, and this topology makes 𝜕𝐸 a locally compact,
Hausdorff and zero-dimensional space.
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Given (𝜇, 𝜈) ∈ 𝒮𝐸 ∖ {0} we let

𝜃(𝜇,𝜈) : 𝑍(𝜈) → 𝑍(𝜇)
𝜈𝑥 ↦→ 𝜇𝑥

, (1.13)

and 𝜃0 : ∅ → ∅ is empty map. Let us prove that the collection

𝜃 =
(︁

{𝑍(𝜇)}(𝜇,𝜈)∈𝒮𝐸
,
{︀
𝜃(𝜇,𝜈)

}︀
(𝜇,𝜈)∈𝑆

)︁
is an action of the inverse semigroup 𝒮𝐸 on the boundary path space
𝜕𝐸.

It is immediate that each map 𝜃(𝜇,𝜈) : 𝑍(𝜈) → 𝑍(𝜇) is a bijection
between the compact-open subsets 𝑍(𝜇) and 𝑍(𝜈) of 𝜕𝐸. By symmetry,
it suffices to show that 𝜃(𝜇,𝜈) is an open map to conclude that this map
is a homeomorphism. Since the image of a basic open 𝑍(𝜇, 𝐹 ) by 𝜃(𝜇,𝜈)

is also a basic open 𝑍(𝜈, 𝐹 ), it follows that map 𝜃(𝜇,𝜈) is open.
The non-degeneracy of 𝜃 follows from the fact that

⋃︀
𝑣∈𝐸0 𝑍(𝑣) =

𝜕𝐸. Let us verify that 𝜃 satisfies the conditions of Proposition 1.4.2:

(i) It is easy to see that 𝜃(𝜇,𝜈)* = 𝜃(𝜈,𝜇) = 𝜃−1
(𝜇,𝜈).

(ii) We need prove that, for every 𝑠, 𝑡 ∈ 𝒮𝐸 , 𝜃−1
𝑡 (𝑋𝑡 ∩𝑋𝑠*) = 𝑋(𝑠𝑡)* .

There are six cases to consider

If 𝑠 = 𝑡 = 0: It is obvious.

If 𝑠 = 0 and 𝑡 = (𝜁, 𝜂): We have that 𝑋𝑠* = ∅, 𝑋𝑡 = 𝑍(𝜁) and
𝑋(𝑠𝑡)* = ∅. Thus,

𝜃𝑡*(𝑋𝑡 ∩𝑋𝑠*) = ∅ = 𝑋(𝑠𝑡)* .

If 𝑠 = (𝜇, 𝜈) and 𝑡 = 0: It is similar to the previous one.

If 𝑠 = (𝜇, 𝜈), 𝑡 = (𝜁, 𝜂) and 𝑠𝑡 = 0: Notice that in this case 𝜈
and 𝜁 are not comparable and 𝑍(𝜁) ∩ 𝑍(𝜈) = ∅. Since 𝑋𝑡 =
𝑍(𝜁), 𝑋𝑠* = 𝑍(𝜈) and 𝑋(𝑠𝑡)* = ∅, it follows that

𝜃−1
𝑡 (𝑋𝑡 ∩𝑋𝑠*) = 𝜃(𝜂,𝜁)(∅) = ∅ = 𝑋(𝑠𝑡)* .
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If 𝑠 = (𝜇, 𝜁𝛾) and 𝑡 = (𝜁, 𝜂): We have that 𝑋𝑡 = 𝑍(𝜁), 𝑋𝑠* =
𝑍(𝜁𝛾) and 𝑋(𝑠𝑡)* = 𝑍(𝜂𝛾). Thus

𝜃−1
𝑡 (𝑋𝑡 ∩𝑋𝑠*) = 𝜃(𝜂,𝜁)(𝑍(𝜁) ∩ 𝑍(𝜁𝛾))

= 𝜃(𝜂,𝜁)(𝑍(𝜁𝛾)) = 𝑍(𝜂𝛾) = 𝑋(𝑠𝑡)* .

If 𝑠 = (𝜇, 𝜈) and 𝑡 = (𝜈𝛾, 𝜂): It is similar to the previous one.

(iii) For every 𝑠, 𝑡 ∈ 𝒮𝐸 we need to prove that 𝜃𝑠 ∘ 𝜃𝑡(𝑥) = 𝜃𝑠𝑡(𝑥),
whenever that 𝑥 ∈ 𝑋(𝑠𝑡)* .

Clearly, in the first four cases of the previous item, we have 𝜃𝑠 ∘
𝜃𝑡 = 𝜃0 = 𝜃𝑠𝑡. We still have two cases to check:

If 𝑠 = (𝜇, 𝜁𝛾) and 𝑡 = (𝜁, 𝜂): For any 𝑥 = 𝜂𝛾𝑦 ∈ 𝑍(𝜂𝛾) = 𝑋(𝑠𝑡)* ,
we get

𝜃𝑠(𝜃𝑡(𝑥)) = 𝜃(𝜇,𝜁𝛾)(𝜃(𝜁,𝜂)(𝜂𝛾𝑦)) = 𝜃(𝜇,𝜁𝛾)(𝜁𝛾𝑦)

= 𝜇𝑦 = 𝜃(𝜇,𝜂𝛾)(𝜂𝛾𝑦) = 𝜃𝑠𝑡(𝑥).

If 𝑠 = (𝜇, 𝜈) and 𝑡 = (𝜈𝛾, 𝜂): It is similar to the previous one.

1.5.2 From partial actions of groups to partial actions of inverse

semigroups and vice-versa

We will now describe how to construct partial actions of groups
from actions of inverse semigroups and vice-versa. The class of inverse
semigroups which allows us to do this more precisely is the of 𝐸-unitary
inverse semigroups.

Recall that an inverse semigroup 𝑆 is E-unitary if, whenever
𝑠 ∈ 𝑆, 𝑒 ∈ 𝐸(𝑆) and 𝑒 ≤ 𝑠, then 𝑠 ∈ 𝐸(𝑆).

There are other similar ways to define 𝐸-unitary inverse semi-
groups. For example, 𝑆 is 𝐸-unitary if, whenever 𝑠 ∈ 𝑆, 𝑒 ∈ 𝐸(𝑆) and
𝑒𝑠 ∈ 𝐸(𝑆) then 𝑠 ∈ 𝐸(𝑆), or equivalently, if 𝑠 ∈ 𝑆, 𝑒 ∈ 𝐸(𝑆) and
𝑠𝑒 ∈ 𝐸(𝑆) imply 𝑠 ∈ 𝐸(𝑆) (see [48, Lemma 2.4.3]).

Example 1.5.14. Every group is 𝐸-unitary.
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Example 1.5.15. Every ∧-semilattice is 𝐸-unitary.

Example 1.5.16. An inverse semigroup with 0 is 𝐸-unitary if, and
only if, 𝑆 = 𝐸(𝑆), which from our point of view is a rather degenerate
inverse semigroup.

In the case when 𝑆 is an inverse semigroup with 0, we say that
𝑆 is 𝐸*-unitary (or 0-𝐸-unitary ) if, whenever 𝑒 ∈ 𝐸(𝑆) ∖ {0}, 𝑠 ∈ 𝑆,
and 𝑒 ≤ 𝑠, then 𝑠 ∈ 𝐸(𝑆).

Let 𝑆 be an inverse semigroup. For every 𝑠, 𝑡 ∈ 𝑆, the compati-
bility relation is defined by

𝑠 ≈ 𝑡 ⇐⇒ 𝑠𝑡*, 𝑠*𝑡 ∈ 𝐸(𝑆). (1.14)

It is clear that this relation is reflexive and symmetric, but need
not be transitive. A subset 𝑇 of an inverse semigroup is said to be
compatible if any pair of elements in 𝑇 are compatible.

Proposition 1.5.17. [48, Theorem 2.4.4] Let 𝑆 be an inverse semi-
group. Then the compatibility relation is transitive if, and only if, 𝑆 is
𝐸-unitary.

For each inverse semigroup 𝑆 we can naturally associate a group
G(𝑆) in the following manner: we define a relation in 𝑆 by

𝑠 ∼ 𝑡 ⇐⇒ ∃ 𝑢 ∈ 𝑆 such that 𝑢 ≤ 𝑠, 𝑡. (1.15)

Alternatively, 𝑠 ∼ 𝑡 if, and only if, there is 𝑒 ∈ 𝐸(𝑆) such that 𝑒𝑠 = 𝑒𝑡.

It is easy to see that ∼ is an equivalence relation. Moreover, from
(1.15) and the fact that the order of 𝑆 is preserved under products and
inverses, we have that ∼ is in fact a congruence. We endow 𝑆/∼ with
the quotient semigroup structure. Given 𝑠 ∈ 𝑆, we denote by [𝑠] the
equivalence class of 𝑠 with respect to the relation (1.15).

Proposition 1.5.18. [60, Proposition 2.1.2] Given an inverse semi-
group 𝑆 the quotient

G(𝑆) := 𝑆/∼
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is a group. Furthermore, G(𝑆) is the maximal group homomorphic
image of 𝑆 in the sense that if there is a semigroup homomorphism 𝜓

form 𝑆 to a group 𝐺 then 𝜓 factors through G(𝑆).

Example 1.5.19. If 𝐺 is a group then G(𝐺) is isomorphic to 𝐺.

Example 1.5.20. If 𝐿 is a ∧ - semilattice then G(𝐿) = {1} is the
trivial group.

Example 1.5.21. If 𝑆 is an inverse semigroup with a zero, then G(𝑆) =
{1} is the trivial group.

Given an inverse semigroup 𝑆, we have that any two idempotent
elements are related by 1.15. But, in general, non-idempotent elements
may be related to idemponents, as in the Example 1.5.21. It is imme-
diate that if the set of idempotents of 𝑆 forms an equivalence class
for the relation (1.15) then 𝑆 is a 𝐸-unitary. More precisely, consider
𝜎 : 𝑆 → G(𝑆) the quotient map and 1 the unit of G(𝑆). Then 𝑆 is
𝐸-unitary if, and only if, 𝜎−1(1) = 𝐸(𝑆).

We can also reword the 𝐸-unitary property in terms of compa-
tibility of elements.

Lemma 1.5.22. [48, Theorem 2.4.6] Let 𝑆 be an inverse semigroup.
Then 𝑆 is 𝐸-unitary if, and only if, 𝑠, 𝑡 ∈ 𝑆 and 𝑠 ∼ 𝑡 implies that
𝑠 ≈ 𝑡.

We will now be interested in relating partial actions of inverse se-
migroups and partial actions of their maximal group images. A version
this proposition has been proven in [72, Lemma 3.8] when considering
global actions of inverse semigroups. The next theorem is a specific
instance of [46, Lemma 2.2], where the author in fact considers a stric-
tly weaker notion of partial action – namely, condition 1.1.8(iii) is not
required. Note that this condition is trivial when considering partial
actions of groups, and thus we may apply [46, Lemma 2.2] without
problems.
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Proposition 1.5.23 ([46, Remark 2.3]). Let 𝜃 =
(︀
{𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆

)︀
be a topological partial action of an 𝐸-unitary inverse semigroup 𝑆 on
a space 𝑋. Then there is a unique partial action

̃︀𝜃 =
(︂{︁ ̃︀𝑋𝛾

}︁
𝛾∈G(𝑆)

,
{︁̃︀𝜃𝛾

}︁
𝛾∈G(𝑆)

)︂
of G(𝑆) on 𝑋 such that, for any 𝑠 ∈ 𝑆,

(i) ̃︀𝑋𝛾 =
⋃︀

[𝑠]=𝛾 𝑋𝑠, for all 𝛾 ∈ G(𝑆),

(ii) ̃︀𝜃[𝑠](𝑥) = 𝜃𝑠(𝑥), for all 𝑠 ∈ 𝑆 and 𝑥 ∈ 𝑋𝑠* .

(in other words, ̃︀𝜃𝛾 is the join of {𝜃𝑠 : [𝑠] = 𝛾} in ℐ(𝑋), which is com-
monly denoted by

⋁︀
[𝑠]=𝛾 𝜃𝑠).

Now, we will be interested in the other direction, that is, to
each group we want to associate an inverse semigroup (which will be
𝐸-unitary). This construction was initially done in [27], where Exel
defines the universal inverse semigroup S(𝐺) of a group 𝐺.

Given a group 𝐺, let S(𝐺) be the universal semigroup generated
by symbols of the form [𝑔], 𝑔 ∈ 𝐺, modulo the relations

(i) [𝑔−1][𝑔][ℎ] = [𝑔−1][𝑔ℎ],

(ii) [𝑔][ℎ][ℎ−1] = [𝑔ℎ][ℎ−1],

(iii) [𝑔][1] = [𝑔],

(iv) [1][𝑔] = [𝑔].

Exel proved that S(𝐺) is an inverse semigroup with unit [1] (see
[27, Theorem 3.4]). We will describe all the necessary properties of S(𝐺)
that we will need. For every 𝑔 ∈ 𝐺, the inverse of [𝑔] is [𝑔−1]. Let us
denote

𝜖𝑔 = [𝑔][𝑔−1].

By [27, Proposition 2.5 and 3.2], for each 𝛾 ∈ S(𝐺), there is a unique
𝑛 ≥ 0 and distinct elements 𝑟1, . . . , 𝑟𝑛, 𝑔 ∈ 𝐺 such that
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1. 𝛾 = 𝜖𝑟1 · · · 𝜖𝑟𝑛
[𝑔], (if 𝑛 = 0, this is simply [𝑔]), and

2. 𝑟𝑖 ̸= 1 for all 𝑖.

We call such a decomposition 𝛾 = 𝜖𝑟1 · · · 𝜖𝑟𝑛 [𝑔] the standard form of 𝛾,
which is unique up to the order of 𝑟1, . . . , 𝑟𝑛. Moreover, given 𝑔, 𝑟 ∈ 𝐺,
we have [𝑔]𝜖𝑟 = 𝜖𝑔𝑟[𝑔]. Thus, for 𝛾 = 𝜖𝑟1 · · · 𝜖𝑟𝑛 [𝑔] ∈ S(𝐺), the inverse
of 𝛾 is written in standard form as

𝛾* = [𝑔−1]𝜖𝑟𝑛 · · · 𝜖𝑟1 = 𝜖𝑔−1𝑟𝑛
· · · 𝜖𝑔−1𝑟1 [𝑔−1],

The idempotents of S(𝐺) are the elements of the form 𝜖 = 𝜖𝑟1 · · · 𝜖𝑟𝑛
[1].

Example 1.5.24. Take 𝐺 = Z2 = {1, 𝑔}. In this case, we have that
𝑔 = 𝑔−1. Consider 1 = [1], 𝑠 = [𝑔] and 𝑒 = [𝑔][𝑔−1]. Then 1 and 𝑒

are idempotent and since 𝑒𝑠 = [𝑔][𝑔−1][𝑔] = [𝑔] = 𝑠, 𝑠𝑒 = [𝑔][𝑔−1][𝑔] =
[𝑔] = 𝑠 and 𝑠𝑠 = [𝑔][𝑔] = 𝑒, we can conclude that S(Z2) = {1, 𝑒, 𝑠}.

For any group 𝐺 the inverse semigroup associated S(𝐺) is 𝐸-
unitary ([27, Remark 3.5]). Indeed, suppose 𝛾 ∈ S(𝐺), 𝜖 ∈ 𝐸(S(𝐺))
and 𝜖 ≤ 𝛾. Writing 𝛾 and 𝜖 in standard form, we obtain

𝛾 = 𝜖𝑠1 · · · 𝜖𝑠𝑛
[𝑠] and 𝜖 = 𝜖𝑒1 · · · 𝜖𝑒𝑚

[1].

Since 𝜖 = 𝜖𝛾 and [1] is a unit of S(𝐺), we obtain

𝜖𝑒1 · · · 𝜖𝑒𝑚 [1] = 𝜖 = 𝜖𝛾 = 𝜖𝑒1 · · · 𝜖𝑒𝑚𝜖𝑠1 · · · 𝜖𝑠𝑛 [𝑠].

From the uniqueness of the standard form of 𝜖 we conclude that 𝑠 = 1
and 𝛾 is an idempotent.

The main result of [27] is the following property of the semigroup
S(𝐺). Although it is proven in principle only for partial on discrete sets,
the same proof applies in the topological setting.

Proposition 1.5.25. [27, Theorem 4.2.] Let 𝜃 =
(︀
{𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆

)︀
be a topological partial action of a group 𝐺 on a space 𝑋. Then there
is a unique topological action 𝜃 of S(𝐺) on 𝑋 such that 𝜃[𝑔] = 𝜃𝑔, for
all 𝑔 ∈ 𝐺.
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Proposition 1.5.26. Let 𝐺 be a group and S(𝐺) the universal semi-
group of 𝐺. Then the map 𝐺 → G(S(𝐺)), 𝑔 ↦→ [[𝑔]], is an isomorphism.

Proof. First note that for all 𝑠, 𝑡 ∈ 𝐺,

[𝑠][𝑡] = [𝑠][𝑡][𝑡−1][𝑡] = [𝑠𝑡]𝜖𝑡 ≤ [𝑠𝑡],

so the map 𝐺 → 𝑆(𝐺), 𝑔 ↦→ [𝑔], is a partial homomorphism. Since
the map 𝑆(𝐺) → G(𝑆(𝐺)), 𝛾 ↦→ [𝛾], is a homomorphism, we have
that 𝑔 ↦→ [[𝑔]] is a partial homomorphism between groups, hence a
homomorphism.

Given 𝛾 ∈ S(𝐺), since 𝛾 = 𝜖𝑠1 · · · 𝜖𝑠𝑛
[𝑠] for certain 𝑠, 𝑠1, . . . , 𝑠𝑛 ∈

𝐺, we get [𝛾] = [[𝑠]], so 𝑔 ↦→ [[𝑔]] is surjective.
If [[𝑔]] = 1 = [[1]], then there is an idempotent 𝜖 = 𝜖𝑒1 · · · 𝜖𝑒𝑛

[1]
for which

[𝑔]𝜖𝑒1 · · · 𝜖𝑒𝑛
= [1]𝜖𝑒1 · · · 𝜖𝑒𝑛

and the uniqueness of the standard form implies 𝑔 = 1.

1.5.3 Algebraic partial actions

Definition 1.5.27. Let 𝑆 be an inverse semigroup, let 𝑅 be a uni-
tal commutative ring and let 𝐴 be an associative 𝑅-algebra. A (non-
degenerate) algebraic partial action of 𝑆 on 𝐴 is a partial action 𝛼 =
({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆) such that

(i) for each 𝑠 ∈ 𝑆, 𝐷𝑠 is an ideal of 𝐴 and 𝛼𝑠 : 𝐷𝑠* → 𝐷𝑠 is an
𝑅-isomorphism,

(ii) 𝐴 = Span𝑅

(︁⋃︀
𝑒∈𝐸(𝑆) 𝐷𝑒

)︁
.

Example 1.5.28. We assume that 𝑅 is a unital commutative ring, and
𝑋 is a Hausdorff, locally compact, zero-dimensional topological space.
Let ℒc(X) be the commutative 𝑅-algebra formed by all locally cons-
tant, compactly supported, 𝑅-valued functions on 𝑋, and with point-
wise addition and product. Notice that ℒc(X) is exactly the Steinberg
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algebra of 𝑋 (see Example 1.3.10). Therefore, every 𝑓 ∈ ℒc(X) is a
linear combination of the form

𝑓 =
𝑛∑︁

𝑖=1
𝑟𝑖1𝐾𝑖 ,

where the 𝐾𝑖 are pairwise disjoint compact-open subsets, and each 𝑟𝑖

lies in 𝑅.

Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) be a topological partial action of an
inverse semigroup 𝑆 on a locally compact, Hausdorff, zero-dimensional
topological space 𝑋. Such an action induces an action in the algebra
level, as done in [4] and [25]: For each 𝑠 in 𝑆, consider the ideal

𝐷𝑠 = {𝑓 ∈ ℒc(X) | supp(𝑓) ⊆ 𝑋𝑠}

in ℒc(X), and define the 𝑅-isomorphism 𝛼𝑠 : 𝐷𝑠* → 𝐷𝑠 by

𝛼𝑠(𝑓)(𝑥) =
{︃

𝑓 ∘ 𝜃𝑠*(𝑥), if 𝑥 ∈ 𝑋𝑠,

0, if 𝑥 /∈ 𝑋𝑠.

It is routine to check that 𝛼 = ({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆) is a partial action.
We wish to convince the reader that 𝛼 is non-degenerate. Let 𝑓 be an
element of ℒc(X). By non-degeneracy of 𝜃, for any 𝑥 ∈ supp(𝑓) there is a
compact-open neighborhood 𝐿 of 𝑥 contained in 𝑋𝑒, for some 𝑒 ∈ 𝐸(𝑆),
and such that 𝑓 |𝐿 is constant. By compactness of supp(𝑓) we can find
finitely many compact-open subsets 𝐿1, . . . , 𝐿𝑛 such that 𝐿𝑖 ⊆ 𝑋𝑒𝑖

,
𝑒𝑖 ∈ 𝐸(𝑆), and supp(𝑓) ⊆

⋃︀𝑛
𝑖=1 𝐿𝑖. By putting

𝐾1 = 𝐿1 ∩ supp(𝑓) and 𝐾𝑗 =
(︃
𝐿𝑗 ∖

𝑗−1⋃︁
𝑖=1

(𝐿𝑖)
)︃

∩ supp(𝑓),

for all 𝑗 ∈ {2, . . . , 𝑛}, we get that supp(𝑓) is equal to the disjoint union
of the compact-open subsets 𝐾1, . . . ,𝐾𝑛, and that

𝑓 =
𝑛∑︁

𝑖=1
𝑓1𝐾𝑖 ∈ Span𝑅

⎛⎝ ⋃︁
𝑒∈𝐸(𝑆)

𝐷𝑒

⎞⎠ ,

because supp(𝑓) ⊆ 𝐷𝑒𝑖
.



72 Chapter 1. Preliminaries

Again, we will only be interested in non-degenerate algebraic
partial actions, and it is more suitable to assume this as a necessary
condition on all the partial actions we will work. Similarly as in Re-
mark 1.5.8, we may always replace 𝐴 by Span𝑅

(︁⋃︀
𝑒∈𝐸(𝑆) 𝐷𝑒

)︁
.

Remark 1.5.29. We can define a partial action of an inverse semigroup
on a ring 𝐴 similarly to Definition 1.5.27, just making a change in item
(𝑖𝑖): we assume that for each 𝑠 ∈ 𝑆, 𝛼𝑠 is an isomorphism of rings.

1.6 Partial skew inverse semigroup algebras

Given a partial action of an inverse semigroup on an algebra we
can construct a new algebra associated to this structure, namely the
partial skew inverse semigroup algebra (or algebraic crossed product of
inverse semigroup). Partial skew inverse semigroup algebras are defined
in the same way as skew inverse semigroups in [33] (for actions of inverse
semigroups). They are also a generalization of the partial skew group
algebras (see [24]), but their construction needs more steps.

Throughout this section we will assume that 𝑅 is a unital com-
mutative ring, and 𝛼 = ({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆) is an algebraic partial ac-
tion of an inverse semigroup 𝑆 on a 𝑅-algebra 𝐴.

Definition 1.6.1. Let 𝛼 = ({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆) be an algebraic partial
action of 𝑆 on 𝐴. Let ℒ(𝛼) be the 𝑅-module of all finite formal sums∑︁

𝑠∈𝑆

𝑎𝑠𝛿𝑠,

where 𝑎𝑠 ∈ 𝐷𝑠 and 𝛿𝑠 is a formal symbol. More precisely, ℒ(𝛼) is the free
𝑅-module generated by formal elements 𝑎𝑠𝛿𝑠, satisfying the relations

𝑎𝑠𝛿𝑠 + 𝑏𝑠𝛿𝑠 = (𝑎𝑠 + 𝑏𝑠)𝛿𝑠

and
𝜆(𝑎𝑠𝛿𝑠) = (𝜆𝑎𝑠)𝛿𝑠,

for all 𝑠 ∈ 𝑆, 𝑎𝑠, 𝑏𝑠 ∈ 𝐷𝑠 and 𝜆 ∈ 𝑅.
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We define a product as the linear extension of the rule

(𝑎𝑠𝛿𝑠)(𝑎𝑡𝛿𝑡) = 𝛼𝑠(𝛼𝑠*(𝑎𝑠)𝑎𝑡)𝛿𝑠𝑡. (1.16)

Since 𝛼𝑠*(𝑎𝑠)𝑎𝑡 ∈ 𝐷𝑠* ∩𝐷𝑡 then

𝛼𝑠(𝛼𝑠*(𝑎𝑠)𝑎𝑡) ∈ 𝛼𝑠(𝐷𝑠* ∩𝐷𝑡) = 𝐷𝑠 ∩𝐷𝑠𝑡,

and the product is well-defined.

Remark 1.6.2. In the case of a group partial action, the 𝑅-algebra
ℒ(𝛼) is exactly the partial skew group algebra (see [24]).

In general, this product might make ℒ(𝛼) a non-associative al-
gebra (see [24, Example 3.5]).

Lemma 1.6.3. Let 𝛼 = ({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆) be an algebraic partial
action of 𝑆 on 𝐴. A necessary and suficient condition for ℒ(𝛼) to be
associative is that,

𝑎𝛼𝑠(𝛼𝑠*(𝑏)𝑐) = 𝛼𝑠(𝛼𝑠*(𝑎𝑏)𝑐),

for all 𝑠 ∈ 𝑆, 𝑏 ∈ 𝐷𝑠, and 𝑎, 𝑐 ∈ 𝐴.

Proof. Given 𝑑𝛿𝑟, 𝑏𝛿𝑠, 𝑎𝛿𝑡 ∈ ℒ(𝛼) we need to prove that

𝑑𝛿𝑟(𝑏𝛿𝑠𝑐𝛿𝑡) = (𝑑𝛿𝑟𝑏𝛿𝑠)𝑐𝛿𝑡 (1.17)

if, and only if,
𝑑𝛼𝑠(𝛼𝑠*(𝑏)𝑐) = 𝛼𝑠(𝛼𝑠*(𝑑𝑏)𝑐).

Let us start by rewriting the right-hand of (1.17):

𝑑𝛿𝑟(𝑏𝛿𝑠𝑐𝛿𝑡) = 𝑑𝛿𝑟(𝛼𝑠[𝛼𝑠*(𝑏)𝑐])𝛿𝑠𝑡 = 𝛼𝑟(𝛼𝑟*(𝑑)𝛼𝑠[𝛼𝑠*(𝑏)𝑐])𝛿𝑟𝑠𝑡 (1.18)

On the other hand, the left side of (1.17) may be rewritten as

(𝑑𝛿𝑟𝑏𝛿𝑠)𝑐𝛿𝑡 = 𝛼𝑟[𝛼𝑟*(𝑑)𝑏]𝛿𝑟𝑠𝑐𝛿𝑡 = 𝛼𝑟𝑠[𝛼(𝑟𝑠)*(𝛼𝑟[𝛼𝑟*(𝑑)𝑏])𝑐]𝛿𝑟𝑠𝑡.

Notice that

𝛼𝑟[𝛼𝑟*(𝑑)𝑏] ∈ 𝛼𝑟(𝐷𝑟* ∩𝐷𝑠) = 𝐷𝑟 ∩𝐷𝑟𝑠.
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On 𝐷𝑟 ∩𝐷𝑟𝑠,
𝛼(𝑟𝑠)* = 𝛼𝑠* ∘ 𝛼𝑟* .

Hence
(𝑑𝛿𝑟𝑏𝛿𝑠)𝑐𝛿𝑡 = 𝛼𝑟𝑠(𝛼𝑠* [𝛼𝑟*(𝑑)𝑏]𝑐)𝛿𝑟𝑠𝑡.

Observe also that

𝛼𝑠* [𝛼𝑟*(𝑑)𝑏] ∈ 𝜃𝑠*(𝐷𝑟* ∩𝐷𝑠) = 𝐷𝑠* ∩𝐷(𝑟𝑠)* .

We thus finally obtain that

(𝑑𝛿𝑟𝑏𝛿𝑠)𝑐𝛿𝑡 = 𝛼𝑟[𝛼𝑠(𝛼𝑠* [𝛼𝑟*(𝑑)𝑏]𝑐)]𝛿𝑟𝑠𝑡. (1.19)

Comparing (1.18) and (1.19) we have that the associativity of
ℒ(𝛼) holds if, and only if,

𝛼𝑟(𝛼𝑟*(𝑑)𝛼𝑠[𝛼𝑠*(𝑏)𝑐])𝛿𝑟𝑠𝑡 = 𝛼𝑟[𝛼𝑠(𝛼𝑠* [𝛼𝑟*(𝑑)𝑏]𝑐)]𝛿𝑟𝑠𝑡,

which is clearly the same as

𝛼𝑟*(𝑑)𝛼𝑠(𝛼𝑠*(𝑏)𝑐) = 𝛼𝑠(𝛼𝑠*(𝛼𝑟*(𝑑)𝑏)𝑐).

Writing 𝑎 = 𝛼𝑟*(𝑑), we get the desired equality.

A ring 𝑅 is said to have local units if for every finite subset 𝐹 of
𝑅, there exists an idempotent 𝑒 ∈ 𝑅 such that 𝐹 ⊆ 𝑒𝑅𝑒. In this case,
𝑟 = 𝑒𝑟 = 𝑟𝑒 holds for each 𝑟 ∈ 𝐹 and the element 𝑒 will be referred to
as a local unit for the set 𝐹 .

A ring 𝐵 is left (right) 𝑠-unital if 𝑏 ∈ 𝐵𝑏 (𝑏 ∈ 𝑏𝐵), for all 𝑏 ∈ 𝐵.
From [76, Theorem 1] it follows that 𝐵 is left (right) 𝑠-unital if, and
only if, for all 𝑛 ∈ N and all 𝑏1, · · · , 𝑏𝑛 ∈ 𝐵, there is 𝑢 ∈ 𝐵 such that, for
each 𝑖 ∈ {1, · · · , 𝑛}, the equality 𝑢𝑏𝑖 = 𝑏𝑖 (𝑏𝑖 = 𝑢𝑏𝑖) holds. Obviously
every ring that has local units is 𝑠-unital.

Lemma 1.6.4. Suppose that 𝛼 = ({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆) is an algebraic
partial action of an inverse semigroup 𝑆 on a 𝑅-algebra 𝐴, and that
every ideal 𝐷𝑠 is left (right) 𝑠-unital. Then ℒ(𝛼) is associative.
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Proof. Notice that, by Lemma 1.6.3, is it enough to show the equality

𝑎𝛼𝑠(𝛼𝑠*(𝑏)𝑐) = 𝛼𝑠(𝛼𝑠*(𝑎𝑏)𝑐),

for all 𝑠 ∈ 𝑆, 𝑏 ∈ 𝐷𝑠, and 𝑎, 𝑐 ∈ 𝐴. Since 𝐷𝑠 is left 𝑠-unital, there is
𝑢 ∈ 𝐷𝑠 such that 𝑢𝛼𝑠(𝛼𝑠*(𝑏)𝑐) = 𝛼𝑠(𝛼𝑠*(𝑏)𝑐) and 𝑢𝑏 = 𝑏. Then

𝑎𝛼𝑠(𝛼𝑠*(𝑏)𝑐) = 𝑎𝑢𝛼𝑠(𝛼𝑠*(𝑏)𝑐) = 𝛼𝑠(𝛼𝑠*(𝑎𝑢))𝛼𝑠(𝛼𝑠*(𝑏)𝑐)

= 𝛼𝑠(𝛼𝑠*(𝑎𝑢𝑏)𝑐) = 𝛼𝑠(𝛼𝑠*(𝑎𝑏)𝑐),

as required.
Since 𝐷𝑠 is right 𝑠-unital, there is 𝑣 ∈ 𝐷𝑠* such that 𝛼𝑠*(𝑏)𝑣 =

𝛼𝑠*(𝑏) and 𝛼𝑠*(𝑎𝑏)𝑣 = 𝛼𝑠*(𝑎𝑏). Then

𝑎𝛼𝑠(𝛼𝑠*(𝑏)𝑐) = 𝑎𝛼𝑠(𝛼𝑠*(𝑏)𝑣𝑐) = 𝑎𝛼𝑠𝑠*(𝑏)𝛼𝑠(𝑣𝑐) = 𝑎𝑏𝛼𝑠(𝑣𝑐)

= 𝛼𝑠𝑠*(𝑎𝑏)𝛼𝑠(𝑣𝑐) = 𝛼𝑠(𝛼𝑠*(𝑎𝑏)𝑣𝑐) = 𝛼𝑠(𝛼𝑠*(𝑎𝑏)𝑐).

Definition 1.6.5. Let 𝛼 = ({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆) be an algebraic partial
action of 𝑆 on 𝐴. We denote by 𝒩 (𝛼) the two-sided ideal

⟨ 𝑎𝛿𝑟 − 𝑎𝛿𝑠 | 𝑟, 𝑠 ∈ 𝑆, 𝑟 ≤ 𝑠 and 𝑎 ∈ 𝐷𝑠 ⟩ ,

that is, 𝒩 (𝛼) is the two-sided ideal of ℒ(𝛼) generated by all elements
of the form 𝑎𝛿𝑟 − 𝑎𝛿𝑠, where 𝑟 ≤ 𝑠 (notice that 𝑎 ∈ 𝐷𝑟 also).

Lemma 1.6.6. [3, Lemma 2.3] Let 𝛼 = ({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆) be an al-
gebraic partial action of 𝑆 on 𝐴. The ideal 𝒩 (𝛼) is equal to the additive
group generated by the set {𝑎𝛿𝑟 − 𝑎𝛿𝑠 | 𝑟, 𝑠 ∈ 𝑆, 𝑟 ≤ 𝑠 and 𝑎 ∈ 𝐷𝑟}.

Proof. It is enough to show that for 𝑟, 𝑠, 𝑡, 𝑢 ∈ 𝑆 with 𝑟 ≤ 𝑠, and 𝑎 ∈ 𝐷𝑟,
𝑏 ∈ 𝐷𝑡, 𝑐 ∈ 𝐷𝑢, it holds that the elements 𝑏𝛿𝑡(𝑎𝛿𝑟 −𝑎𝛿𝑠), (𝑎𝛿𝑟 −𝑎𝛿𝑠)𝑐𝛿𝑢

and 𝑏𝛿𝑡(𝑎𝛿𝑟 − 𝑎𝛿𝑠)𝑐𝛿𝑢 are all of the form 𝑥𝛿𝑣 − 𝑥𝛿𝑤 for some 𝑣, 𝑤 ∈ 𝑆

and 𝑥 ∈ 𝐷𝑣, such that 𝑣 ≤ 𝑤. Notice that

𝑏𝛿𝑡(𝑎𝛿𝑟 − 𝑎𝛿𝑠) = 𝑏𝛿𝑡𝑎𝛿𝑟 − 𝑏𝛿𝑡𝑎𝛿𝑠 = 𝛼𝑡(𝛼𝑡*(𝑏)𝑎)𝛿𝑡𝑟 − 𝛼𝑡(𝛼𝑡*(𝑏)𝑎)𝛿𝑡𝑠

and, since 𝑡𝑟 ≤ 𝑡𝑠, we are done in this case.
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In the next case we get

(𝑎𝛿𝑟 − 𝑎𝛿𝑠)𝑐𝛿𝑢 = 𝛼𝑟(𝛼𝑟*(𝑎)𝑐)𝛿𝑟𝑢 − 𝛼𝑠(𝛼𝑠*(𝑎)𝑐)𝛿𝑠𝑢.

Using that 𝑟 ≤ 𝑠 we get that 𝑟* ≤ 𝑠* and 𝑟𝑢 ≤ 𝑠𝑢. Then 𝑎 ∈ 𝑋𝑠,
𝛼𝑟*(𝑎) = 𝛼𝑠*(𝑎) and 𝛼𝑟(𝛼𝑟*(𝑎)𝑐) = 𝛼𝑟(𝛼𝑠*(𝑎)𝑐) = 𝛼𝑠(𝛼𝑠*(𝑎)𝑐) and
hence the desired conclusion follows.

To conclude, notice that 𝑏𝛿𝑡(𝑎𝛿𝑟 − 𝑎𝛿𝑠)𝑐𝛿𝑢 is of the form (𝑥𝛿𝑡𝑟 −
𝑥𝛿𝑡𝑠)𝑐𝛿𝑢 by the first case, and now, by the second case, (𝑥𝛿𝑡𝑟 −𝑥𝛿𝑡𝑠)𝑐𝛿𝑢

has the desired form.

Finally, we define the corresponding skew inverse semigroup al-
gebra associated to a partial action of an inverse semigroup.

Definition 1.6.7. Let 𝛼 = ({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆) be a partial action of
an inverse semigroup 𝑆 on an 𝑅-algebra 𝐴. The skew inverse semigroup
algebra associated to 𝛼, which we denote by 𝐴 o𝛼 𝑆, is the quotient
algebra

ℒ(𝛼)
𝒩 (𝛼) .

Elements of 𝐴o𝛼 𝑆 will be written as 𝑥, where 𝑥 ∈ ℒ(𝛼).

It is interesting to point out that the quotient involved in the
definition of a skew inverse semigroup algebra is motivated by the C*-
algebraic definition of crossed products by inverse semigroups (see, for
example, [68], [60], [33]).

Remark 1.6.8. Let 𝑠, 𝑡 ∈ 𝑆. Notice that if 𝑠 ≤ 𝑡 and 𝑎 ∈ 𝐷𝑠, then
𝑎𝛿𝑠 = 𝑎𝛿𝑡.

Remark 1.6.9. In the case that 𝑆 is a group, the natural order of 𝑆
coincides with equality, and hence the ideal 𝒩 (𝛼) = {0}. Therefore,
the partial skew inverse semigroup is simply

𝐴o𝛼 𝑆 = ℒ(𝛼),

which is exactly the partial skew group algebras defined in [24]. Notice
that the more general structure of partial skew inverse semigroup alge-
bras does not carry the graded structure presented in the group case.
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Instead, we only have that every partial skew inverse semigroup ring
admits a pre-grading (defined below) over the semigroup.

Definition 1.6.10. Let 𝐵 be any 𝑅-algebra and let 𝑆 be an inverse
semigroup. A pre-grading of 𝐵 over 𝑆 is a family of linear subspaces
{𝐵𝑠}𝑠∈𝑆 of 𝐵, such that for every 𝑠, 𝑡 ∈ 𝑆 one has that

(i) 𝐵𝑠𝐵𝑡 ⊆ 𝐵𝑠𝑡,

(ii) if 𝑠 ≤ 𝑡 then 𝐵𝑠 ⊆ 𝐵𝑡,

(iii) 𝐵 = Span𝑅

(︀⋃︀
𝑠∈𝑆 𝐵𝑠

)︀
.

Remark 1.6.11. Notice that if 𝐼 is an ideal of 𝐴 then we can give the
partial skew inverse semigroup algebra 𝐴 o𝛼 𝑆 an 𝐼-module structure
by defining

𝑏(𝑎𝑠𝛿𝑠) = (𝑏𝑎𝑠)𝛿𝑠, (𝑎𝑠𝛿𝑠)𝑏 = (𝑎𝑠𝑏)𝛿𝑠,

for all 𝑏 ∈ 𝐼 and 𝑎𝑠𝛿𝑠 ∈ 𝐴o𝛼 𝑆.

1.6.1 Covariant representation

Definition 1.6.12. Let 𝛼 = ({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆) be a partial action of
𝑆 on 𝐴. A covariant representation of 𝛼 consists of an algebra 𝐵 and
a pair (𝜋, 𝑢), where 𝜋 : 𝐴 → 𝐵 is an 𝑅-homomorphism, and 𝑢 : 𝑆 → 𝐵

is a partial homomorphism of 𝑆 to the multiplicative semigroup of 𝐵,
satisfying the covariance condition

𝜋(𝛼𝑠(𝑎𝑠*)) = 𝑢(𝑠)𝜋(𝑎𝑠*)𝑢(𝑠*), (1.20)

for all 𝑠 ∈ 𝑆 and 𝑎𝑠 ∈ 𝐷𝑠* . We say that (𝜋, 𝑢) is non-degenerate if
𝑢(𝑠)𝑢(𝑠*) ∈ 𝜋(𝐷𝑠), for all 𝑠 ∈ 𝑆.

Proposition 1.6.13. [19, Lemma 4.3.14. and Theorem 4.3.15.] Let
𝛼 = ({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆) be an algebraic partial action of 𝑆 on 𝐴. Also
let (𝜋, 𝑢) be a non-degenerate covariant representation of 𝐴o𝛼 𝑆 in an
𝑅-algebra 𝐵. Then, for every 𝑠, 𝑡 ∈ 𝑆, we have have that:
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(a) If 𝑎𝑠 ∈ 𝐷𝑠, then

𝜋(𝑎𝑠) = 𝑢(𝑠)𝑢(𝑠*)𝜋(𝑎𝑠) = 𝜋(𝑎𝑠)𝑢(𝑠)𝑢(𝑠*),

(b) If 𝑠 ≤ 𝑡 and 𝑎𝑠 ∈ 𝐷𝑠, then

𝜋(𝑎𝑠)𝑢(𝑠) = 𝜋(𝑎𝑠)𝑢(𝑡),

(c) If 𝐷𝑠 has unit 1𝑠, then

𝜋(1𝑠)𝑢(𝑠) = 𝑢(𝑠), 𝑢(𝑠*)𝜋(1𝑠) = 𝑢(𝑠*) and 𝜋(1𝑠) = 𝑢(𝑠)𝑢(𝑠*),

(d) The linear mapping 𝜋 × 𝑢 : 𝐴o𝛼 𝑆 → 𝐵 determined by

(𝜋 × 𝑢)(𝑎𝑠𝛿𝑠) = 𝜋(𝑎𝑠)𝑢(𝑠), (1.21)

for all 𝑎𝑠𝛿𝑠 ∈ 𝐴o𝛼 𝑆, is a 𝑅-homomorphism.

Proof. (a) By the covariance relation, we have that

𝜋(𝑎𝑠) = 𝜋(𝛼𝑠(𝛼𝑠*(𝑎𝑠))) = 𝑢(𝑠)𝜋(𝛼𝑠*(𝑎𝑠))𝑢(𝑠*)

= 𝑢(𝑠)𝑢(𝑠*)𝜋(𝑎𝑠)𝑢(𝑠)𝑢(𝑠*).

Since 𝑢 is partial homomorphism of inverse semigroups, we get
that

𝑢(𝑠)𝑢(𝑠*)𝜋(𝑎𝑠) = 𝑢(𝑠)𝑢(𝑠*) [𝑢(𝑠)𝑢(𝑠*)𝜋(𝑎𝑠)𝑢(𝑠)𝑢(𝑠*)]

= 𝑢(𝑠)𝑢(𝑠*)𝜋(𝑎𝑠)𝑢(𝑠)𝑢(𝑠*) = 𝜋(𝑎𝑠).

Similarly, 𝜋(𝑎𝑠)𝑢(𝑠)𝑢(𝑠*) = 𝜋(𝑎𝑠).

(b) Since 𝑠 ≤ 𝑡 and 𝑢 is partial homomorphism, it follows that
𝑢(𝑠*𝑠) = 𝑢(𝑠*𝑡), and by (a),

𝜋(𝑎𝑠)𝑢(𝑡) = 𝜋(𝑎𝑠)𝑢(𝑠)𝑢(𝑠*)𝑢(𝑡) = 𝜋(𝑎𝑠)𝑢(𝑠)𝑢(𝑠*𝑡)

= 𝜋(𝑎𝑠)𝑢(𝑠)𝑢(𝑠*)𝑢(𝑠) = 𝜋(𝑎𝑠)𝑢(𝑠).
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(c) Notice that 𝜋(1𝑠) is the unit of 𝜋(𝐷𝑠). By non-degeneracy of
(𝜋, 𝑢), we have that 𝑢(𝑠)𝑢(𝑠*) ∈ 𝜋(𝐷𝑠), so

𝑢(𝑠) = 𝑢(𝑠)𝑢(𝑠*)𝑢(𝑠) = 𝜋(1𝑠)𝑢(𝑠)𝑢(𝑠*)𝑢(𝑠) = 𝜋(1𝑠)𝑢(𝑠).

Analogously, 𝑢(𝑠*) = 𝑢(𝑠*)𝜋(1𝑠). Moreover, multiplying by 𝑢(𝑠*)
both sides of the equality 𝑢(𝑠) = 𝜋(1𝑠)𝑢(𝑠), we obtain

𝑢(𝑠)𝑢(𝑠*) = 𝜋(1𝑠)𝑢(𝑠)𝑢(𝑠*) (𝑎)= 𝜋(1𝑠).

(d) Notice that, by item (b), the map 𝜋 × 𝑢 given by (1.21) is well-
defined. To prove that 𝜋×𝑢 is multiplicative, we take 𝑎𝑠𝛿𝑠, 𝑏𝑡𝛿𝑡 ∈
𝐴o𝛼 𝑆, then

(𝜋 × 𝑢)
(︀
𝑎𝑠𝛿𝑠 𝑎𝑡𝛿𝑡

)︀
= 𝜋(𝛼𝑠(𝛼𝑠*(𝑎𝑠)𝑏𝑡))𝑢(𝑠𝑡)
(1.20)= 𝑢(𝑠)𝜋(𝛼𝑠*(𝑎𝑠)𝑏𝑡)𝑢(𝑠*)𝑢(𝑠𝑡)

= 𝑢(𝑠)𝜋(𝛼𝑠*(𝑎𝑠))𝜋(𝑏𝑡)𝑢(𝑠*)𝑢(𝑠)𝑢(𝑡)
(1.20)= 𝑢(𝑠)𝑢(𝑠*)𝜋(𝑎𝑠)𝑢(𝑠)𝜋(𝑏𝑡)𝑢(𝑠*)𝑢(𝑠)𝑢(𝑡)
(𝑎)= 𝜋(𝑎𝑠)𝑢(𝑠)𝜋(𝑏𝑡)𝑢(𝑠*)𝑢(𝑠)𝑢(𝑡)
(𝑐)= 𝜋(𝑎𝑠)𝑢(𝑠)𝜋(1𝑠*)𝜋(𝑏𝑡)𝑢(𝑠*)𝑢(𝑠)𝑢(𝑡)

= 𝜋(𝑎𝑠)𝑢(𝑠)𝜋(1𝑠*𝑏𝑡)𝑢(𝑠*)𝑢(𝑠)𝑢(𝑡)
(𝑎)= 𝜋(𝑎𝑠)𝑢(𝑠)𝜋(1𝑠*𝑏𝑡)𝑢(𝑡)
(𝑐)= 𝜋(𝑎𝑠)𝑢(𝑠)𝜋(𝑏𝑡)𝑢(𝑡)

= (𝜋 × 𝑢)(𝑎𝑠𝛿𝑠)(𝜋 × 𝑢)(𝑏𝑡𝛿𝑡).

Let 𝛼 = ({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆) be an algebraic partial action of 𝑆
on 𝐴. Just as for the skew group algebras, we may define an additive
map 𝜏 : ℒ(𝛼) → 𝐴 by

𝜏

(︃∑︁
𝑠∈𝑆

𝑎𝑠𝛿𝑠

)︃
=
∑︁
𝑠∈𝑆

𝑎𝑠. (1.22)

Remark 1.6.14. By Lemma 1.6.6, we have that 𝜏(𝒩 (𝛼)) = {0} and
hence we get a well-defined additive map ̃︀𝜏 : 𝒜 o𝜋 𝑆 → 𝐴 given bỹ︀𝜏(𝑥) = 𝜏(𝑥), for 𝑥 ∈ ℒ(𝛼).
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Definition 1.6.15. [3, Proposition 3.1.] Let 𝛼 = ({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆)
be an algebraic partial action of 𝑆 on 𝐴. The diagonal subalgebra 𝒟
of a partial skew inverse semigroup algebra 𝐴 o𝛼 𝑆 is the subalgebra
generated by elements of the form 𝑎𝛿𝑒, where 𝑒 ∈ 𝐸(𝑆) and 𝑎 ∈ 𝐷𝑒,
that is,

𝒟 =
{︃

𝑛∑︁
𝑖=1

𝑎𝑖𝛿𝑒𝑖

⃒⃒⃒
𝑛 ∈ N, 𝑒𝑖 ∈ 𝐸(𝑆), 𝑎𝑖 ∈ 𝐷𝑒𝑖

}︃
.

Proposition 1.6.16. Let 𝛼 = ({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆) be an algebraic par-
tial action of 𝑆 on 𝐴 that has the property that 𝐴 and each ideal 𝐷𝑠,
for 𝑠 ∈ 𝑆, are left (right) 𝑠-unital. Then 𝐴 is embedded in 𝐴o𝛼 𝑆 and
is isomorphic to 𝒟, which is a subalgebra of 𝐴o𝛼 𝑆.

Proof. It is easy to see that 𝒟 is a subring of 𝐴o𝛼 𝑆 since 𝛼𝑒 = id𝑋𝑒 ,
for all 𝑒 ∈ 𝐸(𝑆) and so,

𝑎𝛿𝑒1 · 𝑏𝛿𝑒2 = 𝑎𝑏𝛿𝑒1𝑒2 ∈ 𝒟,

for all 𝑎𝛿𝑒1 , 𝑎𝛿𝑒1 ∈ 𝒟.
Next we show that 𝒟 is isomorphic to 𝐴. Notice that, by Defi-

nition 1.5.27 (ii), given 𝑎 ∈ 𝐴 we can write

𝑎 =
𝑛∑︁

𝑖=1
𝑎𝑒𝑖 ,

where 𝑛 ∈ N, 𝑒𝑖 ∈ 𝐸(𝑆), and 𝑎𝑒𝑖
∈ 𝐷𝑒𝑖

for each 𝑖 ∈ {1, . . . , 𝑛}. Let
𝜑 : 𝐴 → 𝒟 be the map defined by

𝜑(𝑎) =
𝑛∑︁

𝑖=1
𝑎𝑒𝑖
𝛿𝑒𝑖
,

for 𝑎 =
∑︀𝑛

𝑖=1 𝑎𝑒𝑖 ∈ 𝒜. Clearly, 𝜑 is additive.
We prove by induction that 𝜑 is well-defined. More precisely, we

will show that if
∑︀𝑛

𝑖=1 𝑎𝑒𝑖
= 0 for 𝑛 ∈ N, 𝑒𝑖 ∈ 𝐸(𝑆), and 𝑎𝑒𝑖

∈ 𝐷𝑒𝑖
, for

𝑖 ∈ {1, . . . , 𝑛}, then
∑︀𝑛

𝑖=1 𝑎𝑒𝑖
𝛿𝑒𝑖

= 0.
If 𝑎𝑒1 = 0, then clearly 𝑎𝑒1𝛿𝑒1 = 0. Let 𝑛 ∈ N be arbitrary. As

induction hypothesis, suppose that if
∑︀𝑛

𝑖=1 𝑎𝑒𝑖
= 0, then

∑︀𝑛
𝑖=1 𝑎𝑒𝑖

𝛿𝑒𝑖
=

0.
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Now, let 𝑓 ∈ 𝐸(𝑆), 𝑎𝑓 ∈ 𝐷𝑓 , and suppose that 𝑎𝑓 +
∑︀𝑛

𝑖=1 𝑎𝑒𝑖
= 0.

Take 𝑢 ∈ 𝐴 such that 𝑢𝑎𝑓 = 𝑎𝑓 and 𝑢𝑎𝑒𝑖
= 𝑎𝑒𝑖

, for 𝑖 ∈ {1, · · · 𝑛} and
take 𝑢𝑓 ∈ 𝐷𝑓 such that 𝑢𝑓𝑎𝑓 = 𝑎𝑓 . Then

0 = (𝑢− 𝑢𝑓 )
(︃
𝑎𝑓 +

𝑛∑︁
𝑖=1

𝑎𝑒𝑖

)︃
= 𝑢𝑎𝑓 − 𝑢𝑓𝑎𝑓 + (𝑢− 𝑢𝑓 )

(︃
𝑛∑︁

𝑖=1
𝑎𝑒𝑖

)︃

= 𝑎𝑓 − 𝑎𝑓 + (𝑢− 𝑢𝑓 )
(︃

𝑛∑︁
𝑖=1

𝑎𝑒𝑖

)︃
=

𝑛∑︁
𝑖=1

(𝑢− 𝑢𝑓 )𝑎𝑒𝑖
.

By the induction hypothesis, we conclude that
∑︀𝑛

𝑖=1 (𝑢− 𝑢𝑓 )𝑎𝑒𝑖
𝛿𝑒𝑖

= 0.
Using this, together with Remark 1.6.8 and the fact that 𝑓𝑒𝑖 ≤ 𝑒𝑖 and
𝑓𝑒𝑖 ≤ 𝑓 , and hence 𝐷𝑓𝑒𝑖

= 𝐷𝑓 ∩ 𝐷𝑒𝑖
, for each 𝑖 ∈ {1, . . . , 𝑛}, we get

that
𝑛∑︁

𝑖=1
𝑎𝑒𝑖𝛿𝑒𝑖 =

𝑛∑︁
𝑖=1

𝑢𝑓𝑎𝑒𝑖𝛿𝑒𝑖 =
𝑛∑︁

𝑖=1
𝑢𝑓𝑎𝑒𝑖𝛿𝑓𝑒𝑖 =

𝑛∑︁
𝑖=1

𝑢𝑓𝑎𝑒𝑖𝛿𝑓

=
(︃

𝑛∑︁
𝑖=1

𝑢𝑓𝑎𝑒𝑖

)︃
𝛿𝑓 =

(︃
𝑢𝑓

𝑛∑︁
𝑖=1

𝑎𝑒𝑖

)︃
𝛿𝑓 = (𝑢𝑓 (−𝑎𝑓 ))𝛿𝑓

= −𝑎𝑓𝛿𝑓 .

Therefore,

𝑎𝛿𝑓 +
𝑛∑︁

𝑖=1
𝑎𝑒𝑖
𝛿𝑒𝑖

= 0,

proving that 𝜑 is well-defined.
Clearly, 𝜑 is onto and multiplicative (using that 𝛼𝑒 = id𝑋𝑒

, for
all 𝑒 ∈ 𝐸(𝑆)) and thus a surjective ring morphism. Now, consider the
map ̃︀𝜏 which was defined in Remark 1.6.14. Notice that

̃︀𝜏 ∘ 𝜑

(︃
𝑛∑︁

𝑖=1
𝑎𝑒𝑖

)︃
= ̃︀𝜏 (︃ 𝑛∑︁

𝑖=1
𝑎𝑒𝑖
𝛿𝑒𝑖

)︃
=

𝑛∑︁
𝑖=1

𝑎𝑒𝑖
,

that is, ̃︀𝜏 ∘ 𝜑 = id𝐴, and hence 𝜑 is injective.

Remark 1.6.17. Suppose that 𝑆 is unital, with identity element 1 ∈ 𝑆.
In this case, if 𝑒 ∈ 𝐸(𝑆), then 𝑒 ≤ 1, and therefore for each 𝑎 ∈ 𝐷𝑒 we
have 𝑎𝛿𝑒 = 𝑎𝛿1. Hence, 𝐴𝛿1 = 𝒟.
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Proposition 1.6.18. [19, Theorem 4.3.15.] Let ({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆) be
an algebraic partial action of 𝑆 on 𝐴, such that 𝐷𝑠 has a unit 1𝑠, for
all 𝑠 ∈ 𝑆. Then, the map

𝜎 : 𝑆 → 𝐴o𝛼 𝑆

𝑠 ↦→ 1𝑠𝛿𝑠

is a partial homomorphism of 𝑆 to the multiplicative semigroup of 𝐴o𝛼

𝑆.

Proof. We need to show that 𝜎 satisfies the three items of Defini-
tion 1.1.8. First, notice that 𝛼𝑠*(1𝑠) = 1𝑠* , since 𝛼𝑠* : 𝐷𝑠 → 𝐷𝑠*

is an 𝑅-isomorphism, and so,

𝜎(𝑠)𝜎(𝑠*) = 1𝑠𝛿𝑠1𝑠*𝛿𝑠* = 1𝑠𝛿𝑠𝑠* . (1.23)

(i) We have

𝜎(𝑠)𝜎(𝑟)𝜎(𝑟*) (1.23)= 1𝑠𝛿𝑠1𝑟𝛿𝑟𝑟* = 𝛼𝑠(1𝑠*1𝑟)𝛿𝑠𝑟𝑟* ,

and

𝜎(𝑠𝑟)𝜎(𝑟*) = 𝛼𝑠𝑟(1(𝑠𝑟)*1𝑟*)𝛿𝑠𝑟𝑟* .

Notice that 1𝑠*1𝑟 is the unit of 𝐷𝑠* ∩𝐷𝑟, and so, 𝛼𝑠(1𝑠*1𝑟) is the
unit of 𝛼𝑠(𝐷𝑠* ∩ 𝐷𝑟) = 𝐷𝑠 ∩ 𝐷𝑠𝑟. On the other hand, 1(𝑠𝑟)*1𝑟*

is the unit of 𝐷(𝑠𝑟)* ∩𝐷𝑟* , and then, 𝛼𝑠𝑟(1(𝑠𝑟)*1𝑟*) is the unit of
𝛼𝑠𝑟(𝐷(𝑠𝑟)* ∩𝐷𝑟*). However

𝛼𝑠𝑟(𝐷(𝑠𝑟)* ∩𝐷𝑟*) = 𝐷𝑠𝑟 ∩𝐷𝑠𝑟𝑟* = 𝐷𝑠𝑟 ∩𝐷(𝑠𝑟)(𝑠𝑟)*𝑠

= 𝛼𝑠𝑟(𝐷(𝑠𝑟)* ∩𝐷(𝑠𝑟)*𝑠)

= 𝛼𝑠𝑟(𝛼(𝑠𝑟)*(𝐷𝑠𝑟 ∩𝐷𝑠)) = 𝐷𝑠𝑟 ∩𝐷𝑠,

and then, 𝛼𝑠(1𝑠*) = 𝛼𝑠𝑟(1(𝑠𝑟)*1𝑟*). We can conclude that

𝜎(𝑠)𝜎(𝑟)𝜎(𝑟*) = 𝜎(𝑠𝑟)𝜎(𝑟*).
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(ii) Similarly as in the previous item, notice that 1𝑠*1𝑟 is the unit
of 𝐷𝑠* ∩ 𝐷𝑟, and that 𝛼𝑠(1𝑠*1𝑠𝑟) is the unit of 𝛼𝑠(𝐷𝑠* ∩ 𝐷𝑠𝑟).
Moreover,

𝛼𝑠(𝐷𝑠* ∩𝐷𝑠𝑟) = 𝛼𝑠(𝛼𝑠*(𝐷𝑠 ∩𝐷𝑟)) = 𝐷𝑠* ∩𝐷𝑟.

Hence, 1𝑠*1𝑟 = 𝛼𝑠(1𝑠*1𝑠𝑟), and then,

𝜎(𝑠*)𝜎(𝑠)𝜎(𝑟) = 1𝑠*𝛿𝑠*𝑠1𝑟𝛿𝑟 = 1𝑠*1𝑟𝛿𝑠*𝑠𝑟

= 𝛼𝑠(1𝑠1𝑠𝑟)𝛿𝑠*𝑠𝑟 = 𝜎(𝑠*)𝜎(𝑠𝑟).

(iii) This follows easily since

𝜎(𝑠)𝜎(𝑠*)𝜎(𝑠) (1.23)= 1𝑠𝛿𝑠𝑠* 1𝑠𝛿𝑠 = 1𝑠𝛿𝑠𝑠*𝑠 = 𝜎(𝑠).

Theorem 1.6.19. [19, Theorem 4.3.15] Let 𝛼 = ({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆)
be an algebraic partial action of 𝑆 on 𝐴 such that 𝐴 is left (right) 𝑠-
unital and 𝐷𝑠 has a unit 1𝑠, for all 𝑠 ∈ 𝑆. Then (𝜄, 𝜎) is a universal
non-degenerate covariant representations of 𝐴 o𝛼 𝑆 in the following
sense:

(a) (𝜄, 𝜎) is a non-degenerate covariant representation.

(b) If (𝜋, 𝑢) is any other non-degenerate covariant representation of
𝐴o𝛼 𝑆 in an algebra 𝐵, then there exists a unique algebra homo-
morphism Φ : 𝐴o𝛼 𝑆 → 𝐵 such that

𝜋 = Φ ∘ 𝜄 𝑢 = Φ ∘ 𝜎.

Proof. (a) Let 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐷𝑠* . Then 𝑎 ∈ 𝐷𝑠*𝑠, 𝜄(𝑎) = 𝑎𝛿𝑠*𝑠, and

𝜎(𝑠)𝜄(𝑎)𝜎(𝑠*) = 1𝑠𝛿𝑠 · 𝑎𝛿𝑠*𝑠 · 1𝑠*𝛿𝑠*

= 1𝑠𝛿𝑠 · 𝑎𝛿𝑠* = 𝛼𝑠(𝑎)𝛿𝑠𝑠* = 𝜄(𝛼𝑠(𝑎)),

satisfying the covariance condition. By (1.23) we get the non-
degenerance of the pair (𝜄, 𝜎).
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(b) Take Φ = 𝜋 × 𝑢 defined by

(𝜋 × 𝑢)(𝑎𝑠𝛿𝑠) = 𝜋(𝑎𝑠)𝑢(𝑠),

for all 𝑠 ∈ 𝑆 and 𝑎𝑠 ∈ 𝐷𝑠, as in Proposition 1.6.13 (d). We have already
seen that 𝜋 × 𝑢 is an algebra homomorphism.

Let 𝑒 ∈ 𝐸(𝑆) and 𝑎𝑒 ∈ 𝐷𝑒. Then 𝑢(𝑒) ∈ 𝐸(𝑆), and

(𝜋 × 𝑢) ∘ 𝜄(𝑎𝑒) = 𝜋(𝑎𝑒)𝑢(𝑒) = 𝜋(𝑎𝑒)𝑢(𝑒)𝑢(𝑒*) 1.6.13 (𝑎)= 𝜋(𝑎𝑒).

For any 𝑠 ∈ 𝑆, we get that

(𝜋 × 𝑢) ∘ 𝜎(𝑠) = 𝜋(1𝑠)𝑢(𝑠) 1.6.13 (𝑐)= 𝑢(𝑠),

as required.
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2 THE INTERPLAY BETWEEN STEINBERG
ALGEBRAS AND SKEW ALGEBRAS

This chapter is based entirely on the paper [5], produced during
the doctorate.

It is our goal in this chapter to link the theory of partial skew
algebras (rings) with the theory of Steinberg algebras, in the same way
as the theory of partial crossed products is linked to Renault’s theory of
groupoid C*-algebras. In particular, we provide an “algebraisation” of a
result by Abadie (see [1]), that shows that any partial crossed product,
associated to a partial action on a topological space, can be seen as a
groupoid C*-algebra. The algebraic version of this theorem permits us
to join results of Li (see [52]), about continuous orbit equivalence of
partial actions on topological spaces, and results of Carlsen and Rout
(see [12]), about diagonal-preserving isomorphism between Steinberg
algebras, to present results regarding diagonal-preserving isomorphisms
of partial skew group ring over commutative algebras.

To complete the interplay between Steinberg algebras and skew
algebras (rings), we show an “algebraisation” of [60, Theorem 3.3.1]
and [63, Theorem 8.1]: Any Steinberg algebra associated to an ample
Hausdorff groupoid can be seen as a skew inverse semigroup algebra. It
is interesting to point out that the definition of a skew inverse semigroup
algebra involves a quotient by a certain ideal (see Definition 1.6.7).
This quotient might seem artificial, and maybe even unnecessary. Our
characterization of Steinberg algebras as skew inverse semigroup rings
is further evidence that the quotient is necessary in the definition of
skew inverse semigroup algebras.

2.1 The Steinberg algebra of a transformation groupoid

Throughout this section, we assume that 𝑅 is a unital commu-
tative ring, 𝑋 is a locally compact, Hausdorff, and zero-dimensional
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topological space, and 𝐺 is a discrete group.
Given a topological partial action 𝜃 = ({𝑋𝑔}𝑔∈𝐺, {𝜃𝑔}𝑔∈𝐺) of

𝐺 on 𝑋 such that 𝑋𝑔 is clopen (closed-open), for every 𝑔 in 𝐺, we
will prove that the Steinberg algebra of the transformation groupoid
associated to 𝜃 can be realized as partial skew group algebras of the
form ℒ𝑐(𝑋) o𝛼 𝐺.

In Example 1.5.28, we defined ℒc(X) as the commutative 𝑅-
algebra consisting of all locally constant, compactly supported,𝑅-valued
functions on 𝑋, with point-wise operations.

Let 𝜃 = ({𝑋𝑔}𝑔∈𝐺, {𝜃𝑔}𝑔∈𝐺) be a topological partial action of a
discrete group 𝐺 on 𝑋. Similarly to Example 1.5.28, such partial action
induces an algebraic partial action 𝛼 = ({𝐷𝑔}𝑔∈𝐺, {𝛼𝑔}𝑔∈𝐺) of 𝐺 on
ℒc(X) as follows: For each 𝑔 in 𝐺, consider the ideal

𝐷𝑔 = {𝑓 ∈ ℒc(X) : supp(𝑓) ⊆ 𝑋𝑔} in ℒc(X),

and define 𝛼𝑔 : 𝐷𝑔−1 → 𝐷𝑔 by setting,

𝛼𝑔(𝑓)(𝑥) =
{︃

𝑓 ∘ 𝜃𝑔−1(𝑥), if 𝑥 ∈ 𝑋𝑔

0 if 𝑥 /∈ 𝑋𝑔,

for all 𝑓 ∈ 𝐷𝑔−1 . We can associate to this algebraic partial action 𝛼 the
partial skew group algebra

ℒ𝑐(𝑋) o𝛼 𝐺.

Recall that a general element 𝑏 ∈ ℒ𝑐(𝑋) o𝛼 𝐺 is denoted by

𝑏 =
∑︁
𝑔∈𝐺

𝑓𝑔𝛿𝑔,

where each 𝑓𝑔 lies in 𝐷𝑔, and 𝑓𝑔 ≡ 0, for all but finitely many group
elements 𝑔.

Furthermore, we can also associate to the partial action 𝜃 an
étale groupoid, denoted by 𝐺 n𝜃 𝑋, and known as the transformation
groupoid: Let

𝐺n𝜃 𝑋 = {(𝑡, 𝑥) | 𝑡 ∈ 𝐺 and 𝑥 ∈ 𝑋𝑡−1} .
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If (𝑠, 𝑦), (𝑡, 𝑥) ∈ 𝐺n𝜃 𝑋, then (𝑠, 𝑦), (𝑡, 𝑥) is a composable pair if, and
only if, 𝜃𝑡(𝑥) = 𝑦. In this case, we define the product map by

(𝑠, 𝑦)(𝑡, 𝑥) = (𝑠𝑡, 𝑥).

This product makes 𝐺 n𝜃 𝑋 a groupoid, and the inverse of (𝑡, 𝑥) ∈
𝐺n𝜃 𝑋 is

(𝑡, 𝑥)−1 = (𝑡−1, 𝜃𝑡(𝑥)).

We equip 𝐺n𝜃 𝑋 with the topology inherited from the product
topology on 𝐺×𝑋. By the continuity of each 𝜃𝑔 (𝑔 ∈ 𝐺), the inversion
and product maps are continuous. Since 𝒢 is discrete and 𝑋 is Haus-
dorff, we have that the groupoid𝐺n𝜃𝑋 is Hausdorff. Notice that we can
identify 𝑋 with (𝐺n𝜃 𝑋)(0) via the homeomorphism 𝑖 : 𝑋 → 𝐺n𝜃 𝑋

given by 𝑥 ↦→ (1, 𝑥), and with this, the unit space (𝐺 n𝜃 𝑋)(0) is lo-
cally compact, Hausdorff, and zero-dimensional. Moreover, the range
and source maps can be simplified by

r(𝑡, 𝑥) = 𝜃𝑡(𝑥), and s(𝑡, 𝑥) = 𝑥,

respectively. We have that the range map is a local homeomorphism
of {𝑡} ×𝑋𝑡−1 onto 𝑋𝑡, and the source map is local homeomorphism of
{𝑡}×𝑋𝑡−1 onto 𝑋𝑡−1 . Therefore, 𝐺n𝜃𝑋 is an étale, Hausdorff groupoid.
Since the unit space of 𝐺n𝜃𝑋 is zero-dimensional, by Proposition 1.2.8,
𝐺 n𝜃 𝑋 is ample. Therefore, we can consider the Steinberg algebra
𝐴𝑅(𝐺n𝜃 𝑋).

We can now prove the following.

Theorem 2.1.1. [5, Theorem 3.2.] Let 𝜃 = ({𝑋𝑔}𝑔∈𝐺, {𝜃𝑔}𝑔∈𝐺) be a
topological partial action of a discrete group 𝐺 on a locally compact,
Hausdorff and zero-dimensional topological space 𝑋, such that each 𝑋𝑔

is clopen. Let 𝛼 = ({𝐷𝑔}𝑔∈𝐺, {𝛼𝑔}𝑔∈𝐺) be the corresponding algebraic
partial action, and 𝐺n𝜃 𝑋 be the transformation groupoid associate to
𝜃. Then ℒ𝑐(𝑋) o𝛼 𝐺 and 𝐴𝑅(𝐺n𝜃 𝑋) are isomorphic as 𝑅-algebras.

Proof. To define a homomorphism 𝜌 from ℒ𝑐(𝑋)o𝛼𝐺 to 𝐴𝑅(𝐺n𝜃 𝑋),
we begin defining it on elements of the form 𝑓𝑔𝛿𝑔, and then we extend
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it linearly to ℒ𝑐(𝑋) o𝛼 𝐺. More precisely, for 𝑓𝑔𝛿𝑔 ∈ ℒ𝑐(𝑋) o𝛼 𝐺 and
(𝑡, 𝑥) ∈ 𝐺n𝜃 𝑋, let

̃︀𝜌(𝑓𝑔𝛿𝑔)(𝑡, 𝑥) :=
{︃

𝑓𝑔(𝜃𝑔(𝑥)), if (𝑡, 𝑥) ∈ {𝑔} ×𝑋𝑔−1

0, otherwise,

and denote the linear extension of ̃︀𝜌 to ℒ𝑐(𝑋) o𝛼 𝐺 by 𝜌.
We claim that 𝜌 is well defined. For this it is enough to prove

that, for each 𝑔 ∈ 𝐺, ̃︀𝜌(𝑓𝑔𝛿𝑔) is a locally constant function with compact
support. Let (𝑡, 𝑥) ∈ 𝐺 n𝜃 𝑋. Suppose that (𝑡, 𝑥) ∈ {𝑔} × 𝑋𝑔. Since
𝑓𝑔 is locally constant, there is a neighborhood 𝑈 ⊆ 𝑋𝑔 of 𝜃𝑔(𝑥) such
that 𝑓𝑔|𝑈 is constant. Notice that 𝑉 = {𝑔}×𝜃𝑔−1(𝑈) is a neighborhood
of (𝑡, 𝑥) and ̃︀𝜌(𝑓𝑔𝛿𝑔)|𝑉 = 𝑓𝑔|𝑈 , which is constant. Now, suppose that
(𝑡, 𝑥) /∈ {𝑔} × 𝑋𝑔. Then (𝑡, 𝑥) ∈ 𝐺 n𝜃 𝑋 ∖ supp(̃︀𝜌(𝑓𝑔𝛿𝑔)), and clearly,̃︀𝜌(𝑓𝑔𝛿𝑔) is constant equal to 0 on this subset. We easily see that

supp(̃︀𝜌(𝑓𝑔𝛿𝑔)) = {𝑔} × 𝜃𝑔−1(supp(𝑓𝑔)),

which is compact (and clopen). We conclude that 𝜌(𝑓𝑔𝛿𝑔) ∈ 𝐴𝑅(𝐺n𝑋).
Next we check that 𝜌 is multiplicative. By linearity, it is enough

to check this on elements of the form 𝑓𝑔𝛿𝑔 ∈ ℒ𝑐(𝑋)o𝛼𝐺. So, take 𝑓𝑔𝛿𝑔

and 𝑓ℎ𝛿ℎ in ℒ𝑐(𝑋) o𝛼 𝐺 and (𝑡, 𝑥) ∈ 𝐺n𝜃 𝑋.

Form the convolution product definition in 𝐴𝑅(𝒢) (see Equa-
tion 1.6), we have that

supp[̃︀𝜌(𝑓𝑔𝛿𝑔) * ̃︀𝜌(𝑓ℎ𝛿ℎ) ⊆ supp(𝜌(𝑓𝑔𝛿𝑔)) supp(𝜌(𝑓ℎ𝛿ℎ))

⊆
(︀
{𝑔} ×𝑋𝑔−1

)︀
({ℎ} ×𝑋ℎ−1) . (2.1)

On the other hand, notice that

supp(𝛼𝑔(𝛼𝑔−1(𝑓𝑔)𝑓ℎ)) = supp(𝑓𝑔) ∩ 𝜃𝑔(supp(𝑓ℎ)) ⊆ 𝜃𝑔(𝑋𝑔−1 ∩𝑋ℎ).
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Hence,

supp(𝜌[(𝑓𝑔𝛿𝑔)(𝑓ℎ𝛿ℎ)]) = supp(𝜌[𝛼𝑔(𝛼𝑔−1(𝑓𝑔)𝑓ℎ)𝛿𝑔ℎ])

= {𝑔ℎ} ×𝑋(𝑔ℎ)−1 ∩ supp(𝛼𝑔(𝛼𝑔−1(𝑓𝑔)𝑓ℎ))

⊆ {𝑔ℎ} ×𝑋(𝑔ℎ)−1 ∩ 𝜃𝑔(𝑋𝑔−1 ∩𝑋ℎ)

= {𝑔ℎ} × 𝜃ℎ−1(𝑋ℎ ∩𝑋𝑔−1)

=
(︀
{𝑔} ×𝑋𝑔−1

)︀
({ℎ} ×𝑋ℎ−1) . (2.2)

By Equations 2.1 and 2.2, we can conclude that

[̃︀𝜌(𝑓𝑔𝛿𝑔) * ̃︀𝜌(𝑓ℎ𝛿ℎ)](𝑡, 𝑥) = 0 = 𝜌[(𝑓𝑔𝛿𝑔)(𝑓ℎ𝛿ℎ)](𝑡, 𝑥),

for all (𝑡, 𝑥) ∈ 𝐺n𝜃 𝑋 ∖
(︀
{𝑔} ×𝑋𝑔−1

)︀
({ℎ} ×𝑋ℎ−1).

If (𝑡, 𝑥) ∈
(︀
{𝑔} ×𝑋𝑔−1

)︀
({ℎ} ×𝑋ℎ−1), we get that

(𝑡, 𝑥) = (𝑔, 𝜃ℎ(𝑥))(ℎ, 𝑥) = (𝑔ℎ, 𝑥),

and ((𝑔, 𝜃ℎ(𝑥)), (ℎ, 𝑥)) is the only pair in
(︀
{𝑔} ×𝑋𝑔−1

)︀
× ({ℎ} ×𝑋ℎ−1)

such that the product is (𝑡, 𝑥). Then, in this case,

[𝜌(𝑓𝑔𝛿𝑔) * 𝜌(𝑓ℎ𝛿ℎ)](𝑡, 𝑥) = 𝜌(𝑓𝑔𝛿𝑔)(𝑔, 𝜃ℎ(𝑥))𝜌(𝑓ℎ𝛿ℎ)(ℎ, 𝑥)

= 𝑓𝑔(𝜃𝑔(𝜃ℎ(𝑥)))𝑓ℎ(𝜃ℎ(𝑥))

= 𝑓𝑔(𝜃𝑔ℎ(𝑥))𝑓ℎ(𝜃𝑔−1(𝜃𝑔ℎ(𝑥))

= 𝛼𝑔(𝛼𝑔−1(𝑓𝑔)𝑓ℎ)(𝜃𝑔ℎ(𝑥))

= 𝜌(𝛼𝑔(𝛼𝑔−1(𝑓𝑔)𝑓ℎ)𝛿𝑔ℎ)(𝑔ℎ, 𝑥)

= 𝜌[(𝑓𝑔𝛿𝑔)(𝑓ℎ𝛿ℎ)](𝑡, 𝑥).

Therefore, 𝜌 is an homomorphism.
To finish, we prove that 𝜌 is a bijection, by showing that it has

an inverse 𝜌−1 : 𝐴𝑅(𝐺n𝜃𝑋) → ℒ𝑐(𝑋)o𝛼𝐺 given by 𝜌−1(𝑓) =
∑︀
𝑓𝑔𝛿𝑔,

where

𝑓𝑔(𝑥) :=
{︃

𝑓(𝑔, 𝜃𝑔−1(𝑥)), if 𝑥 ∈ 𝑋𝑔

0, otherwise.

We claim that 𝜌 is well defined. To this end, we need first to
prove that 𝑓𝑔 ∈ 𝐷𝑔.
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Since the topology of 𝐺 n𝜃 𝑋 is the relative product topology
from product topology of 𝐺 × 𝑋 and supp(𝑓) is compact, we have
supp(𝑓) = ({𝑔1, · · · , 𝑔𝑛} ×𝐾) ∩ (𝐺n𝜃 𝑋), where {𝑔1, · · · , 𝑔𝑛} ⊆ 𝐺 and
𝐾 ⊆ 𝑋 is compact. Thus supp(𝑓𝑔) = 𝐾 ∩𝑋𝑔 is compact.

Let 𝑥 ∈ 𝑋𝑔. Then, there is an open neighborhood 𝑊 of (𝑔, 𝑥)
such that 𝑓 |𝑊 is constant. Notice that 𝑊 is of the form

(𝐻 × 𝑈) ∩ (𝐺n𝜃 𝑋),

where 𝐻 is open subset of 𝐺 and 𝑈 is open subset of 𝑋. We have that
𝑉 := 𝑈 ∩ 𝑋𝑔 is an open neighborhood of 𝑥 and 𝑓𝑔|𝑉 is constant. If
𝑥 /∈ 𝑋𝑔 then 𝑓 is identically null in the open subset 𝑋 ∖𝑋𝑔. Therefore
𝑓𝑔 ∈ 𝐷𝑔.

Notice that the set {𝑔 ∈ 𝐺 | 𝑓(𝑔, 𝑥) ̸= 0, 𝑥 ∈ 𝑋𝑔} is finite
because 𝐺 is discrete and supp(𝑓) is compact. Then the set {𝑔 ∈ 𝐺 |
𝑓𝑔 ̸= 0} is also finite, that is, the sum

∑︀
𝑓𝑔𝛿𝑔 = 𝜌−1(𝑓) is finite.

It is straightforward to check that 𝜌−1 is the inverse of 𝜌.

Remark 2.1.2. Under the assumptions of the theorem above we re-
mark that partial actions such that each 𝑋𝑔 is clopen (𝑔 ∈ 𝐺) are
exactly the one’s for which the envelope space is Hausdorff (see [30]).

Remark 2.1.3. In Chapter 4 we will prove a similar, and more general,
result than Theorem 2.1.1. Furthermore, we will see that the hypothesis
of each 𝑋𝑔 is closed is not necessary.

From the identification of the unit space (𝐺 n𝜃 𝑋)(0) with the
space 𝑋 we have that the diagonal of the Steinberg algebra 𝐴𝑅(𝐺n𝜃𝑋)
is as set

𝐷𝑅(𝐺n𝜃 𝑋) = Span𝑅{1𝑈 | 𝑈 ⊆ 𝑋 is compact-open},

which is a commutative subalgebra of 𝐴𝑅(𝐺 n𝜃 𝑋), with point-wise
operations.

Corollary 2.1.4. The isomorphism above maps the diagonal subalge-
bra ℒc(X) 𝛿1 onto the diagonal subalgebra 𝐷𝑅(𝐺n𝜃 𝑋).
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2.2 Application to diagonal-preserving isomorphisms

In this section we study diagonal-preserving isomorphisms of par-
tial skew group algebras of the form ℒ𝑐(𝑋) o𝛼 𝐺. For this purpose we
apply the isomorphism of the previous section and we make use of re-
sults proved in [12] and [52]. We continue to use the same assumptions
on 𝑋,𝐺 and 𝜃 of the previous section.

By Theorem 2.1.1 and Corollary 2.1.4, we obtain an isomorphism
between the algebras ℒ𝑐(𝑋)o𝛼 𝐺 and 𝐴𝑅(𝐺n𝜃 𝑋) that “preserves di-
agonal”. In [12, Theorem 3.1], Carlsen and Rout characterize diagonal-
preserving (graded) isomorphism between two (graded) Steinberg alge-
bras. For our particular case we will use [12, Corollary 3.2] as follows:

Corollary 2.2.1. [12, Corollary 3.2] Let 𝑅 be an integral domain. For
𝑖 = 1, 2, let 𝒢𝑖 be an ample Hausdorff groupoid such that there is a dense
subset 𝑋𝑖 ⊆ 𝒢0

𝑖 , such that the group-ring 𝑅((𝒢𝑖)𝑥
𝑥) has no zero-divisors

and only trivial units for all 𝑥 ∈ 𝑋𝑖. Then 𝒢1 and 𝒢2 are isomorphic if,
and only if, there is a diagonal-preserving isomorphism between 𝐴𝑅(𝒢1)
and 𝐴𝑅(𝒢2).

Recall that if 𝑅 is an integral domain and 𝐺 is a group, the
group-ring 𝑅𝐺 of 𝐺 is defined by

𝑅𝐺 =
{︃

𝑛∑︁
𝑖=1

𝑟𝑖𝑔𝑖 | 𝑛 ∈ N, 𝑟𝑖 ∈ 𝑅 and 𝑔𝑖 ∈ 𝐺

}︃
.

An element 𝑥 ∈ 𝑅𝐺 is a unit if there exist 𝑦, 𝑧 ∈ 𝑅𝐺 such that 𝑥𝑦 =
1 = 𝑧𝑥. A unit is trivial if it has the form 𝑟𝑔 for some 𝑟 ∈ 𝑅 and 𝑔 ∈ 𝐺.

By the previous corollary, we need to find sufficient (and neces-
sary, if possible) conditions such that the group-ring 𝑅((𝐺n𝜃 𝑋)𝑥

𝑥) has
no zero-divisors and only trivial units. Let 𝑥 ∈ (𝐺 n𝜃 𝑋)(0) be fixed.
We have that

(𝐺n𝜃 𝑋)𝑥
𝑥 = {(𝑔, 𝑦) ∈ 𝐺n𝜃 𝑋 | 𝑟(𝑔, 𝑦) = 𝑥 = 𝑠(𝑔, 𝑦)}

= {(𝑔, 𝑦) ∈ 𝐺n𝜃 𝑋 | 𝜃𝑔(𝑦) = 𝑥 = 𝑦}

= {(𝑔, 𝑥) ∈ 𝐺n𝜃 𝑋 | 𝑥 = 𝜃𝑔(𝑥)}. (2.3)
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Notice that the group (𝐺n𝜃 𝑋)𝑥
𝑥 is isomorphic to a subgroup of 𝐺. To

study this subgroup we present some results of [45] below.
An infinite group 𝐺 is said to be indexed if we are given a homo-

morphism 𝛾 of 𝐺 in the additive group of integers, such that 𝛾(𝐺) does
not consist of zero alone. In general, a group can be indexed in more
than one way. An infinite group 𝐺 is said to be indicable throughout if
every subgroup of 𝐺, not consisting of the unit alone, can be indexed.
Notice that any non-trivial subgroup of an indicable throughout group
is also indicable throughout.

Example 2.2.2. Since any free group is indexed, and any subgroup of
a free group is either a free group or the unit alone, we have that any
free group is indicable throughout. Similarly any free Abelian group is
indicable throughout.

Theorem 2.2.3. [45, Theorem 12] If 𝐺 is indicable throughout and 𝑅
has no zero-divisors then 𝑅𝐺 has no zero-divisors.

Theorem 2.2.4. [45, Theorem 13] If 𝐺 is indicable throughout and 𝑅
has no zero-divisors then all the units of 𝑅𝐺 are trivial.

With these two theorems we obtain the following lemma:

Lemma 2.2.5. Let 𝐺 be an indicable throughout group and let 𝜃 =
({𝑋𝑔}𝑔∈𝐺, {𝜃𝑔}𝑔∈𝐺) be a partial action of 𝐺 on 𝑋. Then the group-
ring 𝑅((𝐺 n𝜃 𝑋)𝑥

𝑥) has no zero-divisors and only trivial units, for all
𝑥 ∈ (𝐺n𝜃 𝑋)(0).

Proof. We have that (𝐺n𝜃𝑋)𝑥
𝑥 is isomorphic to a subgroup of 𝐺. Then

this subgroup is indicable throughout or the unit alone. In the first case,
Theorems 2.2.3 and 2.2.4 ensure that 𝑅((𝐺n𝜃𝑋)𝑥

𝑥) has no zero-divisors
and only trivial units. In the second case, 𝑅((𝐺n𝜃𝑋)𝑥

𝑥) = 𝑅({𝑥}) ∼= 𝑅,

that also has no zero-divisors and only trivial units.

Theorem 2.2.6. [5, Theorem 4.5] Let 𝑅 be an integral domain, let
𝐺,𝐻 be indicable throughout, discrete groups, let 𝑋,𝑌 be locally com-
pact, Hausdorff, and zero-dimensional topological spaces, and let 𝜃 =
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({𝑋𝑔}𝑔∈𝐺, {𝜃𝑔}𝑔∈𝐺) and 𝛾 = ({𝑌ℎ}ℎ∈𝐻 , {𝜃ℎ}ℎ∈𝐻) be partial actions.
Then the following are equivalent:

(i) the transformation groupoids 𝐺n𝜃𝑋 and 𝐻n𝛾 𝑌 are isomorphic
as topological groupoids,

(ii) there exists a diagonal-preserving isomorphism

Γ : 𝐴𝑅(𝐺n𝜃 𝑋) −→ 𝐴𝑅(𝐻 n𝛾 𝑌 ),

(iii) there exists a diagonal-preserving isomorphism

Φ : ℒ𝑐(𝑋) o𝐺 −→ ℒ𝑐(𝑌 ) o𝐻.

Proof. “(𝑖) ⇔ (𝑖𝑖)” By Lemma 2.2.5, the hypotheses of Corollary 2.2.1
are satisfied and thus we get the two implications.

“(𝑖𝑖) ⇒ (𝑖𝑖𝑖)” Let 𝜌𝐺 : ℒ𝑐(𝑋) o 𝐺 −→ 𝐴𝑅(𝐺 n𝜃 𝑋) and 𝜌𝐻 :
ℒ𝑐(𝑌 ) o 𝐻 −→ 𝐴𝑅(𝐻 n𝛾 𝑌 ) be the isomorphisms given by Theo-
rem 2.1.1. Define Φ : ℒ𝑐(𝑋) o𝐺 −→ ℒ𝑐(𝑌 ) o𝐻 by Φ = 𝜌−1

𝐻 ∘ Γ ∘ 𝜌𝐺.

Clearly Φ is an isomorphisms and

Φ(ℒc(X) 𝛿1) = 𝜌−1
𝐻 ∘ Γ ∘ 𝜌𝐺(ℒc(X) 𝛿1) 2.1.4= 𝜌−1

𝐻 ∘ Γ(𝐷𝑅(𝐺n𝜃 𝑋))
(𝑖𝑖𝑖)= 𝜌−1

𝐻 (𝐷𝑅(𝐻 n𝛾 𝑌 )) 2.1.4= ℒ𝑐(𝑌 )𝛿1.

“(𝑖𝑖𝑖) ⇒ (𝑖𝑖)” Similar to the previous one, just take Γ = 𝜌𝐻 ∘Φ∘𝜌−1
𝐺 .

The above theorem can be applied, for example, to Leavitt path
algebras, since they can be seen as partial skew group rings associated
to a partial action of the free group, generated by edges of the graph
(see [40][Theorem 3.3]).

In [52, Theorem 2.7] X. Li characterizes diagonal-preserving iso-
morphisms of partial C*-crossed products, over commutative algebras,
in terms of continuous orbit equivalence of the associated partial acti-
ons:

Theorem 2.2.7. [52, Theorem 2.7] Let 𝐺,𝐻 be discrete and countable
groups, let 𝑋,𝑌 be locally compact, Hausdorff topological spaces, and let



94 Chapter 2. The interplay between Steinberg algebras and skew algebras

𝜃 = ({𝑋𝑔}𝑔∈𝐺, {𝜃𝑔}𝑔∈𝐺) and 𝛾 = ({𝑌ℎ}ℎ∈𝐻 , {𝜃ℎ}ℎ∈𝐻) be topologically
free partial actions. Then the following are equivalent:

(i) 𝜃 and 𝛾 are continuously orbit equivalent,

(ii) the transformation groupoids 𝐺n𝜃𝑋 and 𝐻n𝛾 𝑌 are isomorphic
as topological groupoids,

(iii) there exists an isomorphism Φ : 𝐶0(𝑋) o𝑟 𝐺 −→ 𝐶0(𝑌 ) o𝑟 𝐻

with Φ(𝐶0(𝑋)) = 𝐶0(𝑌 )

Moreover, “(ii) ⇒ (i)” holds in general (i.e., without the assumption
of topological freeness).

We are now able to add two additional equivalent conditions to
continuous orbit equivalence of partial actions, in terms of Steinberg
algebras and partial skew group rings. Before we do this we recall the
notion of topologically free partial action below.

Definition 2.2.8. A partial action 𝜃 = ({𝑋𝑔}𝑔∈𝐺, {𝜃𝑔}𝑔∈𝐺) of group
𝐺 on locally compact, Hausdorff topological space 𝑋 is topologically
free (or effective) if, for every 𝑔 ∈ 𝐺 ∖ {1}, the set

{𝑥 ∈ 𝑋𝑔−1 | 𝜃𝑔(𝑥) ̸= 𝑥}

is dense in 𝑋𝑔−1 . This is equivalent to saying that, for every 1 ̸= 𝑔 ∈ 𝐺,
the set

{𝑥 ∈ 𝑋𝑔−1 | 𝜃𝑔(𝑥) = 𝑥}

has empty interior.

Remark 2.2.9. Let 𝜃 = ({𝑋𝑔}𝑔∈𝐺, {𝜃𝑔}𝑔∈𝐺) be a partial action of a
group 𝐺 on locally compact, Hausdorff topological space 𝑋. Then, 𝜃 is
topologically free if, and only if, the transformation groupoip 𝐺 n𝜃 𝑋

is effective. In Chapter 4, we will prove this result for the more general
case of partial actions of inverse semigroups, (see Proposition 4.2.1).

Definition 2.2.10. Let 𝜃 = ({𝑋𝑔}𝑔∈𝐺, {𝜃𝑔}𝑔∈𝐺) be a partial action of
a group 𝐺 on a topological space 𝑋. We define,
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(a) for 𝑥 ∈ 𝑋 fixed, the subset 𝐺𝑥 =
{︀
𝑔 ∈ 𝐺 | 𝑥 ∈ 𝑋𝑔−1

}︀
of 𝐺.

(b) the subset Λ = {𝑥 ∈ 𝑋 | 𝜃𝑔(𝑥) ̸= 𝑥, for all 𝑔 ∈ 𝐺𝑥 ∖ {1}} of 𝑋,

We say that 𝜃 is topological principal if Λ is dense in 𝑋.

Lemma 2.2.11. Let 𝜃 = ({𝑋𝑔}𝑔∈𝐺, {𝜃𝑔}𝑔∈𝐺) be a partial action of
a group 𝐺 on a locally compact, Hausdorff topological space 𝑋. Then
𝜃 is topologically principal if, and only if, the transformation groupoid
𝐺n𝜃 𝑋 is topologically principal.

Proof. It suffices to prove that

Λ = {𝑥 ∈ 𝑋 | (𝐺n𝜃 𝑋)𝑥
𝑥 = {𝑥}}. (2.4)

By Equation 2.3, we have already seen that, for any 𝑥 ∈ 𝑋,

(𝐺n𝜃 𝑋)𝑥
𝑥 = {(𝑔, 𝑥) ∈ 𝐺n𝜃 𝑋 | 𝜃𝑔(𝑥) = 𝑥}.

Thus (𝐺n𝜃 𝑋)𝑥
𝑥 = {𝑥} if, and only if, 𝜃𝑔(𝑥) ̸= 𝑥, for all 𝑔 ∈ 𝐺𝑥 ∖ {1},

which shows that Equality 2.4 holds.

Lemma 2.2.12. [52, Lemma 2.4] Let 𝜃 = ({𝑋𝑔}𝑔∈𝐺, {𝜃𝑔}𝑔∈𝐺) be a
partial action of a discrete group 𝐺 on a locally compact, Hausdorff
topological space 𝑋. If 𝜃 is topologically principal, then 𝜃 is topologically
free. The converse is true if 𝐺 is countable.

Proof. For any 𝑔 ∈ 𝐺 with 𝑔 ̸= 1, notice that

Λ ∩𝑋𝑔−1 ⊆
{︀
𝑥 ∈ 𝑋𝑔−1 | 𝜃𝑔(𝑥) ̸= 𝑥

}︀
.

Then, by the density of Λ in 𝑋,
{︀
𝑥 ∈ 𝑋𝑔−1 | 𝜃𝑔(𝑥) ̸= 𝑥

}︀
is dense in

𝑋𝑔−1 .
To prove the converse, notice that the subset {𝑥 ∈ 𝑋𝑔−1 | 𝜃𝑔(𝑥) =

𝑥} is an open subset of 𝑋𝑔−1 , and that {𝑥 ∈ 𝑋𝑔−1 | 𝜃𝑔(𝑥) = 𝑥} ∪(︀
𝑋 ∖𝑋𝑔−1

)︀
is dense in 𝑋. By the Baire category theorem, we conclude

that
Λ =

⋂︁
𝑔∈𝐺∖{1}

{𝑥 ∈ 𝑋𝑔−1 | 𝜃𝑔(𝑥) ̸= 𝑥} ∪
(︀
𝑋 ∖𝑋𝑔−1

)︀
is dense in 𝑋.
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Remark 2.2.13. Let 𝜃 = ({𝑋𝑔}𝑔∈𝐺, {𝜃𝑔}𝑔∈𝐺) be a partial action of
a discrete group 𝐺 on a locally compact, Hausdorff topological space
𝑋. Notice that by the combination of Remark 2.2.9, Lemma 2.2.11 and
Lemma 2.2.12, we obtain as result a particular case, for the transfor-
mation groupoids, of Renault’s Proposition about effective and topo-
logical principal groupoids (see Proposition 1.2.18). More precisely, if
the transformation groupoid 𝐺 n𝜃 𝑋 is topologically principal, then
𝐺 n𝜃 𝑋 is effective. The converse is true if we add that 𝐺 n𝜃 𝑋 is
second countable.

Let 𝜃 be a partial action of a group 𝐺 on a topological space 𝑋.
We denoted by 𝐺*𝑋 the subset

{︀
(𝑔, 𝑥) ∈ 𝐺×𝑋 | 𝑥 ∈ 𝑋𝑔−1

}︀
of 𝐺×𝑋.

Definition 2.2.14. [52, Definition 2.6.] Two topological partial actions
𝜃 = ({𝑋𝑔}𝑔∈𝐺, {𝜃𝑔}𝑔∈𝐺) and 𝛾 = ({𝑌ℎ}ℎ∈𝐻 , {𝛾}ℎ∈𝐻) are called con-
tinuously orbit equivalent if, there are a homeomorphism 𝜙 : 𝑋 → 𝑌 ,
and continuous maps 𝑎 : 𝐺 *𝑋 → 𝐻, 𝑏 : 𝐻 * 𝑌 → 𝐺 such that

(i) 𝜙(𝜃𝑔(𝑥)) = 𝛾𝑎(𝑔,𝑥)(𝜙(𝑥)),

(ii) 𝜙−1(𝛾ℎ(𝑦)) = 𝜃𝑏(ℎ,𝑦)(𝜙−1(𝑦)).

Implicitly, we require that 𝑎(𝑔, 𝑥) ∈ 𝐻𝜙(𝑥) and 𝑏(ℎ, 𝑦) ∈ 𝐺𝜙−1(𝑦).

Before we state our next Theorem we need the following lemma.

Lemma 2.2.15. Let 𝑅 be an integral domain and 𝜃 be a partial action
of 𝐺 on 𝑋. If 𝜃 is topologically principal, then there is a dense subset
𝑍 ⊆ (𝐺n𝜃 𝑋)(0) such that the group ring 𝑅((𝐺n𝜃 𝑋)𝑧

𝑧)) has no zero-
divisors and only trivial units for all 𝑧 ∈ 𝑍.

Proof. By Lemma (2.2.11) the groupoid 𝐺 n𝜃 𝑋 is topologically prin-
cipal, that is, there exist a dense subset 𝑍 of (𝐺 n𝜃 𝑋)(0) such that
(𝐺 n𝜃 𝑋)𝑧

𝑧 = {𝑧}, for every 𝑧 ∈ 𝑍. Thus for 𝑧 ∈ 𝑍 we have that
𝑅((𝐺 n𝜃 𝑋)𝑧

𝑧) = 𝑅({𝑧}) ∼= 𝑅, which has no zero-divisors and only
trivial units.
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Theorem 2.2.16. [5, Theorem 4.9] Let 𝑅 be an integral domain,
let 𝐺,𝐻 be discrete groups, let 𝑋,𝑌 be locally compact, Hausdorff,
zero-dimensional spaces, and let 𝜃 = ({𝑋𝑔}𝑔∈𝐺, {𝜃𝑔}𝑔∈𝐺) and 𝛾 =
({𝑌ℎ}ℎ∈𝐻 , {𝜃ℎ}ℎ∈𝐻) be topologically principal partial actions. Then the
following are equivalent:

(i) 𝜃 and 𝛾 are continuously orbit equivalent,

(ii) the transformation groupoids 𝐺n𝜃𝑋 and 𝐻n𝛾 𝑌 are isomorphic
as topological groupoids,

(iii) there is a diagonal-preserving isomorphism Γ : 𝐴𝑅(𝐺 n𝜃 𝑋) →
𝐴𝑅(𝐻 n𝛾 𝑌 ),

(iv) there is a diagonal-preserving isomorphism Φ : ℒ𝑐(𝑋) o 𝐺 →
ℒ𝑐(𝑌 ) o𝐻.

Moreover, “(𝑖𝑖) ⇒ (𝑖)” holds in general (i.e., without the assumption
of topological freeness).

Proof. “(𝑖) ⇔ (𝑖𝑖)” See Theorem 2.2.7.
“(𝑖𝑖) ⇔ (𝑖𝑖𝑖)” By Lemma (2.2.15), the hypotheses of Corol-

lary 2.2.1 are satisfied and hence we get the desired implications.
“(𝑖𝑖𝑖) ⇔ (𝑖𝑣)” Analogous to the proof of “(𝑖𝑖) ⇔ (𝑖𝑖𝑖)” in Theo-

rem 2.2.6.

Remark 2.2.17. If we change the assumptions about the groups 𝐺,𝐻
and the partial actions 𝜃, 𝛾 in the previous theorem to: let 𝐺,𝐻 be
discrete and countable groups and let 𝜃 = ({𝑋𝑔}𝑔∈𝐺, {𝜃𝑔}𝑔∈𝐺) and
𝛾 = ({𝑌ℎ}ℎ∈𝐻 , {𝜃ℎ}ℎ∈𝐻) be topologically free, by Lemma 2.2.12, we
obtain the same equivalent conditions (i) - (iv).

2.3 Steinberg algebras realized as partial skew inverse se-
migroup algebras

In this section we will show that every Steinberg algebra can be
realized as a skew inverse semigroup algebra. This is an “algebraisation”
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of [60, Theorem 3.3.1] and [63, Theorem 8.1].
From now on we fix an ample Hausdorff groupoid 𝒢. By Pro-

positions 1.2.6 and 1.2.8, the set of all compact-open bisections in 𝒢,
denoted by 𝒢𝑎, is an inverse semigroup under the operations defined by

𝐵𝐶 = {𝑏𝑐 ∈ 𝒢 | 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 and s(𝑏) = r(𝑐)} ,

and
𝐵−1 = {𝑏−1 | 𝑏 ∈ 𝐵},

for all 𝐵,𝐶 ∈ 𝒢𝑎. The idempotent semilattice of 𝒢𝑎 consists precisely
of the compact-open subsets of 𝒢(0), and the inverse semigroup partial
order in 𝒢𝑎 is defined by

𝐴 ≤ 𝐵 ⇐⇒ 𝐴 ⊆ 𝐵,

where 𝐴,𝐵 ∈ 𝒢𝑎.
Similarly to Example 1.5.9, we get a topological action of inverse

semigroup which is intrinsic to every ample Hausdorff groupoid 𝒢. More
precisely, the inverse semigroup 𝒢𝑎 acts on the 𝒢(0), which is a locally
compact, Hausdorff, and zero-dimensional topological space as follows:
Given a compact-open bisection 𝐵 of 𝒢, we have that the map 𝜃𝐵 :
s(𝐵) → r(𝐵) defined by

𝜃𝐵(𝑢) = r(s−1
𝐵 (𝑢)),

for all 𝑢 ∈ s(𝐵), is a homeomorphisms, and the collection

𝜃 =
(︀
{s(𝐵)}𝐵∈𝒢𝑎 , {𝜃𝐵}𝐵∈𝒢𝑎

)︀
is a topological action of 𝒢𝑎 on the 𝒢(0). We say that 𝜃 is the canonical
action of 𝒢𝑎 on 𝒢(0).

As mentioned in Example 1.5.28, from the canonical action 𝜃 of
𝒢𝑎 on 𝒢(0), we get a corresponding action

𝛼 =
(︀
{𝐷𝐵}𝐵∈𝒢𝑎 , {𝛼𝐵}𝐵∈𝒢𝑎

)︀
of 𝒢𝑎 on the 𝑅-algebra ℒ𝑐(𝒢(0)) of all locally constant, compactly sup-
ported, 𝑅-valued functions on 𝒢(0), where 𝑅 is a unital commutative
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ring. More precisely, for every 𝐵 ∈ 𝒢𝑎, we have that 𝛼𝐵 is an iso-
morphism from

𝐷𝐵* = {𝑓 ∈ ℒ𝑐(𝒢(0)) | supp(𝑓) ⊆ s(𝐵)}

onto
𝐷𝐵 = {𝑓 ∈ ℒ𝑐(𝒢(0)) | supp(𝑓) ⊆ r(𝐵)},

which is defined by

𝛼𝐵(𝑓)(𝑥) =
{︃

𝑓 ∘ 𝜃𝐵*(𝑥), if 𝑥 ∈ r(𝐵)
0 if 𝑥 /∈ r(𝐵).

We can now prove last theorem of the this chapter.

Theorem 2.3.1. [5, Theorem 5.2] Let 𝒢 be an ample and Hausdorff
groupoid, let 𝜃 be the canonical action of the inverse semigroup 𝒢𝑎 over
the unit space 𝒢(0), and let 𝛼 be the corresponding action of 𝒢𝑎 on
ℒ𝑐(𝒢(0)). Then the Steinberg algebra 𝐴𝑅(𝒢) is isomorphic to the skew
inverse semigroup algebra ℒ𝑐(𝒢(0)) o𝛼 𝒢𝑎.

Proof. We will first show the existence of an epimorphism

𝜓 : ℒ(𝛼) → 𝐴𝑅(𝒢),

that vanishes in the ideal 𝒩 (𝛼) (thus, we can extend 𝜓 to an epi-
morphism ̃︀𝜓 of the quotient ℒ(𝛼)/𝒩 (𝛼) = ℒ𝑐(𝒢(0)) o𝛼 𝒢𝑎). To con-
clude, we will show that ̃︀𝜓 admits a right inverse map 𝜙. Define the
homomorphism 𝜓 : ℒ(𝛼) → 𝐴𝑅(𝒢), on the elements of the form 𝑓𝐵𝛿𝐵 ,
by

𝜓(𝑓𝐵𝛿𝐵)(𝑥) =
{︃

𝑓𝐵(r(𝑥)) if 𝑥 ∈ 𝐵

0 if 𝑥 /∈ 𝐵,

and extend it linearly to ℒ(𝛼).
We need to show that 𝜓 is well defined, that is, the function

𝜓(𝑓𝐵𝛿𝐵) is locally constant and has compact support.
If 𝑥 ∈ 𝒢 ∖ 𝐵 then 𝒢 ∖ 𝐵 is an open neighborhood of 𝑥 and

𝜓(𝑓𝐵𝛿𝐵)|𝒢∖𝐵 ≡ 0. Now, if 𝑥 ∈ 𝐵 then 𝜓(𝑓𝐵𝛿𝐵)(𝑥) = 𝑓𝐵(r(𝑥)). Since
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𝑓𝐵 is constant locally, there is an open neighborhood 𝑉 of r(𝑥) such
that 𝑓𝐵 |𝑉 is constant. We can take 𝑉 ⊆ r(𝐵) because r(𝐵) is open.
Thus r−1

𝐵 (𝑉 ) is an open neighborhood of 𝑥 and 𝜓(𝑓𝐵𝛿𝐵)|r−1
𝐵

(𝑉 ) = 𝑓𝐵 |𝑉
is constant. Moreover,

supp(𝜓(𝑓𝐵𝛿𝐵)) = 𝐵 ∩ supp(𝑓𝐵 ∘ r),

is a compact subset of 𝒢(0), since r is a homeomorphism and supp(𝑓𝐵)
is compact subset of 𝒢(0). Hence 𝜓(𝑓𝐵𝛿𝐵) ∈ 𝐴𝑅(𝒢).

Next, we will verify that 𝜓 is multiplicative. By linearity, it is
enough to verify that this application is multiplicative in the homoge-
neous terms. So, let 𝑓𝐵𝛿𝐵 , 𝑓𝐶𝛿𝐶 ∈ ℒ(𝛼) and 𝑥 ∈ 𝒢. Then,

𝜓(𝑓𝐵𝛿𝐵𝑓𝐶𝛿𝐶)(𝑥)

= 𝜓(𝛼𝐵(𝛼𝐵*(𝑓𝐵)𝑓𝐶)𝛿𝐵𝐶)(𝑥)

=
{︃

𝛼𝐵(𝛼𝐵*(𝑓𝐵)𝑓𝐶)(r(𝑥)), if𝑥 ∈ 𝐵𝐶

0, if𝑥 /∈ 𝐵𝐶

r(𝑥)∈r(𝐵)=
{︃

𝛼𝐵*(𝑓𝐵)𝑓𝐶(𝜃𝐵*(r(𝑥)), if𝑥 ∈ 𝐵𝐶

0, if𝑥 /∈ 𝐵𝐶

=
{︃

𝛼𝐵*(𝑓𝐵(𝜃𝐵*(r(𝑥))𝑓𝐶(𝜃𝐵*(r(𝑥)), if𝑥 ∈ 𝐵𝐶

0, if𝑥 /∈ 𝐵𝐶

𝜃𝐵* (r(𝑥))∈s(𝐵)=
{︃

𝑓𝐵(r(𝑥))𝑓𝐶(𝜃𝐵*(r(𝑥)), if𝑥 ∈ 𝐵𝐶

0, if𝑥 /∈ 𝐵𝐶

=
{︃

𝑓𝐵(r(𝑥))𝑓𝐶(s𝐵(r−1
𝐵 (r(𝑥)))), if𝑥 ∈ 𝐵𝐶

0, if𝑥 /∈ 𝐵𝐶

If 𝑥 ∈ 𝐵𝐶 then there are 𝑏 ∈ 𝐵 and 𝑐 ∈ 𝐶 such that s(𝑏) = r(𝑐) and
𝑥 = 𝑏𝑐. Notice that 𝑏 is the only element of 𝐵 such that r(𝑏) = r(𝑥) ∈
𝑟(𝐵). Thus

r−1
𝐵 (r(𝑥)) = 𝑏, and s𝐵(r−1

𝐵 (r(𝑥))) = s𝐵(𝑏) = s(𝑏).
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Hence

=
{︃

𝑓𝐵(r(𝑥))𝑓𝐶(s(𝑏)), if 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 and 𝑥 = 𝑏𝑐

0, otherwise.

s(𝑏)=r(𝑐)=
{︃

𝑓𝐵(r(𝑥))𝑓𝐶(r(𝑐)), if 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 and 𝑥 = 𝑏𝑐

0, otherwise.

r(𝑥)=r(𝑏)=
{︃

𝑓𝐵(r(𝑏))𝑓𝐶(r(𝑐)), if 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 and 𝑥 = 𝑏𝑐

0, otherwise.

=
∑︁

s(𝑏) = r(𝑐)
𝑥 = 𝑏𝑐

𝜓(𝑓𝐵𝛿𝐵)(𝑏)𝜓(𝑓𝐶𝛿𝐶)(𝑐)

= 𝜓(𝑓𝐵𝛿𝐵)𝜓(𝑓𝐶𝛿𝐶)(𝑥).

In order to prove the surjectivity of 𝜓, let 𝑓 ∈ 𝐴𝑅(𝒢). We have
seen that 𝑓 can be written as

𝑛∑︁
𝑖=1

𝑟𝑖1𝐵𝑖
,

where 𝑛 ∈ N, 𝑟𝑖 ∈ 𝑅, and 𝐵𝑖 are pairwise disjoint compact-open bisec-
tions, for all 𝑖 = 1, · · · , 𝑛. For each 𝑖, we define 𝑓𝐵𝑖

by

𝑓𝐵𝑖
(𝑥) :=

{︃
𝑟𝑖, if 𝑥 ∈ r(𝐵𝑖)
0, if 𝑥 ∈ 𝒢(0) ∖ r(𝐵𝑖).

Clearly 𝑓𝐵𝑖 belongs to 𝐷𝐵𝑖 . For 𝑦 ∈ 𝒢 we have that

𝜓(𝑓𝐵𝑖
𝛿𝐵𝑖

)(𝑦) =
{︃

𝑓𝐵𝑖(r(𝑦)), if 𝑦 ∈ 𝐵𝑖

0, if 𝑦 /∈ 𝐵𝑖

=
{︃

𝑟𝑖, if 𝑦 ∈ 𝐵𝑖

0, if 𝑦 /∈ 𝐵𝑖,

that is, 𝜓(𝑓𝐵𝑖
𝛿𝐵𝑖

) = 𝑟𝑖1𝐵𝑖
. Taking 𝐹 =

∑︀𝑛
𝑖=1 𝑓𝐵𝑖

𝛿𝐵𝑖
∈ ℒ(𝛼) we obtain

that

𝜓(𝐹 ) =
𝑛∑︁

𝑖=1
𝑟𝑖1𝐵𝑖

= 𝑓,
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and thus 𝜓 is surjective.
Next we will show that 𝜓(𝒩 (𝛼)) = {0}, where 𝒩 (𝛼) is the ideal

of ℒ(𝛼) generated by the set

{𝑓𝛿𝐵 − 𝑓𝛿𝐴 | 𝐵 ⊆ 𝐴 and 𝑓 ∈ 𝐷𝐵} .

Since 𝜓 is a homomorphism it is enough to show that 𝜓 is zero on the
generators of 𝒩 (𝛼). Let 𝑥 ∈ 𝒢.

∙ If 𝑥 /∈ 𝐴, then 𝑥 /∈ 𝐵 and

𝜓(𝑓𝛿𝐵)(𝑥) − 𝜓(𝑓𝛿𝐴)(𝑥) = 0.

∙ If 𝑥 ∈ 𝐴 ∖𝐵, then r(𝑥) ∈ r(𝐴) ∖ r(𝐵) (r is injective in 𝐴). Thus

𝜓(𝑓𝛿𝐵)(𝑥) − 𝜓(𝑓𝛿𝐴)(𝑥) = 𝜓(𝑓𝛿𝐴)(𝑥) = 𝑓(r(𝑥)) = 0,

because 𝑓 ∈ 𝐷𝐵 and r(𝑥) /∈ r(𝐵).

∙ If 𝑥 ∈ 𝐵, then 𝑥 ∈ 𝐴 and

𝜓(𝑓𝛿𝐵)(𝑥) − 𝜓(𝑓𝛿𝐴)(𝑥) = 𝑓(r(𝑥)) − 𝑓(r(𝑥)) = 0.

This proves that 𝜓 vanishes on 𝒩 (𝛼).
We can now define a map ̃︀𝜓 from the quotient ℒ/ℐ = ℒ𝑐(𝒢(0))o𝛼

𝒢𝑎 to 𝐴𝑅(𝒢). Given 𝑓𝐵𝑖𝛿𝐵𝑖 ∈ ℒ𝑐(𝒢(0)) o𝛼 𝒢𝑎 let

̃︀𝜓(︃ 𝑛∑︁
𝑖=1

𝑓𝐵𝑖𝛿𝐵𝑖

)︃
:= 𝜓

(︃
𝑛∑︁

𝑖=1
𝑓𝐵𝑖𝛿𝐵𝑖

)︃
.

Notice that t 𝜓 is well defined since 𝜓(𝒩 (𝛼)) = 0. Clearly ̃︀𝜓 is
a surjective homomorphism.

In order to prove that ̃︀𝜓 is an isomorphism, it suffices to verify
that ̃︀𝜓 admits a left inverse. To this end, consider the map 𝜙 : 𝐴𝑅(𝒢) →
ℒ𝑐(𝒢(0)) o𝛼 𝒢𝑎 defined as follows: Given 𝑓 ∈ 𝐴𝑅(𝒢), we can writte 𝑓
as

𝑓 =
𝑛∑︁

𝑗=1
𝑏𝑗1𝐵𝑗 ,
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where 𝑛 ∈ N, 𝐵𝑗 are pairwise disjoint compact-open bisections of 𝒢 and
𝑏𝑗 ̸= 0, for all 𝑗 = 1, · · · , 𝑛. Define

𝜙(𝑓) = 𝜙

(︃
𝑛∑︁

𝑖=1
𝑏𝑗1𝐵𝑗

)︃
=

𝑛∑︁
𝑗=1

𝑏𝑗1r(𝐵𝑗)𝛿𝐵𝑗 .

We claim that 𝜙 is well defined. Suppose that 𝑓 can also be
written as 𝑓 =

∑︀𝑚
𝑘=1 𝑐𝑘1𝐶𝑘

, where 𝐶1, · · · , 𝐶𝑚 are pairwise disjoint
compact-open bisections of 𝒢 and 𝑐1, · · · , 𝑐𝑛 are nonzero elements of
𝑅. Notice that,

𝑛⋃︁
𝑗=1

𝐵𝑗 = supp(𝑓) =
𝑚⋃︁

𝑘=1
𝐶𝑘,

where these unions are disjoint. Moreover, for any 𝑗, 𝐵𝑗 is equal to the
disjoint union

⋃︀𝑚
𝑘=1(𝐵𝑗 ∩𝐶𝑘), as well as, for any 𝑘, 𝐶𝐾 is equal to the

disjoint union
⋃︀𝑛

𝑗=1(𝐵𝑗 ∩ 𝐶𝑘). We can then conclude that

𝑛∑︁
𝑗=1

𝑚∑︁
𝑘=1

𝑏𝑗1𝐵𝑗∩𝐶𝑘
= 𝑓 =

𝑚∑︁
𝑘=1

𝑛∑︁
𝑗=1

𝑐𝑘1𝐶𝑘∩𝐵𝑗 .

Since the collection {𝐶𝑗 ∩𝐵𝑘}𝑗,𝑘 is pairwise disjoint, this implies that

𝑏𝑗1𝐵𝑗∩𝐶𝑘
= 𝑐𝑘1𝐶𝑘∩𝐵𝑗

,

for every pair 𝑖, 𝑗. Composing both maps, on the right side, with r−1
𝐵𝑗∩𝐶𝑘

,
we obtain

𝑏𝑗1r(𝐵𝑗∩𝐶𝑘) = 𝑐𝑘1r(𝐶𝑘∩𝐵𝑗),

for every pair 𝑖, 𝑗. Since, for any 𝑗, 𝐵𝑗 is a bisection, we get

r(𝐵𝑗) =
𝑚⋃︁

𝑘=1
r(𝐵𝑗 ∩ 𝐶𝑘).

Analogously, for any 𝑘,

r(𝐶𝑘) =
𝑛⋃︁

𝑗=1
r(𝐵𝑗 ∩ 𝐶𝑘).
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With this we obtain
𝑛∑︁

𝑗=1
𝑏𝑗1r(𝐵𝑗)𝛿𝐵𝑗

=
𝑛∑︁

𝑗=1
𝑏𝑗1∪𝑚

𝑘=1r(𝐵𝑗∩𝐶𝑘)𝛿𝐵𝑗
=

𝑛∑︁
𝑗=1

𝑚∑︁
𝑘=1

𝑏𝑗1r(𝐵𝑗∩𝐶𝑘)𝛿𝐵𝑗

=
𝑛∑︁

𝑗=1

𝑚∑︁
𝑘=1

𝑏𝑗1r(𝐵𝑗∩𝐶𝑘)𝛿𝐵𝑗∩𝐶𝑘
=

𝑚∑︁
𝑘=1

𝑛∑︁
𝑗=1

𝑐𝑘1r(𝐵𝑗∩𝐶𝑘)𝛿𝐶𝐾

=
𝑚∑︁

𝑘=1
𝑐𝑘1∪𝑛

𝑗=1r(𝐵𝑗∩𝐶𝑘)𝛿𝐵𝑗
=

𝑚∑︁
𝑘=1

𝑐𝑘1r(𝐶𝑘)𝛿𝐶𝑘
,

proving that 𝜙 is well defined.
We need to show that 𝜙∘ ̃︀𝜓 is the identity map of ℒ𝑐(𝒢(0))o𝛼 𝒢𝑎.

Notice that, since each 𝑓𝐵 ∈ 𝐷𝐵 can be written as

𝑓𝐵 =
𝑚∑︁

𝑘=1
𝑐𝑘1𝐵𝑘

,

where 𝑚 ∈ 𝑁, 𝑐𝑘 ∈ 𝑅 and 𝐵𝑘 are pairwise disjoint compact-open sub-
sets of r(𝐵) such that ∪𝑚

𝑘=1𝐵𝑘 ⊆ r(𝐵), we have that

𝜓(𝑓𝐵𝛿𝐵)(𝑥) =
{︃ ∑︀𝑚

𝑘=1 𝑐𝑘1𝐵𝑘
(r(𝑥)), if 𝑥 ∈ 𝐵

0, if 𝑥 /∈ 𝐵

=
{︃

𝑐𝑘, if 𝑥 ∈ 𝐵 ∩ r−1(𝐵𝑘)
0, otherwise.

Since the subsets 𝐵 ∩ r−1(𝐵𝑘) are pairwise disjoint compact-open, we
have that

𝜓(𝑓𝐵𝛿𝐵) =
𝑚∑︁

𝑘=1
𝑐𝑘1𝐵∩r−1(𝐵𝑘).

Thus,

𝜙 ∘ ̃︀𝜓(𝑓𝐵𝛿𝐵) = 𝜙 ∘ 𝜓(𝑓𝐵𝛿𝐵) = 𝜙

(︃
𝑚∑︁

𝑘=1
𝑐𝑘1𝐵∩r−1(𝐵𝑘)

)︃

=
𝑚∑︁

𝑘=1
𝑐𝑘1r(𝐵∩r−1(𝐵𝑘))𝛿𝐵∩r−1(𝐵𝑘)

r(𝐵∩𝑟−1(𝐵𝑘))=𝐵𝑘=
𝑚∑︁

𝑘=1
𝑐𝑘1𝐵𝑘

𝛿𝐵∩r−1(𝐵𝑘)

𝐵∩r−1(𝐵𝑘)⊆𝐵=
𝑚∑︁

𝑘=1
𝑐𝑘1𝐵𝑘

𝛿𝐵 =
𝑚∑︁

𝑘=1
𝑐𝑘1𝐵𝑘

𝛿𝐵 =
(︃

𝑚∑︁
𝑘=1

𝑐𝑘1𝐵𝑘

)︃
𝛿𝐵 = 𝑓𝐵𝛿𝐵 .
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Notice that ̃︀𝜓 is additive. If we prove that 𝜙 is also additive, then
we have that

𝜙 ∘ ̃︀𝜓(
∑︁

𝑓𝐵𝛿𝐵) =
∑︁

(𝜙 ∘ ̃︀𝜓(𝑓𝐵𝛿𝐵)) =
∑︁

𝑓𝐵𝛿𝐵 .

and so we conclude that ̃︀𝜓 is an isomorphism as desired.
So it remains to prove that 𝜙 is additive. Suppose that 𝑓, 𝑔 ∈

𝐴𝑅(𝒢) have representations

𝑓 =
𝑛∑︁

𝑖=1
𝑟𝑖1𝐴𝑖 and

𝑚∑︁
𝑗=1

𝑠𝑗1𝐵𝑗 ,

where 𝐴𝑖’s and 𝐵𝑗 ’s are pairwise disjoint compact-open bisections. We
can, if necessary, add terms of the form 0 · 1𝐵𝑗∖supp(𝑓) to the represen-
tation of 𝑓 , and similarly for 𝑔, add terms of the form 0 · 1𝐶𝑖∖supp(𝑔),
and assume that

⋃︀𝑛
𝑖=1 𝐶𝑖 =

⋃︀𝑚
𝑗=1 𝐷𝑗 . Therefore we may rewrite

𝑓 =
∑︁
𝑖,𝑗

𝑟𝑖1𝐶𝑖∩𝐷𝑗 and 𝑔 =
∑︁
𝑖,𝑗

𝑠𝑗1𝐶𝑖∩𝐷𝑗 ,

and hence
𝑓 + 𝑔 =

∑︁
𝑖,𝑗

(𝑟𝑖 + 𝑠𝑗)1𝐶𝑖∩𝐷𝑗
,

and the definition of 𝜙 readily implies 𝜙(𝑓 + 𝜆𝑔) = 𝜙(𝑓) + 𝜙(𝑔).

Remark 2.3.2. Let 𝜃 = ({𝑋𝑔}𝑔∈𝐺, {𝜃𝑔}𝑔∈𝐺) be a partial action of a
discrete group 𝐺 on a locally compact, Hausdorff, and zero-dimensional
topological space 𝑋. By Theorems 2.1.1, we get

𝐴𝑅(𝐺n𝜃 𝑋) ∼= ℒc(X)o𝛽(𝐺n𝜃 𝑋)𝑎,

where 𝛽 is the action of the inverse semigroup (𝐺 n𝜃 𝑋)𝑎 on the 𝑅-
algebra ℒc(X) associated to canonical action of (𝐺n𝜃 𝑋)𝑎 on the unit
space (𝐺n𝜃 𝑋)(0) ∼= 𝑋. On the other hand, by Theorem 2.1.1, we have
that

𝐴𝑅(𝐺n𝜃 𝑋) ∼= ℒc(X)o𝛼𝐺,

where 𝛼 is the partial action of the group 𝐺 on the 𝑅-algebra ℒc(X)
associated to the partial action 𝜃.
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3 SIMPLICITY OF SKEW INVERSE SEMIGROUP
RINGS

This chapter is based entirely on the paper [3], produced during
the doctorate. We shall be concerned with the simplicity of skew inverse
semigroup rings 𝐴 o𝛼 𝑆 when 𝐴 is a commutative ring. Our interest
to study this class of rings comes from its connections with topological
dynamics (see Section 3.2), and the fact that any Steinberg algebra,
associated with an ample Hausdorff groupoid, can be realized as a skew
inverse semigroup ring (see Theorem 2.3.1).

The interplay between topological dynamics and crossed pro-
ducts algebras is a driving force in the field of C*-algebras and has
motivated the study of relations between topological dynamics and pu-
rely algebraic objects (as Steinberg algebras). By applying our main
results we can describe connections between simplicity of the skew in-
verse semigroup ring associated with a topological partial action and
topological properties of the action. The techniques we employ here are
quite different from the ones used in [37].

This chapter is organized as follows. In the first section, we prove
the main result of this chapter, which yields a complete characteriza-
tion of simplicity of skew inverse semigroup rings in the case when 𝐴

is commutative (see Theorem 3.1.5). In Section 3.2 we apply our re-
sult in the context of topological dynamics: Given topological partial
action of an inverse semigroup on a locally compact, Hausdorff and
zero-dimensional space, we show that the associated skew inverse semi-
group ring is simple if, and only if, the action is minimal, topologically
principal and a certain condition on the existence of functions with
non-empty support on ideals of the skew inverse semigroup ring holds.
(The aforementioned condition has the same flavour as the one presen-
ted in [15] for groupoids. We were not aware of the work in [15] while
developing Section 3.2). Finally, in Section 3.3, based on the previous
chapters, we apply our main result to get a new proof of the simplicity
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criterion for a Steinberg algebra 𝐴𝑅(𝒢) associated with a Hausdorff and
ample groupoid 𝒢 (see Theorem 3.3.1).

3.1 Simplicity of skew inverse semigroup rings

Throughout this section we shall make the following assumpti-
ons: Any given partial action 𝛼 = ({𝛼𝑠}𝑠∈𝑆 , {𝐷𝑠}𝑠∈𝑆) of 𝑆 on a ring 𝐴
has the property that 𝐴 and each ideal 𝐷𝑠 for 𝑠 ∈ 𝑆, are 𝑠-unital.

Our goal is to give a characterization of simplicity for skew in-
verse semigroup rings 𝐴o𝛼 𝑆 in the case when 𝐴 is commutative (see
Theorem 3.1.5).

Before we proceed, let us first recall some of the notations and
results established in Section 1.6.1. By Lemma 1.6.14, the map ̃︀𝜏 :
𝐴o𝛼 𝑆 → 𝐴 defined by

̃︀𝜏 (︃∑︁
𝑠∈𝑆

𝑎𝑠𝛿𝑠

)︃
=
∑︁
𝑠∈𝑆

𝑎𝑠, (3.1)

is a well-defined additive map. Recall that the diagonal 𝒟 of the par-
tial skew inverse semigroup ring 𝐴 o𝛼 𝑆 is the subring generated by
the elements of the form 𝑎𝛿𝑒, where 𝑒 ∈ 𝐸(𝑆) and 𝑎 ∈ 𝐷𝑒. By Pro-
position 1.6.16, the ring 𝐴 is isomorphic to 𝒟 via the isomorphism
𝜑 : 𝐴 → 𝒟 defined by

𝜑

(︃
𝑛∑︁

𝑖=1
𝑎𝑒𝑖

)︃
=

𝑛∑︁
𝑖=1

𝑎𝑒𝑖
𝛿𝑒𝑖
, (3.2)

where 𝑛 ∈ N, 𝑒𝑖 ∈ 𝐸(𝑆) and 𝑎𝑒𝑖 ∈ 𝐷𝑒1 for 𝑖 ∈ {1, · · · , 𝑛}. Clearly,
if 𝐴 is a commutative ring, then the diagonal 𝒟 is also commutative.
Therefore, we will identify 𝐴 and 𝒟 and use 𝐴 and 𝒟 interchangeably.

It does not make sense to speak of the support-length of an
element in the quotient ring 𝐴 o𝛼 𝑆. However, given any element 𝑎 ∈
𝐴o𝛼 𝑆 we may speak of the minimal support-length of a representative
of 𝑎, i.e. an element 𝑥 ∈ ℒ(𝛼) such that 𝑎 = 𝑥. We make the following
definition.



3.1. Simplicity of skew inverse semigroup rings 109

Definition 3.1.1. For each non-zero 𝑎 ∈ 𝐴o𝛼𝑆 we define the number

𝑛(𝑎) = min
{︃

|𝐹 |
⃒⃒⃒
𝑎 =

∑︁
𝑠∈𝐹

𝑎𝑠𝛿𝑠 and 𝑎𝑠 ̸= 0 for all 𝑠 ∈ 𝐹

}︃
,

where |𝐹 | denotes the cardinality of the finite set 𝐹.

Recall that the centralizer of a non-empty subset 𝑀 of a ring
𝑅 is the set of all the elements of 𝑅 that commute with each element
of 𝑀 . If the centralizer of 𝑀 is 𝑀 itself, we say that this set is maxi-
mal commutative in 𝑅. Notice that a maximal commutative subring is
necessarily commutative.

Theorem 3.1.2. [3, Theorem 3.4] Let 𝐴 be a commutative ring. Then
𝐴 ∼= 𝒟 is a maximal commutative subring of 𝐴 o𝛼 𝑆 if, and only if,
𝒥 ∩𝐴 ̸= {0} for each non-zero ideal 𝒥 of 𝐴o𝛼 𝑆.

Proof. We first show the ”if” statement. To this end, suppose that
𝐴 ∼= 𝒟 is not a maximal commutative subring of 𝐴o𝛼 𝑆. We now wish
to conclude that there is some non-zero ideal 𝒥 of 𝐴 o𝛼 𝑆 such that
𝒥 ∩ 𝒟 = {0}.

Let 𝑐 =
∑︀

𝑠∈𝐹

𝑐𝑠𝛿𝑠 ∈ (𝐴 o𝛼 𝑆) ∖ 𝒟 be an element that commutes

with all the elements of 𝒟. Since 𝑐 commutes with 𝑎𝛿𝑒 for each 𝑒 ∈ 𝐸(𝑆)
and 𝑎 ∈ 𝐷𝑒, we get that∑︁

𝑠∈𝐹

𝑎𝑐𝑠𝛿𝑒𝑠 =
∑︁
𝑠∈𝐹

𝛼𝑠(𝛼𝑠*(𝑐𝑠)𝑎)𝛿𝑠𝑒,

and hence ∑︁
𝑠∈𝐹

𝑎𝑐𝑠𝛿𝑒𝑠 −
∑︁
𝑠∈𝐹

𝛼𝑠(𝛼𝑠*(𝑐𝑠)𝑎)𝛿𝑠𝑒 ∈ 𝒩 (𝛼).

Using that 𝜏(𝒩 (𝛼)) = {0} we get that∑︁
𝑠∈𝐹

(𝑎𝑐𝑠 − 𝛼𝑠(𝛼𝑠*(𝑐𝑠)𝑎)) = 0. (3.3)

Notice that 𝑥 :=
∑︀

𝑠∈𝐹

𝑐𝑠𝛿𝑠𝑠* −
∑︀

𝑠∈𝐹

𝑐𝑠𝛿𝑠 ̸= 0. Otherwise we would have

𝑐 =
∑︀

𝑠∈𝐹

𝑐𝑠𝛿𝑠 =
∑︀

𝑠∈𝐹

𝑐𝑠𝛿𝑠𝑠* ∈ 𝒟.
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Now, let 𝒥 be the non-zero ideal of 𝐴 o𝛼 𝑆 generated by the
element 𝑥. Each element of 𝒥 is a finite sum of elements of the form
𝑎𝑢𝛿𝑢𝑥𝑎𝑣𝛿𝑣, 𝑎𝑢𝛿𝑢𝑥 and 𝑥𝑎𝑣𝛿𝑣 for 𝑢, 𝑣 ∈ 𝑆 and 𝑎𝑢 ∈ 𝐷𝑢, 𝑏𝑣 ∈ 𝐷𝑣. By
the fact that 𝑠𝑠* ∈ 𝐸(𝑆) and 𝛼𝑠𝑠* = id𝐷𝑠𝑠* , we notice that

𝑎𝑢𝛿𝑢𝑥𝑎𝑣𝛿𝑣 = 𝑎𝑢𝛿𝑢

(︃∑︁
𝑠∈𝐹

𝑐𝑠𝛿𝑠𝑠* −
∑︁
𝑠∈𝐹

𝑐𝑠𝛿𝑠

)︃
𝑎𝑣𝛿𝑣

=
∑︁
𝑠∈𝐹

𝛼𝑢(𝛼𝑢*(𝑎𝑢)𝑐𝑠𝑎𝑣)𝛿𝑢𝑠𝑠*𝑣 −
∑︁
𝑠∈𝐹

𝛼𝑢(𝛼𝑢*(𝑎𝑢)𝛼𝑠(𝛼𝑠*(𝑐𝑠)𝑎𝑣))𝛿𝑢𝑠𝑣,

and hence, by Equation (3.3), we get that

̃︀𝜏 (︀𝑎𝑢𝛿𝑢𝑥𝑎𝑣𝛿𝑣

)︀
=
∑︁
𝑠∈𝐹

𝛼𝑢(𝛼𝑢*(𝑎𝑢)𝑐𝑠𝑎𝑣) −
∑︁
𝑠∈𝐹

𝛼𝑢(𝛼𝑢*(𝑎𝑢)𝛼𝑠(𝛼𝑠*(𝑐𝑠)𝑎𝑣))

= 𝛼𝑢

(︃
𝛼𝑢*(𝑎𝑢)

∑︁
𝑠∈𝐹

(𝑐𝑠𝑎𝑣 − 𝛼𝑠(𝛼𝑠*(𝑐𝑠)𝑎𝑣))
)︃

= 0.

Analogously, one may show that ̃︀𝜏(𝑎𝑢𝛿𝑢𝑥) = 0 and ̃︀𝜏(𝑥𝑎𝑣𝛿𝑣) = 0. This
shows that ̃︀𝜏(𝒥 ) = {0}.

Take any 𝑦 ∈ 𝒥 ∩ 𝒟. Then 𝑦 =
∑︀𝑛

𝑖=1 𝑎𝑖𝛿𝑒𝑖
, for some 𝑛 ∈ Z+,

𝑒𝑖 ∈ 𝐸(𝑆) and 𝑎𝑖 ∈ 𝐷𝑒𝑖
for 𝑖 ∈ {1, . . . , 𝑛}. Notice that

𝑛∑︁
𝑖=1

𝑎𝑖 = ̃︀𝜏 (︃ 𝑛∑︁
𝑖=1

𝑎𝑖𝛿𝑒𝑖

)︃
= ̃︀𝜏(𝑦) = 0.

Hence 𝑦 = 0 (by the same reason that 𝜑 is well-defined in Proposi-
tion 1.6.16). We now conclude that 𝒥 ∩ 𝒟 = {0}.

Now we show the ”only if” statement. Suppose that 𝒟 ∼= 𝐴 is a
maximal commutative subring of 𝐴o𝛼 𝑆. Let 𝒥 be a non-zero ideal of
𝐴 o𝛼 𝑆. Take 𝑥 ∈ 𝒥 ∖ {0} such that 𝑛(𝑥) = min{𝑛(𝑦) | 𝑦 ∈ 𝒥 ∖ {0}}
and write 𝑥 =

∑︀
𝑠∈𝐹

𝑥𝑠𝛿𝑠, where |𝐹 | = 𝑛(𝑥). Choose some ℎ ∈ 𝐹, and let

1ℎ ∈ 𝐷ℎ be such that 1ℎ𝑥ℎ = 𝑥ℎ. Since 𝐷ℎ ⊆ 𝐷ℎℎ* then 1ℎ ∈ 𝐷ℎℎ* ,
and

1ℎ𝛿ℎℎ*𝑥 = 𝑥ℎ𝛿ℎ +
∑︁

𝑠∈𝐹 ∖{ℎ}

1ℎ𝑥𝑠𝛿ℎℎ*𝑠.
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Using that ℎℎ*𝑠 ≤ 𝑠, for each 𝑠 ∈ 𝑆, we get that 1ℎ𝑥𝑠𝛿ℎℎ*𝑠 = 1ℎ𝑥𝑠𝛿𝑠

and hence
1ℎ𝛿ℎℎ*𝑥 = 𝑥ℎ𝛿ℎ +

∑︁
𝑠∈𝐹 ∖{ℎ}

1ℎ𝑥𝑠𝛿𝑠.

Let
𝑦 = 𝑥− 1ℎ𝛿ℎℎ*𝑥 =

∑︁
𝑠∈𝐹 ∖{ℎ}

(1ℎ𝑥𝑠 − 𝑥𝑠)𝛿𝑠

and notice that 𝑦 ∈ 𝒥 . Using that 𝑛(𝑥) is minimal and 𝑦 ∈ 𝒥 we
conclude that 𝑦 = 0. Thus, we have that

∑︀
𝑠∈𝐹 ∖{ℎ}

1ℎ𝑥𝑠𝛿𝑠 =
∑︀

𝑠∈𝐹 ∖{ℎ}
𝑥𝑠𝛿𝑠

and hence
𝑥 = 𝑥ℎ𝛿ℎ +

∑︁
𝑠∈𝐹 ∖{ℎ}

1ℎ𝑥𝑠𝛿𝑠.

In particular, 1ℎ𝛿ℎℎ* 𝑥 = 𝑥 ̸= 0 and, since

1ℎ𝛿ℎℎ* 𝑥 = 1ℎ𝛿ℎ 𝛼ℎ*(1ℎ)𝛿ℎ* 𝑥,

we have that 𝛼ℎ*(1ℎ)𝛿ℎ* 𝑥 ̸= 0. Let 𝑧 = 𝛼ℎ*(1ℎ)𝛿ℎ* 𝑥 ∈ 𝒥 and notice
that 𝑧 is non-zero and

𝑧 = 𝛼ℎ*(1ℎ)𝛿ℎ*𝑥 = 𝛼ℎ*(𝑥ℎ)𝛿ℎ*ℎ +
∑︁

𝑠∈𝐹 ∖{ℎ}

𝛼ℎ*(1ℎ)𝛿ℎ*𝑥𝑠𝛿𝑠

= 𝛼ℎ*(𝑥ℎ)𝛿ℎ*ℎ +
∑︁

𝑠∈𝐹 ∖{ℎ}

𝛼ℎ*(1ℎ𝑥𝑠)𝛿ℎ*𝑠.

Now, let 𝑎𝛿𝑒 ∈ 𝒟 be arbitrary and consider the element
𝑝 = 𝑎𝛿𝑒 · 𝑧 − 𝑧 · 𝑎𝛿𝑒 ∈ 𝒥 . We have that

𝑝 = 𝑎𝛼ℎ*(𝑥ℎ)𝛿𝑒ℎℎ* +
∑︁

𝑠∈𝐹 ∖{ℎ}

𝑎𝛼ℎ*(1ℎ𝑥𝑠)𝛿𝑒ℎ*𝑠

− 𝛼ℎ*(𝑥ℎ)𝑎𝛿ℎℎ*𝑒 −
∑︁

𝑠∈𝐹 ∖{ℎ}

𝛼ℎ*𝑠(𝛼𝑠*ℎ(𝛼ℎ*(1ℎ𝑥𝑠))𝑎)𝛿ℎ*𝑠𝑒.

Since 𝐴 and 𝐸(𝑆) are commutative, we have that

𝑝 =
∑︁

𝑠∈𝐹 ∖{ℎ}

𝑎𝛼ℎ*(1ℎ𝑥𝑠)𝛿𝑒ℎ*𝑠 −
∑︁

𝑠∈𝐹 ∖{ℎ}

𝛼ℎ*𝑠(𝛼𝑠*ℎ(𝛼ℎ*(1ℎ𝑥𝑠))𝑎)𝛿ℎ*𝑠𝑒.
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Using that 𝑒ℎ*𝑠 ≤ ℎ*𝑠 and ℎ*𝑠𝑒 ≤ ℎ*𝑠, we have that

𝑝 =
∑︁

𝑠∈𝐹 ∖{ℎ}

𝑎𝛼ℎ*(1ℎ𝑥𝑠)𝛿ℎ*𝑠 −
∑︁

𝑠∈𝐹 ∖{ℎ}

𝛼ℎ*𝑠(𝛼𝑠*ℎ(𝛼ℎ*(1ℎ𝑥𝑠))𝑎)𝛿ℎ*𝑠.

Hence, 𝑛(𝑝) < 𝑛(𝑥) and by the minimality of 𝑛(𝑥) we conclude that
𝑝 = 0.

But this implies that 𝑎𝛿𝑒 · 𝑧 = 𝑧 · 𝑎𝛿𝑒. Therefore

𝑛∑︁
𝑖=1

𝑎𝑖𝛿𝑒𝑖 · 𝑧 = 𝑧 ·
𝑛∑︁

𝑖=1
𝑎𝑖𝛿𝑒𝑖 ,

for all
∑︀𝑛

𝑖=1 𝑎𝑖𝛿𝑒𝑖
∈ 𝒟. Since 𝒟 ∼= 𝐴 is maximal commutative, we get

that 𝑧 ∈ 𝒟. We conclude that 𝒥 ∩ 𝒟 ≠ {0}.

Corollary 3.1.3. [3, Corollary 3.5] Let 𝐴 be a commutative ring. If
𝐴 o𝛼 𝑆 is simple, then 𝐴 ∼= 𝒟 is a maximal commutative subring of
𝐴o𝛼 𝑆.

Recall that an ideal 𝐼 of 𝐴 is 𝑆-invariant if 𝛼𝑠(𝐼∩𝐷𝑠*) ⊆ 𝐼 holds
for each 𝑠 ∈ 𝑆. The ring 𝐴 is said to be 𝑆-simple if 𝐴 has no non-zero
𝑆-invariant proper ideal.

Proposition 3.1.4. [3, Propostion 3.6] Let 𝐴 be a ring. If 𝐴o𝛼 𝑆 is
simple, then 𝐴 is 𝑆-simple.

Proof. Let 𝐼 be a non-zero 𝑆-invariant ideal of 𝐴. Define the set

ℋ =
{︃∑︁

𝑠∈𝑆

𝑎𝑠𝛿𝑠 ∈ 𝐴o𝛼 𝑆
⃒⃒⃒
𝑎𝑠 ∈ 𝐼 ∩𝐷𝑠, 𝑠 ∈ 𝑆

}︃
.

Notice that ℋ ≠ {0}. Indeed, let 𝑎 ∈ 𝐼 be non-zero and let
𝑢 ∈ 𝐴 be such that 𝑢𝑎 = 𝑎. By the non-degeneracy of 𝛼 there are
idempotents 𝑒1, . . . , 𝑒𝑛 ∈ 𝐸(𝑆) such that 𝑢 =

∑︀𝑛
𝑖=1 𝑢𝑖, with 𝑢𝑖 ∈ 𝐷𝑒𝑖

for 𝑖 ∈ {1, . . . , 𝑛}. Clearly,

0 ̸= 𝑎 = 𝑢𝑎 =
𝑛∑︁

𝑖=1
𝑢𝑖𝑎.
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Using that 𝐼 is an ideal of 𝐴, we get that 𝑢𝑖𝑎 ∈ 𝐼∩𝐷𝑒𝑖
for 𝑖 ∈ {1, . . . , 𝑛},

and hence
∑︀𝑛

𝑖=1 𝑢𝑖𝑎𝛿𝑒𝑖
∈ ℋ. Let 𝜑 denote the ring isomorphism from

the proof of Proposition 1.6.16. Using that 𝑎 ̸= 0, we get that
𝑛∑︁

𝑖=1
𝑢𝑖𝑎𝛿𝑒𝑖

= 𝜑

(︃
𝑛∑︁

𝑖=1
𝑢𝑖

)︃
= 𝜑(𝑎) ̸= 0.

Moreover, ℋ is a left ideal of 𝐴 o𝛼 𝑆. Indeed, if 𝑎𝑟𝛿𝑟 ∈ 𝐴 o𝛼 𝑆

and 𝑎𝑠 ∈ 𝐼 ∩ 𝐷𝑠 then (𝑎𝑟𝛿𝑟)(𝑎𝑠𝛿𝑠) = 𝛼𝑟(𝛼𝑟*(𝑎𝑟)𝑎𝑠)𝛿𝑟𝑠. Since 𝐼 is 𝑆-
invariant, 𝛼𝑟(𝛼𝑟*(𝑎𝑟)𝑎𝑠) ∈ 𝐼, and from the definition of a partial action
we get that 𝛼𝑟(𝛼𝑟*(𝑎𝑟)𝑎𝑠) ∈ 𝐷𝑟𝑠. Hence, 𝑎𝑟𝛿𝑟𝑎𝑠𝛿𝑠 ∈ ℋ.

Similarly, ℋ is a right ideal of 𝐴o𝛼𝑆 and hence, by the simplicity
of 𝐴 o𝛼 𝑆, we obtain that ℋ = 𝐴 o𝛼 𝑆. From the definition of ℋ
we immediately see that ̃︀𝜏(ℋ) ⊆ 𝐼, and from what was done above,̃︀𝜏(ℋ) = ̃︀𝜏(𝐴o𝛼 𝑆) = 𝐴. Thus, 𝐼 = 𝐴 and therefore 𝐴 is 𝑆-simple.

We are now ready to state and prove the main result of this
section.

Theorem 3.1.5. [3, Theorem 3.7] If 𝐴 is a commutative ring, then
the following two assertions are equivalent:

(i) The skew inverse semigroup ring 𝐴o𝛼 𝑆 is simple;

(ii) 𝐴 is 𝑆-simple, and 𝐴 ∼= 𝒟 is a maximal commutative subring of
𝐴o𝛼 𝑆.

Proof. (i)⇒(ii): This follows from Corollary 3.1.3 and Proposition 3.1.4.
(ii)⇒(i): Let 𝒥 be a non-zero ideal of 𝐴o𝛼𝑆. By Theorem 3.1.2,

𝒥 ∩ 𝒟 ≠ {0}.
Put 𝒦 = 𝒥 ∩ 𝒟 and 𝒦′ = 𝜑−1(𝒦), where 𝜑 : 𝐴 → 𝒟 is the ring

isomorphism from Proposition 1.6.16. Clearly, 𝒦′ is a non-zero ideal of
𝐴. Now we show that 𝒦′ is 𝑆-invariant.

Take an arbitrary 𝑠 ∈ 𝑆 and an arbitrary 𝑎𝑠 ∈ 𝒦′ ∩𝐷𝑠. Pick 1𝑠 ∈
𝐷𝑠 such that 1𝑠𝑎𝑠 = 𝑎𝑠. By the definition of 𝐴 there are idempotents
𝑒1, . . . , 𝑒𝑛 ∈ 𝑆, and elements 𝑎𝑒𝑖 ∈ 𝐷𝑒𝑖 , for 𝑖 ∈ {1, . . . , 𝑛}, such that
𝑎𝑠 =

∑︀𝑛
𝑖=1 𝑎𝑒𝑖 and 𝜑(𝑎𝑠) =

∑︀𝑛
𝑖=1 𝑎𝑒𝑖

𝛿𝑒𝑖
∈ 𝒦. We notice that



114 Chapter 3. Simplicity of skew inverse semigroup rings

𝛼𝑠*(1𝑠)𝛿𝑠* ·
𝑛∑︁

𝑖=1
𝑎𝑒𝑖
𝛿𝑒𝑖

· 1𝑠𝛿𝑠 = 𝛼𝑠*(1𝑠)𝛿𝑠* ·
𝑛∑︁

𝑖=1
𝑎𝑒𝑖
𝛿𝑒𝑖

· 1𝑠𝛿𝑠

=
𝑛∑︁

𝑖=1
𝛼𝑠*(1𝑠𝑎𝑒𝑖

)𝛿𝑠*𝑒𝑖
· 1𝑠𝛿𝑠

𝑠*𝑒𝑖≤𝑠*

=
𝑛∑︁

𝑖=1
𝛼𝑠*(1𝑠𝑎𝑒𝑖

)𝛿𝑠* · 1𝑠𝛿𝑠

=
𝑛∑︁

𝑖=1
𝛼𝑠*(1𝑠𝑎𝑒𝑖1𝑠)𝛿𝑠*𝑠

= 𝛼𝑠*

(︃
1𝑠

(︃
𝑛∑︁

𝑖=1
𝑎𝑒𝑖

)︃
1𝑠

)︃
𝛿𝑠*𝑠

= 𝛼𝑠*(𝑎𝑠)𝛿𝑠*𝑠

is in 𝒥 ∩𝐴 = 𝒦 and hence 𝛼𝑠*(𝑎𝑠) = 𝜑−1(𝛼𝑠*(𝑎𝑠)𝛿𝑠*𝑠) ∈ 𝒦′. Therefore
𝒦′ is 𝑆-invariant. Using that 𝐴 is 𝑆-simple we conclude that 𝒦′ = 𝐴.

Now, consider the arbitrary element 𝑎𝑠𝛿𝑠 ∈ 𝐴 o𝛼 𝑆. By letting
1𝑠 ∈ 𝐷𝑠 be such that 1𝑠𝑎𝑠 = 𝑎𝑠. We have that 1𝑠 ∈ 𝐴 = 𝒦′. Hence there
are idempotents 𝑓1, . . . , 𝑓𝑚 ∈ 𝐸(𝑆) and 𝑢𝑗 ∈ 𝐷𝑓𝑗

, for 𝑗 ∈ {1, . . . ,𝑚},
such that 1𝑠 =

∑︀𝑚
𝑗=1 𝑢𝑗 ∈ 𝒦′ and 𝜑(1𝑠) =

∑︀𝑚
𝑗=1 𝑢𝑗𝛿𝑓𝑗

∈ 𝒦 ⊆ 𝒥 . Thus,

𝑎𝑠𝛿𝑠 = 1𝑠𝑎𝑠𝛿𝑠 =

⎛⎝ 𝑚∑︁
𝑗=1

𝑢𝑗

⎞⎠ 𝑎𝑠𝛿𝑠 =
𝑚∑︁

𝑗=1
𝑢𝑗𝑎𝑠𝛿𝑠

𝑓𝑗𝑠≤𝑠
=

𝑚∑︁
𝑗=1

𝑢𝑗𝑎𝑠𝛿𝑓𝑗𝑠

=

⎛⎝ 𝑚∑︁
𝑗=1

𝑢𝑗𝛿𝑓𝑗

⎞⎠ (𝑎𝑠𝛿𝑠) =

⎛⎝ 𝑚∑︁
𝑗=1

𝑢𝑗𝛿𝑓𝑗

⎞⎠ 𝑎𝑠𝛿𝑠 ∈ 𝒥 .

This shows that 𝐴o𝛼 𝑆 = 𝒥 as desired.

3.2 An application to topological dynamics

In this section we will apply our main results and connect to-
pological properties of a partial action of an inverse semigroup 𝑆 on
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a topological space 𝑋 with algebraic properties of the associated skew
inverse semigroup ring ℒc(X)o𝛼𝑆.

With this purpose, throughout this section, we assume that 𝜃 =
({𝜃𝑠}𝑠∈𝑆 , {𝑋𝑠}𝑠∈𝑆) is a topological partial action of an inverse semi-
group 𝑆 on a locally compact, Hausdorff, zero-dimensional topological
space 𝑋. From the partial action 𝜃 we get a corresponding partial ac-
tion 𝛼 = ({𝛼𝑠}𝑠∈𝑆 , {𝐷𝑠}𝑠∈𝑆) of 𝑆 on the 𝑅-algebra ℒc(X), of all locally
constant, compactly supported, 𝑅-valued functions on 𝑋, where 𝑅 is a
unital and commutative ring (see Example 1.5.28).

For a subset 𝑇 ⊆ 𝑋, we define

J(𝑇 ) = {𝑓 ∈ ℒc(X) | 𝑓(𝑥) = 0, for all 𝑥 ∈ 𝑇}.

Clearly, the set 𝐼(𝑇 ) is an ideal of ℒc(X). Moreover, since every function
in ℒc(X) is continuous, we conclude that J(𝑇 ) = J

(︀
𝑇
)︀
, where 𝑇 denotes

the closure of 𝑇.

Lemma 3.2.1. Let 𝑅 be a field. Then every ideal 𝐽 of ℒc(X) is of the
form

J(𝐹 ) = {𝑓 ∈ ℒc(X) | 𝑓(𝑥) = 0, for all 𝑥 ∈ 𝐹},

where 𝐹 is a closed subset of 𝑋 given by

𝐹 = {𝑥 ∈ 𝑋 | 𝑓(𝑥) = 0, for all 𝑓 ∈ 𝐽}.

Proof. Let 𝐽 be an ideal of ℒc(X) . Using that every function 𝑓 ∈
ℒc(X) is continuous, we have that the subset 𝐹 = {𝑥 ∈ 𝑋 | 𝑓(𝑥) =
0, for all 𝑓 ∈ 𝐽} is closed in 𝑋. Clearly, 𝐽 ⊆ J(𝐹 ).

Now, take any 𝑓 ∈ J(𝐹 ). Consider the set 𝑈 = supp(𝑓). Notice
that 𝑈 ∩ 𝐹 = ∅. If 𝑥 ∈ 𝑈 , then 𝑥 /∈ 𝐹 and there exists some 𝑓𝑥 ∈ 𝐽

such that 𝑓𝑥(𝑥) ̸= 0. We have that

𝑈 ⊆
⋃︁

𝑥∈𝑈

{𝑦 ∈ 𝑋 | 𝑓𝑥(𝑦) ̸= 0} =
⋃︁

𝑥∈𝑈

supp(𝑓𝑥).

By compactness of 𝑈 we may find finitely many points 𝑥1, . . . , 𝑥𝑛 such
that

𝑈 ⊆
𝑛⋃︁

𝑖=1
{𝑦 ∈ 𝑋 | 𝑓𝑥𝑖(𝑦) ̸= 0} =

𝑛⋃︁
𝑖=1

supp(𝑓𝑥𝑖).



116 Chapter 3. Simplicity of skew inverse semigroup rings

Consider 𝑈1 = supp(𝑓𝑥1) and 𝑈𝑖 := supp(𝑓𝑥𝑖
) ∖
⋃︀𝑖−1

𝑘=1 supp(𝑓𝑥𝑘
)

for all 𝑖 ∈ {2, . . . , 𝑛}. We have that
𝑛⋃︁

𝑖=1
supp(𝑓𝑥𝑖) =

𝑛⋃︁
𝑖=1

𝑈𝑖,

where the last union is a disjoint union of compact-open subsets.
Let 𝑔 =

∑︀𝑛
𝑖=1 𝑓𝑥𝑖 ·1𝑈𝑖 . Using that 𝑓𝑥𝑖 ∈ 𝐽 , for each 𝑖 ∈ {1, . . . , 𝑛},

we have that 𝑔 ∈ 𝐽. Notice that 𝑔(𝑥) ̸= 0 for all 𝑥 ∈ 𝑈. We define

ℎ(𝑥) =
{︃

1
𝑔(𝑥) if 𝑥 ∈ 𝑈

0 if 𝑥 /∈ 𝑈

and notice that ℎ ∈ ℒc(X). Clearly, 𝑓 = 𝑓 · 𝑔 · ℎ ∈ 𝐽. In fact, 𝑔 · ℎ is a
local unit for 𝑓 .

Remark 3.2.2. Let 𝑅 be a field. Notice that, by Lemma 3.2.1, every
ideal 𝐽 of ℒc(X) is of the form

I(𝑈) := J(𝑋 ∖ 𝑈) = {𝑓 ∈ ℒc(X) | supp(𝑓) ⊆ 𝑈} ,

where 𝑈 is an open subset of 𝑋 defined as

𝑈 = {𝑥 ∈ 𝑋 | there is 𝑓 ∈ 𝐽 such that 𝑓(𝑥) ̸= 0} =
⋃︁

𝑓∈𝐽

supp(𝑓).

Let 𝜃 = ({𝜃𝑠}𝑠∈𝑆 , {𝑋𝑠}𝑠∈𝑆) be a topological partial action of an
inverse semigroup 𝑆 on a locally compact Hausdorff space 𝑋. Recall
that a subset 𝑈 of 𝑋 is invariant if 𝜃𝑠(𝑈 ∩𝑋𝑠*) ⊆ 𝑈 for all 𝑠 ∈ 𝑆. The
topological partial action 𝜃 is minimal if there is no non-empty, proper
and open invariant subset of 𝑋.

Let 𝑅 be a field. It is easy to see that if 𝑈 is an open invariant
subset of 𝑋 then the associated ideal I(𝑈) is invariant. Conversely,
every invariant ideal corresponds to an open invariant subset of 𝑋.
Indeed, suppose that 𝐼 is an invariant ideal of ℒc(X). By Remark 3.2.2
there is an open subset 𝑈 of 𝑋 such that 𝐼 = I(𝑈). Take 𝑠 ∈ 𝑆,
𝑥 ∈ 𝑈 ∩ 𝑋𝑠* , and suppose that 𝜃𝑠(𝑥) /∈ 𝑈 . Let 𝐾 ⊆ 𝑈 be a compact-
open neighbourhood of 𝑥 (it exists since 𝑋 is zero-dimensional). Notice
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that the function 1𝐾 is contained in I(𝑈). Since 𝐼 is invariant, 𝛼𝑠(1𝐾) ∈
I(𝑈), that is, 1𝐾 ∘ 𝜃𝑠* ∈ I(𝑈). But then we get that

1 = 1𝐾(𝑥) = 1𝐾(𝜃𝑠* ∘ 𝜃𝑠(𝑥)) = 1𝐾 ∘ 𝜃𝑠*(𝜃𝑠(𝑥)) = 0.

Therefore 𝑈 is invariant.
From the previous paragraph we obtain the following result.

Proposition 3.2.3. Let 𝑅 be a field and let 𝜃 = ({𝜃𝑠}𝑠∈𝑆 , {𝑋𝑠}𝑠∈𝑆)
be a topological partial action of an inverse semigroup 𝑆 on a locally
compact, Hausdorff and zero-dimensional space 𝑋. Then 𝜃 is minimal
if, and only if, ℒc(X) is 𝑆-simple (with respect to the action 𝛼 associated
with 𝜃).

The notion of a topologically free (or effective) topological par-
tial action is already well-known for partial group actions, see Defini-
tion 2.2.8. In this case, the freeness of a topological partial action is
directly linked with the diagonal maximality of the skew group ring
associated with this partial action.

Proposition 3.2.4. Suppose that 𝜃 = ({𝑋𝑡}𝑡∈𝐺, {𝜃𝑡}𝑡∈𝐺) is a topolo-
gically free partial action of a group 𝐺 on 𝑋. Then ℒc(X) 𝛿1 is maximal
commutative in ℒc(X)o𝛼𝐺.

Proof. The proof is analogous to the proof of [37, Proposition 4.7].

With intention of generalizing the above result, we will now pre-
sent the notion of topologically principal partial action of an inverse
semigroup, which was introduced in [2], and the definition of effective
(or topologically free) partial action of inverse semigroup, which was
introduced in [32].

Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) be a partial action of an inverse
semigroup 𝑆 on a set 𝑋. The subset {𝑠 ∈ 𝑆 | 𝑥 ∈ 𝑋𝑠*} of 𝑆 will be
denoted by 𝑆𝑥.

Definition 3.2.5. [32, Definition 4.1] Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) be
a partial action of an inverse semigroup 𝑆 on a topological space 𝑋.
Given 𝑥 ∈ 𝑆 and 𝑠 ∈ 𝑆𝑥, we say that
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(a) 𝑥 is fixed by 𝑠 if 𝜃𝑠(𝑥) = 𝑥,

(b) 𝑥 is trivially fixed by 𝑠 if there is 𝑒 ∈ 𝐸(𝑆) such that 𝑒 ≤ 𝑠 and
𝑥 ∈ 𝑋𝑒,

(c) 𝜃 is effective (or topologically free) if, for every 𝑠 in 𝑆, the interior
of the set of fixed points for 𝑠 coincides with the set of points
trivially fixed by 𝑠. Symbolically, 𝜃 is effective if

int {𝑥 ∈ 𝑋𝑠* | 𝜃𝑠(𝑥) = 𝑥} = {𝑥 ∈ 𝑋𝑠* | ∃ 𝑒 ∈ 𝐸(𝑆), 𝑒 ≤ 𝑠 and 𝑥 ∈ 𝑋𝑒}.
(3.4)

Remark 3.2.6. The inclusion “⊇” in (3.4) is always satisfied. Indeed,
notice that if 𝑥 is a trivial fixed point for 𝑠, then there is 𝑒 ∈ 𝐸(𝑆) such
that 𝑒 ≤ 𝑠 and 𝑥 ∈ 𝑋𝑒, and

𝜃𝑠(𝑥) = 𝜃𝑒(𝑥) = 𝑥,

that is, 𝑥 is a fixed point for 𝑠. Moreover, since 𝑋𝑒 ⊆ 𝑋𝑠, we have that
every 𝑦 ∈ 𝑋𝑒 is trivially fixed for 𝑠. This show that the set of trivial
fixed points for 𝑠 is open, and hence it is necessarily contained in the
interior of the set of fixed points for 𝑠. Symbolically, we get that

{𝑥 ∈ 𝑋𝑠* | ∃ 𝑒 ∈ 𝐸(𝑆), 𝑒 ≤ 𝑠 and 𝑥 ∈ 𝑋𝑒} ⊆ int {𝑥 ∈ 𝑋𝑠* | 𝜃𝑠(𝑥) = 𝑥} ,

for all 𝑠 ∈ 𝑆, as required.

We should mention, however, that partial actions which corres-
pond to effective groupoids of germs were defined under the name “to-
pologically free” in [32], so, in order to avoid confusion throughout this
thesis, we will call the class of partial actions defined in [32] by effective.

It follows from Definition 3.2.5 that in the case when 𝜃 is a partial
action of a group 𝐺 on a topological space 𝑋, 𝜃 is effective if, for all
𝑔 ∈ 𝐺 ∖ {1},

int{𝑥 ∈ 𝑋𝑔* | 𝜃𝑔(𝑥) = 𝑥} = ∅.

This is exactly the definition of a group topologically free partial action
(see Definition 2.2.8).
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Definition 3.2.7. [2, Definition 7.1] Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) be a
topological partial action of an inverse semigroup 𝑆 on a topological
space 𝑋. The subset

{𝑥 ∈ 𝑋 | if 𝑠 ∈ 𝑆𝑥 and 𝑥 is fixed by 𝑠 then 𝑥 is trivially fixed by 𝑠}
(3.5)

of 𝑋 will be denoted by Λ(𝜃).
We say that 𝜃 is topologically principal if, and only if, Λ(𝜃) is

dense in 𝑋.

The notion of a topologically principal partial action stems from
the fact that the groupoid of germs 𝑆n𝑋 associated with a topological
partial action 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) is topologically principal if, and
only if, the partial action 𝜃 is topologically principal. We will also prove
this correspondence in Proposition 4.2.2.

The following proposition is a useful rewording of principality of
partial actions.

Lemma 3.2.8. Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) be a topological partial
action of 𝑆 on 𝑋. Then Λ(𝜃) coincides with the subset

{𝑥 ∈ 𝑋 | ∀𝑠, 𝑡 ∈ 𝑆𝑥, if 𝜃𝑠(𝑥) = 𝜃𝑡(𝑥) then ∃𝑢 ∈ 𝑆 with 𝑢 ≤ 𝑠, 𝑡 and 𝑥 ∈ 𝑋𝑢* } .

(3.6)
In particular, given 𝑥 ∈ 𝑋 and 𝑠, 𝑡 ∈ 𝑆𝑥, if 𝜃𝑠(𝑥) = 𝜃𝑡(𝑥) then there
is 𝑢 ≤ 𝑠, 𝑡 with 𝑥 ∈ 𝑋𝑢* , and 𝜃𝑠 and 𝜃𝑡 coincide in the neighbourhood
𝑋𝑢* of 𝑥.

Proof. Suppose that 𝑥 ∈ Λ(𝜃). For any 𝑠, 𝑡 ∈ 𝑆𝑥, if 𝜃𝑠(𝑥) = 𝜃𝑡(𝑥) then
𝑥 = 𝜃𝑠*𝑡(𝑥), and so, there is 𝑒 ∈ 𝐸(𝑆) such that 𝑒 ≤ 𝑠*𝑡 and 𝑥 ∈ 𝑋𝑒.
Taking 𝑢 = 𝑠𝑒, we get that Λ(𝜃) is contained in the subset (3.6).

For the reverse inclusion, suppose that 𝑥 belongs to subset (3.6).
For any 𝑠 ∈ 𝑆𝑥, if 𝜃𝑠(𝑥) = 𝑥 then 𝜃𝑠(𝑥) = 𝜃𝑠*𝑠(𝑥). By hypothesis, there
is 𝑢 ≤ 𝑠, 𝑠*𝑠 and 𝑥 ∈ 𝑋𝑢* . Using 𝑒 = 𝑢𝑢*, we get the desired result.

Proposition 3.2.9. [3, Proposition 4.10] Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆)
be a topological partial action of a countable inverse semigroup 𝑆 on a
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locally compact, Hausdorff topological space 𝑋. Then 𝜃 is topologically
principal if, and only if, for any 𝑠 ∈ 𝑆, the set

Λ𝑠(𝜃) = {𝑥 ∈ 𝑋𝑠* | if 𝑥 is fixed by 𝑠 then 𝑥 is trivially fixed by 𝑠}
(3.7)

is dense in 𝑋𝑠* .

Proof. For any 𝑠 ∈ 𝑆, we have that

Λ(𝜃) ∩𝑋𝑠* ⊆ Λ𝑠(𝜃),

and if 𝜃 is topologically principal, we can conclude that Λ𝑠(𝜃) is dense
in 𝑋𝑠* . Notice that in this direction we do not need to use the fact that
𝑆 is countable.

Conversely, suppose that Λ𝑠(𝜃) is dense in 𝑋𝑠* for 𝑠 ∈ 𝑆. Notice
that Λ𝑠(𝜃) is an open subset of 𝑋 and that

𝑋 = 𝑋𝑠* ∪ (𝑋 ∖𝑋𝑠*) = Λ𝑠(𝜃) ∪ int(𝑋 ∖𝑋𝑠*) ⊆ Λ𝑠(𝜃) ∪ int(𝑋 ∖𝑋𝑠*),

this means that, Λ𝑠(𝜃) ∪ int(𝑋 ∖𝑋𝑠*) is dense in 𝑋. Thus

Λ(𝜃) =
⋂︁
𝑠∈𝑆

(︁
Λ𝑠(𝜃)

⋃︁
int(𝑋 ∖𝑋𝑠*)

)︁
is dense in 𝑋 by the Baire category theorem.

Lemma 3.2.10. [3, Lemma 4.13] Let 𝑆 be a countable inverse se-
migroup and let 𝑋 be a locally compact, Hausdorff space 𝑋. If 𝜃 =
({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) is an effective partial action of 𝑆 on 𝑋, then 𝜃 is
topologically principal.

Proof. Suppose that 𝜃 is not topologically principal. We will show that
𝜃 is not topologically free. By Proposition 3.2.9, there is some 𝑠 ∈ 𝑆

such that Λ𝑠(𝜃) is not dense in 𝑋𝑠* . Now, pick some 𝑦 ∈ 𝑋𝑠* such that
𝑦 /∈ Λ𝑠(𝜃) and 𝑦 is not a limit point of Λ𝑠(𝜃). Notice that

{𝑥 ∈ 𝑋𝑠* | 𝜃𝑠(𝑥) ̸= 𝑥} ⊆ Λ𝑠(𝜃).
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Clearly, 𝑦 ∈ {𝑥 ∈ 𝑋𝑠* | 𝜃𝑠(𝑥) = 𝑥}. Moreover, there is an open neigh-
bourhood 𝑈 of 𝑦 such that 𝑈 ∩ Λ𝑠(𝜃) = ∅. Thus,

𝑈 ⊆ {𝑥 ∈ 𝑋𝑠* | 𝜃𝑠(𝑥) = 𝑥}.

This shows that 𝑦 ∈ int{𝑥 ∈ 𝑋𝑠* | 𝜃𝑠(𝑥) = 𝑥} and therefore 𝜃 is not
effective.

The next example shows that the conclusion of Lemma 3.2.10
does not hold for an arbitrary inverse semigroup 𝑆.

Example 3.2.11. [7, Example 6.4] or [3, Example 4.14] Let 𝐾 denote
the Cantor set and equip T = {𝑒𝑖𝜔 | 𝜔 ∈ R} with the discrete topology.
Consider the topological product space 𝑋 = (𝐾 ∩ (0, 1)) ×T. Define an
action 𝜃 of the additive group R on 𝑋 by

𝜃𝑡(𝑠, 𝑒𝑖𝜔) = (𝑠, 𝑒𝑖(𝜔+2𝑠𝑡𝛼))

for 𝑡 ∈ R and (𝑠, 𝑒𝑖𝜔) ∈ 𝑋. For any 𝑡 ∈ R ∖ {0}, we have that

int{(𝑠, 𝑒𝑖𝜔) ∈ 𝑋 | 𝜃𝑡(𝑠, 𝑒𝑖𝜔) = (𝑠, 𝑒𝑖𝜔)} = int{(𝑠, 𝑒𝑖𝜔) ∈ 𝑋 | 𝑠𝑡 ∈ Z} = ∅,

and therefore 𝜃 is effective. However, 𝜃 is not topologically principal.
Indeed, let 𝑥 = (𝑠, 𝑒𝑖𝜔) ∈ 𝑋 be arbitrary. Put 𝑡 = 1

𝑠 and notice that
𝜃𝑡(𝑥) = 𝜃 1

𝑠
(𝑠, 𝑒𝑖𝜔) = (𝑠, 𝑒𝑖(𝜔+2𝛼)) = (𝑠, 𝑒𝑖𝜔) = 𝑥. But 0 is the only

idempotent element of the additive group R, and using that 𝑡 = 1
𝑠 ̸= 0,

we conclude that 0 ̸≤ 1
𝑠 . In other words, (𝑠, 𝑒𝑖𝜔) /∈ Λ(𝜃). This shows

that Λ(𝜃) = ∅, and in particular 𝜃 is not topologically principal.

The next example shows that the converse of Lemma 3.2.10 does
not hold. That is, there is a topologically principal partial action 𝜃

of a countable inverse semigroup 𝑆 on a locally compact, Hausdorff
topological space 𝑋 such that 𝜃 is not effective. This example also shows
the loss of some properties that one has when generalizing partial action
of groups to partial action of inverse semigroups (for example, in the
case of group the converse of Lemma 3.2.10 holds, see Lemma 2.2.12).
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Example 3.2.12. [3, Example 4.15] We shall consider a particular case
of the Munn representation (see Example 1.4.8). As in Example 1.1.5,
let 𝑆 = N ∪ {∞, 𝑧} be the inverse semigroup whose product, for any
𝑚,𝑛 ∈ N, is given by

𝑛𝑚 = min(𝑛,𝑚), 𝑛∞ = ∞𝑛 = 𝑛𝑧 = 𝑧𝑛 = 𝑛, 𝑧∞ = ∞𝑧 = 𝑧

and 𝑧𝑧 = ∞∞ = ∞.

Then 𝑋 = 𝐸(𝑆) = N ∪ {∞} can be seen as the one-point com-
pactification of the natural numbers. Notice that the compact-open
sets of 𝑋 are either cofinite or contained in N. Now, let 𝜃 be the Munn
representation of 𝑆 on 𝑋. More precisely,

∙ for 𝑛 ∈ N, 𝑋𝑛 = {1, 2, . . . , 𝑛} and 𝜃𝑛 = id𝑋𝑛 ,

∙ 𝑋∞ = N ∪ {∞} and 𝜃∞ = id𝑋∞ ,

∙ 𝑋𝑧 = N ∪ {∞} and 𝜃𝑧 = id𝑋𝑧 .

Notice that 𝑆 is countable and that 𝑋 is a locally compact and Haus-
dorff space.

Since 𝑛,∞ ∈ 𝐸(𝑆), clearly Λ𝑛(𝜃) = 𝑋𝑛 and Λ∞(𝜃) = 𝑋∞.
Moreover, we notice that Λ𝑧(𝜃) = N, which is a dense subset of N ∪
{∞} = 𝑋𝑧. Hence, by Proposition 3.2.9, 𝜃 is topologically principal.

We claim that 𝜃 is not an effective partial action. Indeed,

int{𝑥 ∈ 𝑋𝑧* | 𝜃𝑧(𝑥) = 𝑥} = int (N ∪ {∞}) = N ∪ {∞},

but {𝑥 ∈ 𝑋𝑧* | there is 𝑒 ∈ 𝐸(𝑆) such that 𝑒 ≤ 𝑧 and 𝑥 ∈ 𝑋𝑒} = N.
Let 𝛼 be the partial action of 𝑆 on ℒc(X) associated with 𝜃, then

∙ for 𝑛 ∈ N, 𝐷𝑛
∼= ℒ𝑐({1, 2, . . . , 𝑛}) and 𝛼𝑛 = id𝐷𝑛 .

∙ 𝐷∞ ∼= ℒ𝑐(N ∪ {∞}) and 𝛼∞ = id𝐷∞ .

∙ 𝐷𝑧 = ℒ𝑐(N ∪ {∞}) and 𝛼𝑧 = id𝐷𝑧 .
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Now we will see that the diagonal of ℒc(X)o𝛼𝑆 is not a maximal
commutative subring. Fix 𝑛 ∈ N. We denote by 1[𝑛,∞] the characteristic
function of the set {𝑛, 𝑛 + 1, 𝑛 + 2, . . .} ∪ {∞}. We have that 1[𝑛,∞] ∈
𝐷𝑧

∼= ℒ𝑐(N ∪ {∞}) and that 1[𝑛,∞]𝛿𝑧 does not belong to the diagonal
𝒟 of ℒc(X)o𝛼𝑆. It is not difficult to see that 1[𝑛,∞]𝛿𝑧 commutes with
all elements of the diagonal.

It is also worth noticing that in this example the ring ℒc(X)o𝛼𝑆

has an infinite number of non-zero ideals whose intersection with the
diagonal is zero. Indeed, for each 𝑛 ∈ N, consider the ideal 𝒥 generated
by

1[𝑛,∞]𝛿𝑧 − 1[𝑛,∞]𝛿∞

and observe that

𝒥 =
{︃

𝑘∑︁
𝑖=1

𝑟𝑖1[𝑛𝑖,∞]𝛿𝑧 − 𝑟𝑖1[𝑛𝑖,∞]𝛿∞

⃒⃒⃒
𝑛𝑖 ≥ 𝑛 and 𝑟𝑖 ∈ 𝑅

}︃
.

It is important to note that in this case, supp
(︀̃︀𝜏(︀𝑓)︀)︀ = ∅, for every

𝑓 ∈ 𝒥 .

Remark 3.2.13. Notice that given 𝑓 =
∑︀𝑛

𝑖=1 𝑓𝑖𝛿𝑠𝑖 ∈ ℒc(X)o𝛼𝑆, we
have that supp

(︀̃︀𝜏(︀𝑓)︀)︀ = ∅ if, and only if,
∑︀𝑛

𝑖=1 𝑓𝑖 = 0.

Remark 3.2.14. The set

𝒥 =
{︃

𝑛∑︁
𝑖=1

𝑓𝑖𝛿𝑠𝑖
∈ ℒc(X)o𝛼𝑆

⃒⃒⃒ 𝑛∑︁
𝑖=1

𝑓𝑖 = 0
}︃

is a left ideal of ℒc(X)o𝛼𝑆.
Indeed, for every 𝑓 =

∑︀𝑛
𝑖=1 𝑓𝑖𝛿𝑠𝑖

∈ 𝒥 , and for every 1𝐾𝛿𝑡 ∈
ℒc(X)o𝛼𝑆 (𝑡 ∈ 𝑆 and 𝐾 compact-open subset of 𝑋𝑡), we have that

1𝐾𝛿𝑡 · 𝑓 =
𝑛∑︁

𝑖=1
𝛼𝑠(𝛼𝑠*(1𝑈 )𝑓𝑖)𝛿𝑡𝑠𝑖 .

Since 𝛼𝑠 is a ring homomorphism, we obtain
𝑛∑︁

𝑖=1
𝛼𝑠(𝛼𝑠*(1𝑈 )𝑓𝑖) = 𝛼𝑠

(︃
𝛼𝑠*(1𝑈 )

𝑛∑︁
𝑖=1

𝑓𝑖

)︃
= 𝛼𝑠(𝛼𝑠*(1𝑈 )0) = 0.
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Since every function of 𝐷𝑡 (𝑡 ∈ 𝑆) can be written as a linear com-
bination of characteristic function of compact-open subset of 𝑋𝑡, we
conclude that 𝒥 is a left ideal of ℒc(X)o𝛼𝑆.

However, 𝒥 is not necessarily a right ideal. For example, let
𝑋 = {𝑎, 𝑏, 𝑐} be a set with there points and 𝑆 = ℐ(𝑋) (the set of every
partial bijections of 𝑋) acting naturally on 𝑋, that is, 𝑓 ∘𝑥 = 𝑓(𝑥), for
all 𝑥 ∈ dom(𝑓). Let

𝑠 =“𝑎 → 𝑏” 𝑡 =“𝑐 → 𝑏” 𝑠 =“𝑎 → 𝑎”.

We have 𝑋𝑠 = 𝑋𝑐 = {𝑏}, so 1{𝑏} ∈ 𝐷𝑠 ∩ 𝐷𝑡 and 1{𝑏}𝛿𝑠 − 1{𝑏}𝛿𝑡 ∈ 𝒥 ,
but 1{𝑎}𝛿𝑢 ∈ 𝐷𝑢 and

(1{𝑏}𝛿𝑠 − 1{𝑏}𝛿𝑡)(1{𝑎}𝛿𝑢) = 1{𝑏}𝛿𝑠𝑢 /∈ 𝒥 .

Next we present a sufficient condition to obtain the ideal inter-
section property for the skew inverse semigroup ring arising from a
topologically principal partial action.

Proposition 3.2.15. [3, Proposition 4.16] Let 𝜃 = ({𝜃𝑠}𝑠∈𝑆 , {𝑋𝑠}𝑠∈𝑆)
be a topologically principal partial action of 𝑆 on a zero-dimensional lo-
cally compact Hausdorff space 𝑋. If ℐ is a non-zero ideal of ℒc(X)o𝛼𝑆,
and there is some 𝑓 ∈ ℐ such that supp

(︀̃︀𝜏 (︀𝑓)︀)︀ ̸= ∅, then ℐ ∩ 𝒟 ≠ {0}.

Proof. Let ℐ be a non-zero ideal of ℒc(X)o𝛼𝑆 and let

𝑓 =
∑︁
𝑠∈𝐹

𝑓𝑠𝛿𝑠 ∈ ℐ

be such that supp(̃︀𝜏(𝑓)) ̸= ∅. Since supp(̃︀𝜏(𝑓)) is an open subset of 𝑋,
and 𝜃 is topologically principal, there is some 𝑥 ∈ supp

(︀̃︀𝜏 (︀𝑓)︀)︀ ∩ Λ(𝜃).
We fix this 𝑥 throughout the rest of the proof.

Notice that the subset

{𝜃𝑠*(𝑥) | 𝑠 ∈ 𝐹 and 𝑓𝑠(𝑥) ̸= 0}

is non-empty and finite.
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We choose 𝑠1 ∈ 𝐹 such that 𝑓𝑠1(𝑥) ̸= 0 and

𝑟 =
∑︁
𝑠∈𝑇

𝑓𝑠(𝑥) ̸= 0,

where 𝑇 = {𝑠 ∈ 𝐹 | 𝑓𝑠(𝑥) ̸= 0 and 𝜃𝑠*(𝑥) = 𝜃𝑠*
1
(𝑥)}.

Let 𝑦 = 𝜃𝑠*
1
(𝑥). Furthermore, let 𝐵 be a compact-open neigh-

bourhood of 𝑥 contained in 𝑋𝑠1 ∩𝑋𝑒, for some 𝑒 ∈ 𝐸(𝑆) such that

{𝜃𝑠*(𝑥) | 𝑠 ∈ 𝐹 and 𝑓𝑠(𝑥) ̸= 0} ∩𝐵 = {𝑦} .

We have that 𝑔 = 𝑓 · 1𝐵𝛿𝑒 ∈ ℐ and that

𝑔 =
∑︁
𝑠∈𝐹

𝛼𝑠(𝛼𝑠*(𝑓𝑠)1𝐵)𝛿𝑒𝑠 =
∑︁
𝑠∈𝐹

𝛼𝑠(𝛼𝑠*(𝑓𝑠)1𝐵)𝛿𝑠.

Put 𝑔𝑠 = 𝛼𝑠(𝛼𝑠*(𝑓𝑠)1𝐵), and notice that supp(𝑔𝑠) ⊆ supp(𝑓𝑠) ∩ 𝜃𝑠(𝐵).
Then

{𝜃𝑠*(𝑥) | 𝑠 ∈ 𝐹 and 𝑔𝑠(𝑥) ̸= 0} = {𝑦}.

Furthermore,

{𝑠 ∈ 𝐹 | 𝑔𝑠(𝑥) ̸= 0} = {𝑠 ∈ 𝐹 | 𝑓𝑠(𝑥) ̸= 0 and 𝜃𝑠*(𝑥) = 𝜃𝑠*
1
(𝑥)} = 𝑇.

Using that 𝑥 ∈ Λ(𝜃), by Lemma 3.2.8, there is some 𝑢 ∈ 𝑆 such
that 𝑥 ∈ 𝑋𝑢* and 𝑢 ≤ 𝑠*, for all 𝑠 ∈ 𝑇 . Let 𝐶 ⊆ 𝑋𝑢* be a compact-open
neighbourhood of 𝑥. We may now rewrite 𝑔 as

𝑔 =
∑︁

𝑠∈𝐹 :𝑔𝑠(𝑥)=0

𝑔𝑠𝛿𝑠 +
∑︁

𝑠∈𝐹 :𝑔𝑠(𝑥)̸=0

(𝑔𝑠1𝐶 − 𝑔𝑠1𝑋∖𝐶)𝛿𝑠

=
∑︁

𝑠∈𝐹 :𝑔𝑠(𝑥)=0

𝑔𝑠𝛿𝑠 +
∑︁

𝑠∈𝐹 :𝑔𝑠(𝑥)̸=0

𝑔𝑠1𝐶𝛿𝑠 −
∑︁

𝑠∈𝐹 :𝑔𝑠(𝑥)̸=0

𝑔𝑠1𝑋∖𝐶𝛿𝑠

=
∑︁

𝑠∈𝐹 :𝑔𝑠(𝑥)=0

𝑔𝑠𝛿𝑠 +
∑︁

𝑠∈𝐹 :𝑔𝑠(𝑥)̸=0

𝑔𝑠1𝐶𝛿𝑢* −
∑︁

𝑠∈𝐹 :𝑔𝑠(𝑥) ̸=0

𝑔𝑠1𝑋∖𝐶𝛿𝑠.

Since each 𝑔𝑠 is locally constant, we can find another compact-
open neighbourhood 𝐾 of 𝑥 contained in 𝐶 such that 𝑔𝑠|𝐾 is constant,
for all 𝑠 ∈ 𝐹 , and 𝐾 ⊆ 𝑋𝑣, for some 𝑣 ∈ 𝐸(𝑆).

Thus, 1𝐾𝛿𝑣 · 𝑔 · 𝛼𝑢(1𝐾)𝛿𝑢 ∈ ℐ and
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1𝐾𝛿𝑣 · 𝑔 · 𝛼𝑢(1𝐾)𝛿𝑢 =
∑︁

𝑠∈𝐹 :𝑔𝑠(𝑥)̸=0

1𝐾𝑔𝑠1𝐶𝛿𝑣𝑢* · 𝛼𝑢(1𝐾)𝛿𝑢

=

⎛⎝ ∑︁
𝑠∈𝐹 :𝑔𝑠(𝑥)̸=0

𝑔𝑠(𝑥)

⎞⎠ 1𝐾𝛿𝑣𝑢* · 𝛼𝑢(1𝐾)𝛿𝑢

= 𝑟1𝐾𝛿𝑢* · 𝛼𝑢(1𝐾)𝛿𝑢

= 𝛼𝑢*(𝛼𝑢(𝑟1𝐾)𝛼𝑢(1𝐾))𝛿𝑢*𝑢

= 𝑟1𝐾𝛿𝑢*𝑢 ∈ ℐ ∩ 𝒟,

where 𝑟 ̸= 0.

Corollary 3.2.16. [3, Corollary 4.17] Let 𝜃 = ({𝜃𝑠}𝑠∈𝑆 , {𝑋𝑠}𝑠∈𝑆) be a
topologically principal partial action of 𝑆 on a zero-dimensional locally
compact Hausdorff space 𝑋. If for each non-zero ideal ℐ of ℒc(X)o𝛼𝑆

there is some 𝑓 ∈ ℐ such that supp(̃︀𝜏(𝑓)) ̸= ∅, then the diagonal 𝒟 is
a maximal commutative subring of ℒc(X)o𝛼𝑆.

Proof. This follows from Proposition 3.2.15 and Theorem 3.1.2.

Finally, we show that maximal commutativity of 𝒟 in ℒc(X)o𝛼𝑆

implies that the underlying action is topologically principal (we also
show the condition involving ideals and support of elements in ℒc(X)o𝛼𝑆).

Proposition 3.2.17. [3, Proposition 4.18] Suppose that 𝑆 is countable,
𝑋 is a locally compact, Hausdorff, and zero-dimensional space, and
𝜃 = ({𝜃𝑠}𝑠∈𝑆 , {𝑋𝑠}𝑠∈𝑆) is a topological partial action of 𝑆 on 𝑋. If the
diagonal 𝒟 is a maximal commutative subring of ℒc(X)o𝛼𝑆, then 𝜃

is topologically principal, and for each non-zero ideal ℐ of ℒc(X)o𝛼𝑆

there is some 𝑓 ∈ ℐ such that supp(̃︀𝜏(𝑓)) ̸= ∅.

Proof. We show the contrapositive statement. Suppose that 𝜃 is not
topologically principal. Then there is 𝑠 ∈ 𝑆 and there is a compact-
open subset 𝐵 of 𝑋𝑠* such that 𝐵 ∩ Λ𝑠(𝜃) = ∅. This means that, for
each 𝑥 ∈ 𝐵, 𝜃𝑠(𝑥) = 𝑥 and there is no 𝑒 ∈ 𝐸(𝑆) such that 𝑒 ≤ 𝑠
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and 𝑥 ∈ 𝑋𝑒 (equivalently, there is no 𝑒 ∈ 𝐸(𝑆) such that 𝑒 ≤ 𝑠* and
𝑥 ∈ 𝑋𝑒). Hence, 1𝐵𝛿𝑠* /∈ 𝒟.

Let 𝑒 ∈ 𝐸(𝑆) be arbitrary and take an arbitrary compact-open
subset 𝐷 of 𝑋𝑒. If 𝑥 ∈ 𝐵, then

𝛼𝑠*(𝛼𝑠(1𝐵)1𝐷)(𝑥) = 1𝐵(𝑥)1𝐷(𝜃𝑠(𝑥)) = 1𝐵(𝑥)1𝐷(𝑥) = (1𝐵1𝐷)(𝑥).

And if 𝑥 ∈ 𝑋 ∖𝐵, then

𝛼𝑠*(𝛼𝑠(1𝐵)1𝐷)(𝑥) = 1𝐵(𝑥)1𝐷(𝜃𝑠(𝑥)) = 0 = 1𝐵(𝑥)1𝐷(𝑥) = (1𝐵1𝐷)(𝑥).

Hence, 𝛼𝑠*(𝛼𝑠(1𝐵)1𝐷) = 1𝐵1𝐷. Thus,

1𝐷𝛿𝑒 ·1𝐵𝛿𝑠* = 1𝐷1𝐵𝛿𝑠* = 1𝐵1𝐷𝛿𝑠* = 𝛼𝑠*(𝛼𝑠(1𝐵)1𝐷)𝛿𝑠* = 1𝐵𝛿𝑠* ·1𝐷𝛿𝑒.

This implies that 1𝐵𝛿𝑠* commutes with all elements of the dia-
gonal 𝒟, and hence 𝒟 is not maximal commutative.

By Theorem 3.1.2, for every non-zero ideal ℐ of ℒc(X)o𝛼𝑆 we
have that ℐ ∩ 𝒟 ≠ {0}. Let 𝑓 =

∑︀𝑛
𝑖=1 𝑓𝑖𝛿𝑒𝑖

∈ ℐ ∩ 𝒟 be non-zero. By
the isomorphism of the diagonal 𝒟 with ℒc(X) we have that 𝑓 = 0 if,
and only if,

∑︀𝑛
𝑖=1 𝑓𝑒𝑖

= 0, and thus supp
(︀̃︀𝜏 (︀𝑓)︀)︀ = supp (

∑︀𝑛
𝑖=1 𝑓𝑒𝑖

) ̸=
∅.

Theorem 3.2.18. [3, Corollary 4.19] Let 𝑆 be a countable inverse se-
migroup, let 𝑋 be a locally compact, Hausdorff, and zero-dimensional
space, and let 𝑅 be a field. Then the skew inverse semigroup ring
ℒc(X)o𝛼𝑆 is simple if, and only if, the following three conditions are
satisfied

∙ 𝜃 is minimal,

∙ 𝜃 is topologically principal, and

∙ for every non-zero ideal ℐ of ℒc(X)o𝛼𝑆 there is some 𝑓 ∈ ℐ such
that supp(𝑓) ̸= ∅.

Proof. This follows from Proposition 3.2.3, Corollary 3.2.16, Lemma 3.2.17
and Theorem 3.1.5. Notice that for the “if” statement we do not need
to use the fact that 𝑆 is countable.
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Corollary 3.2.19. [3, Corollary 4.20] Let 𝑆, 𝑋 and 𝑅 be as in The-
orem 3.2.18. Suppose that 𝜃 = ({𝜃𝑠}𝑠∈𝑆 , {𝑋𝑠}𝑠∈𝑆) is a partial action
such that the following three assertions hold:

∙ 𝜃 is effective

∙ 𝜃 is minimal, and

∙ for every non-zero ideal ℐ of ℒc(X)o𝛼𝑆 there is 𝑓 ∈ ℐ such that
supp(𝑓) ̸= ∅.

Then the skew inverse semigroup ring ℒc(X)o𝛼𝑆 is simple.

Proof. This follows from Lemma 3.2.10 and Corollary 3.2.18.

3.3 An application to Steinberg algebras

Using that there is a description of Steinberg algebras via skew
inverse semigroup rings (see [5, Theorem 2.3.1]), which satisfy the as-
sumptions of the Section 3.1, we can apply the main result in this
chapter to characterize simplicity of Steinberg algebras. We then ob-
tain a new proof of the following result, which was first proved in [7]
for functions over the complex numbers.

Theorem 3.3.1. [13, Corollary 4.6.] Let 𝒢 be an ample Hausdorff
groupoid, and let 𝑅 be a unital and commutative ring. Then the Stein-
berg algebra 𝐴𝑅(𝒢) is simple if, and only if, 𝒢 is effective, minimal,
and 𝑅 is a field.

Remark 3.3.2. The isomorphism of Theorem 2.3.1, between the skew
inverse semigroup algebra ℒ𝑐(𝒢(0))o𝛼 𝒢𝑎 and Steinberg algebra 𝐴𝑅(𝒢),
is given by the map 𝜓 : ℒ𝑐(𝒢(0)) o𝛼 𝒢𝑎 → 𝐴𝑅(𝒢), which is defined on
the elements of the form 𝑓𝐵𝛿𝐵 , by

𝜓(𝑓𝐵𝛿𝐵)(𝑥) =
{︃

𝑓𝐵(r(𝑥)) if 𝑥 ∈ 𝐵

0 if 𝑥 /∈ 𝐵,

and extended linearly to ℒ(𝛼).
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In the proof of Theorem 2.3.1 it was shown that 𝜓 admits a left
inverse, namely the map 𝜙 : 𝐴𝑅(𝒢) → ℒ𝑐(𝒢(0))o𝛼𝒢𝑎 defined as follows:
Given 𝑓 =

∑︀𝑛
𝑗=1 𝑏𝑗1𝐵𝑗

∈ 𝐴𝑅(𝒢), where the 𝐵𝑗 ’s are pairwise disjoint
compact bisections of 𝒢, let

𝜙(𝑓) = 𝜙

(︃
𝑛∑︁

𝑖=1
𝑏𝑗1𝐵𝑗

)︃
:=

𝑛∑︁
𝑗=1

𝑏𝑗1r(𝐵𝑗)𝛿𝐵𝑗
.

Actually 𝜙 is the inverse of 𝜓, and, in particular, it is bijective. By the
surjectivity of 𝜙, given any 𝑓 ∈ ℒ𝑐(𝒢(0)) o𝛼 𝒢𝑎 we can write

𝑓 =
𝑛∑︁

𝑗=1
𝑏𝑗1r(𝐵𝑗)𝛿𝐵𝑗

,

where the 𝐵𝑗 ’s are pairwise disjoint compact bisections of 𝒢. Further-
more, by the injectivity of 𝜙, if

𝑛∑︁
𝑗=1

𝑏𝑗1r(𝐵𝑗)𝛿𝐵𝑗 =
𝑛∑︁

𝑗=1
𝑐𝑗1r(𝐶𝑗)𝛿𝐶𝑗 ,

where the 𝐵𝑗 ’s and 𝐶𝑗 ’s are pairwise disjoint compact bisections, then
𝑛∑︁

𝑖=1
𝑏𝑖1𝐵𝑖

=
𝑛∑︁

𝑖=1
𝑐𝑖1𝐶𝑖

.

Our first step towards a proof of Theorem 3.3.1 is to characterize
minimality of 𝒢 in terms of 𝒢𝑎-simplicity of ℒ𝑐(𝒢(0)).

Proposition 3.3.3. [3, Propostion 5.4] Let 𝒢 be an ample Hausdorff
groupoid, and let 𝑅 be a field. Then 𝒢 is minimal if, and only if, ℒ𝑐(𝒢(0))
is 𝒢𝑎-simple.

Proof. Suppose that 𝒢 is minimal. Let 𝐽 be a 𝒢𝑎-invariant non-zero
ideal of ℒ𝑐(𝒢(0)). By Remark 3.2.2, we know that

𝐽 = {𝑓 ∈ ℒ𝑐(𝒢(0)) | supp(𝑓) ⊆ 𝑈},

where 𝑈 is an open subset of 𝒢(0) given by

𝑈 = {𝑢 ∈ 𝒢(0) | ∃ 𝑓 ∈ 𝐽 such that 𝑓(𝑢) ̸= 0}.
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Notice that, since 𝒢 is minimal, if we prove that 𝑈 is an invariant
subset of 𝒢(0), then 𝑈 = 𝒢(0) and hence 𝐽 = ℒ𝑐(𝒢(0)). We prove the
invariance of 𝑈 below.

Let 𝑥 ∈ 𝒢 be such that s(𝑥) ∈ 𝑈. Then there exists a function
𝑔 ∈ 𝐽 such that 𝑔(s(𝑥)) ̸= 0. Furthermore, we can take 𝑥 ∈ 𝐵, where 𝐵
is a compact bisection of 𝒢. Since 𝑈 and s(𝐵) are open, we can consider

𝑔 ∈ 𝐽 ∩ 𝐼(s(𝐵)) = {𝑓 ∈ ℒ𝑐(𝒢(0)) | supp(𝑓) ⊆ 𝑈 ∩ s(𝐵)}.

Using that 𝐽 is 𝒢𝑎-invariant we get that 𝛼𝐵(𝑔) ∈ 𝐽 . Notice that

𝛼𝐵(𝑔)(r(𝑥)) = 𝑔(𝜃𝐵*(r(𝑥))) = 𝑔(s(r−1
𝐵 (r(𝑥)))) = 𝑔(s(𝑥)) ̸= 0.

Therefore, r(𝑥) ∈ 𝑈 and hence 𝑈 is 𝒢𝑎-invariant, as desired.
Now, suppose that ℒ𝑐(𝒢(0)) is 𝒢𝑎-simple. Let 𝑈 ⊆ 𝒢(0) be a

non-empty invariant open subset. Consider the set

𝐽 = {𝑓 ∈ ℒ𝑐(𝒢(0)) | supp(𝑓) ⊆ 𝑈}.

Clearly, 𝐽 is an ideal of ℒ𝑐(𝒢(0)). To see that 𝐽 is 𝒢𝑎-invariant,
suppose that 𝐵 ∈ 𝒢𝑎, 𝑔 ∈ 𝐽 ∩𝐷𝐵* , and 𝑥 ∈ 𝒢(0) ∖𝑈 . If 𝑥 ∈ r(𝐵), then
there exists some 𝑦 ∈ 𝐵 such that 𝑥 = r(𝑦), and hence

𝛼𝐵(𝑔)(𝑥) = 𝛼𝐵(𝑔)(r(𝑦)) = 𝑔(s(r−1
𝐵 (r(𝑦)))) = 𝑔(s(𝑦)).

Since 𝑈 is invariant, and r(𝑦) = 𝑥 /∈ 𝑈, we have that s(𝑦) /∈ 𝑈 .
Hence, 𝑔(s(𝑦)) = 0. If 𝑥 /∈ r(𝐵), then from the definition of 𝛼𝐵 , we
also have that 𝛼𝐵(𝑔)(𝑥) = 0. Therefore, 𝛼𝐵(𝑔) ∈ 𝐽 , and hence 𝐽 is 𝒢𝑎-
invariant. Using that ℒ𝑐(𝒢(0)) is 𝒢𝑎-simple it follows that 𝐽 = ℒ𝑐(𝒢(0))
and 𝑈 = 𝒢(0).

Notice that, for the “f” statement, we do not need to use the fact
that R is a field.

Proposition 3.3.4. [3, Proposition 5.5] Let 𝒢 be an ample Hausdorff
groupoid, and let 𝑅 be a commutative ring with unit. Then 𝒢 is effective
if, and only if, the diagonal

𝒟 =
{︃

𝑛∑︁
𝑖=1

𝑓𝑖𝛿𝑈𝑖
| 𝑛 ∈ N, 𝑈𝑖 ∈ 𝐸(𝒢𝑎) and 𝑓𝑖 ∈ 𝐼(r(𝑈𝑖))

}︃
∼= ℒ𝑐(𝒢(0))
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is a maximal commutative subring of ℒ𝑐(𝒢(0)) o𝛼 𝒢𝑎.

Proof. Suppose that 𝒢 is effective. We already know that 𝒟 is a com-
mutative subring.

Let 0 ̸= 𝑓 =
∑︀𝑛

𝑖=1 𝑟𝑖1r(𝐵𝑖)𝛿𝐵𝑖 ∈ ℒ𝑐(𝒢(0)) o𝛼 𝒢𝑎, where 𝑟𝑖 ∈
𝑅 ∖ {0} and the 𝐵𝑖’s are pairwise disjoint compact bisections of 𝒢 for
all 𝑖 ∈ {1, . . . , 𝑛}. Suppose that 𝑓 is an element which commutes with
all elements of 𝒟. We need to show that 𝑓 ∈ 𝒟.

By the effectiveness of 𝒢 it suffices to show that 𝐵𝑖 ⊆ Iso(𝒢) for
every 𝑖 ∈ {1, . . . , 𝑛} (since 𝐵𝑖 is open and 𝐵𝑖 ⊆ int(Iso(𝒢)) = 𝒢(0)). To
this end, suppose that there exists some 𝑘 ∈ {1, . . . , 𝑛}, and 𝑏 ∈ 𝐵𝑘,
such that r(𝑏) ̸= s(𝑏). Since 𝒢 is Hausdorff, there exists a compact
bisection 𝑈 ⊆ 𝒢(0) such that r(𝑏) ∈ 𝑈 and s(𝑏) /∈ 𝑈. Notice that
𝑈 ∈ 𝐸(𝒢𝑎).

Using the fact that 𝑓 belongs to the centralizer of 𝒟 we have
that

1𝑈𝛿𝑈 · 𝑓 = 𝑓 · 1𝑈𝛿𝑈 .

This implies that
𝑛∑︁

𝑖=1
𝑟𝑖1𝑈 1r(𝐵𝑖)𝛿𝑈𝐵𝑖 =

𝑛∑︁
𝑖=1

𝑟𝑖𝛼𝐵𝑖(𝛼𝐵*
𝑖
(1r(𝐵𝑖))1𝑈 )𝛿𝐵𝑖𝑈 .

Since 𝑈𝐵𝑖, 𝐵𝑖𝑈 ⊆ 𝐵𝑖, for all 𝑖 ∈ {1, . . . , 𝑛}, we get that
𝑛∑︁

𝑖=1
𝑟𝑖1𝑈 1r(𝐵𝑖)𝛿𝐵𝑖

=
𝑛∑︁

𝑖=1
𝑟𝑖𝛼𝐵𝑖(𝛼𝐵*

𝑖
(1r(𝐵𝑖))1𝑈 )𝛿𝐵𝑖

. (3.8)

Developing the left side of (3.8) we obtain
𝑛∑︁

𝑖=1
𝑟𝑖1𝑈 1r(𝐵𝑖)𝛿𝐵𝑖

=
𝑛∑︁

𝑖=1
𝑟𝑖1𝑈∩r(𝐵𝑖)𝛿𝐵𝑖

.

For each 𝑖 ∈ {1, . . . , 𝑛}, define 𝐶𝑖 := r−1
𝐵𝑖

(𝑈∩r(𝐵𝑖)). Notice that 𝐶𝑖 ⊆ 𝐵𝑖

and r(𝐶𝑖) = 𝑈 ∩ r(𝐵𝑖). Thus
𝑛∑︁

𝑖=1
𝑟𝑖1𝑈 1r(𝐵𝑖)𝛿𝐵𝑖 =

𝑛∑︁
𝑖=1

𝑟𝑖1𝑈∩r(𝐵𝑖)𝛿𝐵𝑖 =
𝑛∑︁

𝑖=1
𝑟𝑖1r(𝐶𝑖)𝛿𝐶𝑖 . (3.9)
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Now, developing the right side of (3.8) we get that

𝑛∑︁
𝑖=1

𝑟𝑖𝛼𝐵𝑖
(𝛼𝐵*

𝑖
(1r(𝐵𝑖))1𝑈 )𝛿𝐵𝑖

=
𝑛∑︁

𝑖=1
𝑟𝑖𝛼𝐵𝑖

(1s(𝐵𝑖)1𝑈 )𝛿𝐵𝑖

=
𝑛∑︁

𝑖=1
𝑟𝑖𝛼𝐵𝑖

(1s(𝐵𝑖)∩𝑈 )𝛿𝐵𝑖

=
𝑛∑︁

𝑖=1
𝑟𝑖1r(𝐵𝑖)∩𝜃𝐵𝑖

(s(𝐵𝑖)∩𝑈)𝛿𝐵𝑖
.

Define 𝐷𝑖 := r−1
𝐵𝑖

(r(𝐵𝑖) ∩ 𝜃𝐵𝑖
(s(𝐵𝑖) ∩ 𝑈)). Notice that 𝐷𝑖 ⊆ 𝐵𝑖

and r(𝐷𝑖) = r(𝐵𝑖) ∩ 𝜃𝐵𝑖
(s(𝐵𝑖) ∩ 𝑈). Then

𝑛∑︁
𝑖=1

𝑟𝑖𝛼𝐵𝑖
(𝛼𝐵*

𝑖
(1r(𝐵𝑖))1𝑈 )𝛿𝐵𝑖

=
𝑛∑︁

𝑖=1
𝑟𝑖1r(𝐷𝑖)𝛿𝐷𝑖

. (3.10)

By substituting (3.9) and (3.10) into Equation (3.8) we obtain
that

𝑛∑︁
𝑖=1

𝑟𝑖1r(𝐶𝑖)𝛿𝐶𝑖
=

𝑛∑︁
𝑖=1

𝑟𝑖1r(𝐷𝑖)𝛿𝐷𝑖
.

Since 𝐶𝑖 ⊆ 𝐵𝑖, for each 𝑖 ∈ {1, . . . , 𝑛}, the 𝐶𝑖’s are pairwise
disjoint compact bisections, and similarly the 𝐷𝑖’s are also pairwise
disjoint compact bisections. By Remark 3.3.2 we have that

𝑛∑︁
𝑖=1

𝑏𝑖1𝐶𝑖
=

𝑛∑︁
𝑖=1

𝑏𝑖1𝐷𝑖
.

Next we evaluate the above equality on the element 𝑏 of 𝐵𝑘

such that r(𝑏) ̸= s(𝑏). Since the 𝐵𝑖’s are pairwise disjoint we have that
𝑏 /∈ 𝐶𝑖, 𝑏 /∈ 𝐷𝑖 for 𝑖 ̸= 𝑘 and hence

𝑏𝑘1𝐶𝑘
(𝑏) = 𝑏𝑘1𝐷𝑘

(𝑏). (3.11)

Notice that

𝑏 ∈ 𝐶𝑘 = r−1
𝐵𝑘

(𝑈 ∩ r(𝐵𝑘)) ⇐⇒ r(𝑏) ∈ 𝑈 ∩ r(𝐵𝑘),
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and

𝑏 ∈ 𝐷𝑘 ⇐⇒ 𝑏 ∈ r−1
𝐵𝑘

(r(𝐵𝑘) ∩ 𝜃𝐵𝑘
(s(𝐵𝑘) ∩ 𝑈))

⇐⇒ r(𝑏) ∈ r(𝐵𝑘) ∩ 𝜃𝐵𝑘
(s(𝐵𝑘) ∩ 𝑈)

⇐⇒ r(𝑏) ∈ r(𝐵𝑘) and r(𝑏) ∈ r(𝑠−1
𝐵𝑘

(s(𝐵𝑘) ∩ 𝑈))
𝑏∈𝐵𝑘⇐⇒ r(𝑏) ∈ r(𝐵𝑘) and 𝑏 ∈ s−1

𝐵𝑘
(s(𝐵𝑘) ∩ 𝑈)

⇐⇒ r(𝑏) ∈ r(𝐵𝑘) and s(𝑏) ∈ s(𝐵𝑘) ∩ 𝑈

𝑏∈𝐵𝑘⇐⇒ r(𝑏) ∈ r(𝐵𝑘) and s(𝑏) ∈ 𝑈.

Recall that, by construction, 𝑏 ∈ 𝐶𝑘 and s(𝑏) /∈ 𝑈 . Thus, Equa-
tion (3.11) yields 𝑏𝑘 = 0, a contradiction. Therefore, r(𝑏) = s(𝑏),
𝑏 ∈ Iso(𝐺) and 𝐵𝑖 ∈ Iso(𝐺) as desired.

In order to prove the converse we show the contrapositive sta-
tement. Suppose that 𝒢 is not effective. Then there exists a bisection
𝐵 ⊆ 𝒢 ∖ 𝒢(0) such that s(𝑏) = r(𝑏) for all 𝑏 ∈ 𝐵.

Recall that 𝜃𝐵 : s(𝐵) → r(𝐵) is defined by r(𝑢) = r(s−1
𝐵 (𝑢)).

Thus, in this case, 𝜃𝐵(s(𝑏)) = r(s−1
𝐵 (s(𝑏))) = r(𝑏) = s(𝑏), that is, 𝜃𝐵 =

ids(𝐵) . Similarly, 𝜃𝐵* = idr(𝐵) . This implies that 𝛼𝐵 = id𝐷𝐵* and
𝛼𝐵* = id𝐷𝐵

.

Notice that 1r(𝐵)𝛿𝐵 /∈ 𝒟. Take any 𝑓𝛿𝑈 ∈ 𝒟. Then

𝑓𝛿𝑈 · 1r(𝐵)𝛿𝐵 = 𝑓1r(𝐵)𝛿𝑈𝐵
𝑈𝐵⊆𝐵= 𝑓1r(𝐵)𝛿𝐵

= 1r(𝐵)𝑓𝛿𝐵
r(𝐵)=r(𝑈𝐵)= 1r(𝐵)𝑓𝛿𝐵𝑈

= 𝛼𝐵(𝛼𝐵*(1r(𝐵)𝑓))𝛿𝐵𝑈 = 1r(𝐵)𝛿𝐵 · 𝑓𝛿𝑈 ,

that is, 1r(𝐵)𝛿𝐵 commutes with all of 𝒟. This shows that 𝒟 is not
maximal commutative.

Remark 3.3.5. Since 𝒟 is isomorphic to ℒ𝑐(𝒢(0)) ∼= 𝐴𝑅(𝒢(0)), it fol-
lows from Proposition 3.3.4 and Theorem 3.1.2 that 𝒢 is effective if, and
only if, 𝐴𝑅(𝒢0) is maximal commutative if, and only if, every non-zero
ideal 𝐼 of 𝐴𝑅(𝒢) has non-zero intersection with 𝐴𝑅(𝒢(0)). The charac-
terization of effectiveness in terms of the ideal intersection property was
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first given in [14], and the equivalence between effectiveness of 𝒢 and
maximal commutativeness of 𝐴𝑅(𝒢0) was first proven in [75].

In order to apply Theorem 3.1.5 we need to verify that the
assumption about the local units is satisfied. In fact, for any finite
subset {𝑓1, · · · , 𝑓𝑛} of ℒ𝑐(𝒢(0)) consider 𝑈 =

⋃︀𝑛
𝑖=1 supp(𝑓𝑖). Clearly,

1𝑈 ∈ ℒ𝑐(𝒢(0)) and this element is a local unit for {𝑓1, · · · , 𝑓𝑛}. Mo-
reover, 1r(𝐵) and 1s(𝐵) are multiplicative identity elements in 𝐷𝐵 and
𝐷𝐵* , respectively.

Proof of Theorem 3.3.1. Let 𝒢 be a Hausdorff and ample groupoid, and
let 𝑅 be a unital and commutative ring. We will use Theorem 2.3.1
to identify the Steinberg algebra 𝐴𝑅(𝒢) with a certain skew inverse
semigroup ring ℒ𝑐(𝒢(0)) o 𝒢𝑎.

Suppose that 𝑅 is a field, and that 𝒢 is minimal and effec-
tive. By Proposition 3.3.3 and Proposition 3.3.4, respectively, we get
that ℒ𝑐(𝒢(0)) is 𝒢𝑎-simple and a maximal commutative subring of
ℒ𝑐(𝒢(0)) o 𝒢𝑎 (by identifying ℒ𝑐(𝒢(0)) with the diagonal 𝒟). There-
fore, by Theorem 3.1.5, we conclude that ℒ𝑐(𝒢(0))o𝒢𝑎, and hence also
𝐴𝑅(𝒢), is simple.

Conversely, suppose that the Steinberg algebra 𝐴𝑅(𝒢) is simple.
We claim that 𝑅 is a field. Seeking a contradiction, suppose that 𝐼 is
a nontrivial ideal of 𝑅. Then 𝐼𝐴𝑅(𝒢) is a nontrivial ideal of 𝐴𝑅(𝒢)
which is a contradiction. By Theorem 3.1.5, ℒ𝑐(𝒢(0)) is 𝒢𝑎-simple and
a maximal commutative subring of ℒ𝑐(𝒢(0)) o 𝒢𝑎. It follows from Pro-
position 3.3.3 and Proposition 3.3.4, respectively, that 𝒢 is minimal and
effective.
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4 THE DYNAMICS OF PARTIAL INVERSE SEMI-
GROUP ACTIONS

The preparation of this chapter is mostly based on joint work
with Luiz Cordeiro (see [2]), which was produced during my 6-month
visit to the University of Ottawa under the supervision of Professor
Thierry Giordano.

In this chapter we will construct the groupoid of germs associated
to a partial inverse semigroup action on a topological space in a similar
manner to that of [28]. However we also need to take the necessary
care as in the construction of the transformation groupoid of a partial
group action. With our construction we obtain a common ground for
the study of both partial group actions and inverse semigroup actions.

The Hausdorff assumption we make on the groupoid of germs has
been necessary throughout the recent papers in this direction [12, 70,
18], and it is always satisfied by semigroups which are weak semilattices,
as long as we restrict ourselves to ample actions. Even more strongly,
all transformation groupoids (or simply groupoids of germs) of partial
group actions on Hausdorff spaces are always Hausdorff, and the same
will also be true for all 𝐸-unitary inverse semigroups. These are the
inverse subsemigroups of semidirect products of lattices by groups ([48,
Theorem 7.1.5]).

The first problem we tackle is to prove, in this general setting,
that the Steinberg algebra of the associated groupoid of germs, as long
as this groupoid is Hausdorff, is always isomorphic to the partial skew
inverse semigroup algebra of a partial inverse semigroup action (The-
reom 4.3.4). This result generalize both Theorems 2.1.1 and 2.3.1 pre-
sented in Chapter 2, which are also about isomorphisms of Steinberg
algebras and skew algebras.

The theory of disjoint continuous function of [18] (which in the
topological context works with the reconstruction of a topological space
from subset classes, or function classes) can be applied in the context
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of inverse semigroup partial actions, and with this we will obtain a
description of partial skew inverse semigroups of commutative algebras
as Steinberg algebras (in general, only the opposite direction has been
considered).

Orbit equivalence and full groups for actions of Z were initially
studied by Giordano, Putnam and Skaw [35, 36], and by Li in [52, 53]
for partial actions of discrete groups. The notion of continuous orbit
equivalence can be immediately extended to partial inverse semigroup
actions. We prove that two ample, topologically principal partial inverse
semigroup actions are continuously orbit equivalent if, and only if, their
corresponding groupoids of germs are isomorphic.

We finish this chapter with an application of our results, by re-
alizing Leavitt path algebras 𝐿𝑅(𝐸) of directed graph 𝐸 as skew in-
verse semigroup algebras. This description is similar of that of [40] and
[42], where 𝐿𝑅(𝐸) was described as a partial skew group ring and par-
tial skew groupoid ring, respectively. We can then compare our notion
of continuous orbit equivalence with the one for graphs given in [9],
and reobtain results regarding equivalence of the graphs satisfying the
condition (L), isomorphism of the Leavitt path algebras and related
notions.

4.1 Groupoids of germs

Groupoids of germs were already considered by Paterson in ([60])
for localizations of inverse semigroups, and for natural actions of pseu-
dogroups by Renault (see [66]). In [28], Exel defined groupoids of germs
for arbitrary actions of inverse semigroups on topological spaces in a
similar, albeit more general, manner than both previous definitions of
groupoids of germs.

The objective in this section is to construct a groupoid of germs
associated to any topological partial action of an inverse semigroup in
a way that generalizes both groupoids of germs of inverse semigroup
actions, and transformation groupoids of partial group actions.
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Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) be a partial action of an inverse
semigroup 𝑆 on a topological space 𝑋. We denote by 𝑆 *𝑋 the subset
of 𝑆 ×𝑋 given by

𝑆 *𝑋 = {(𝑠, 𝑥) ∈ 𝑆 ×𝑋 | 𝑥 ∈ 𝑋𝑠*} ,

and we define the following equivalence relation ∼ on 𝑆 *𝑋: for every
(𝑠, 𝑥), (𝑡, 𝑦) ∈ 𝑆 *𝑋,

(𝑠, 𝑥) ∼ (𝑡, 𝑦) (4.1)

if 𝑥 = 𝑦, and there is 𝑢 ∈ 𝑆 such that 𝑢 ≤ 𝑠, 𝑡 and 𝑥 ∈ 𝑋𝑢* . We say
that the equivalence class of (𝑠, 𝑥) is the germ of 𝑠 at 𝑥, and we denote
it by [𝑠, 𝑥].

Remark 4.1.1. If 𝑢, 𝑠 ∈ 𝑆 such that 𝑢 ≤ 𝑠 and 𝑥 ∈ 𝑋𝑢* , then 𝑥 ∈ 𝑋𝑠*

and [𝑠, 𝑥] = [𝑢, 𝑥].

Remark 4.1.2. Notice that if (𝑠, 𝑥), (𝑡, 𝑦) ∈ 𝑆 *𝑋 then (𝑠, 𝑥) ∼ (𝑡, 𝑦)
if, and only if, 𝑥 = 𝑦, and there is 𝑒 ∈ 𝐸(𝑆) such that 𝑥 ∈ 𝑋𝑒 and
𝑠𝑒 = 𝑡𝑒.

Lemma 4.1.3. Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) be a partial action of an
inverse semigroup 𝑆 on a topological space 𝑋. Suppose (𝑠, 𝑥) ∈ 𝑆 *𝑋.
Then

(a) (𝑠*, 𝜃𝑠(𝑥)) ∈ 𝑆 *𝑋,

(b) if (𝑡, 𝑦) ∈ 𝑆 *𝑋 and 𝜃𝑡(𝑦) = 𝑥, then (𝑠𝑡, 𝑦) ∈ 𝑆 *𝑋.

Proof. (a) Since 𝜃𝑠(𝑥) ∈ 𝑋𝑠 = 𝑋(𝑠*)* then (𝑠*, 𝜃𝑠(𝑥)) ∈ 𝑆 *𝑋.

(b) By assumption, 𝑦 = 𝜃𝑡*(𝑥) ∈ 𝜃𝑡*(𝑋𝑡 ∩𝑋𝑠*) ⊆ 𝑋(𝑠𝑡)* .

Lemma 4.1.4. Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) be a partial action of an
inverse semigroup 𝑆 on a topological space 𝑋. Suppose (𝑠1, 𝑥), (𝑠2, 𝑥),
(𝑡1, 𝑦), (𝑡2, 𝑦) ∈ 𝑆 *𝑋 with [𝑠1, 𝑥] = [𝑠2, 𝑥], [𝑡1, 𝑦] = [𝑡2, 𝑦], and 𝜃𝑡1(𝑦) =
𝑥. Then

(a) 𝜃𝑠1(𝑥) = 𝜃𝑠2(𝑥) and 𝜃𝑡2(𝑦) = 𝜃𝑡1(𝑦) = 𝑥;
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(b) [𝑠1𝑡1, 𝑦] = [𝑠2𝑡2, 𝑦],

(c) [𝑠*
1, 𝜃𝑠1(𝑥)] = [𝑠*

2, 𝜃𝑠2(𝑥)].

Proof. Take 𝑢, 𝑣 ∈ 𝑆, where 𝑢 ≤ 𝑠1, 𝑠2, 𝑣 ≤ 𝑡1, 𝑡2, 𝑥 ∈ 𝑋𝑢* and 𝑦 ∈ 𝑋𝑣* .

(a) Since 𝑢 ≤ 𝑠1, 𝑠2 and 𝑥 ∈ 𝑋𝑢* then by Remark 4.1.1,

𝜃𝑠1(𝑥) = 𝜃𝑢(𝑥) = 𝜃𝑠2(𝑥),

and similarly 𝜃𝑡2(𝑦) = 𝜃𝑣(𝑦) = 𝜃𝑡1(𝑦) = 𝑥.

(b) We have 𝑢𝑣 ≤ 𝑠1𝑡1, 𝑠2𝑡2, and since 𝜃𝑣(𝑦) = 𝜃𝑡1(𝑦) = 𝑥 ∈ 𝑋𝑢* ,
then

𝑦 = 𝜃𝑣*(𝑥) ∈ 𝜃𝑣*(𝑋𝑣 ∩𝑋𝑢*) ⊆ 𝑋(𝑢𝑣)* ,

which proves that (𝑠1𝑡1, 𝑦) ∼ (𝑠2𝑡2, 𝑦).

(c) Since 𝑢 ≤ 𝑠1, 𝑠2 and 𝑥 ∈ 𝑋𝑢* , then 𝑢* ≤ 𝑠*
1, 𝑠

*
2 and by Re-

mark 4.1.1,
𝜃𝑠1(𝑥) = 𝜃𝑢(𝑥) = 𝜃𝑠2(𝑥) ∈ 𝑋𝑢,

proving that (𝑠*
1, 𝜃𝑠1(𝑥)) ∼ (𝑠*

2, 𝜃𝑠2(𝑥)).

Definition 4.1.5. Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) be a partial action of
an inverse semigroup 𝑆 on a topological space 𝑋, we let

𝑆 n𝑋 = {[𝑠, 𝑥] | 𝑠 ∈ 𝑆, 𝑥 ∈ 𝑋𝑠*} = (𝑆 *𝑋)/∼

be the set of all the germs. We call 𝑆 n𝜃 𝑋 (or 𝑆 n 𝑋 for short) the
groupoid of germs associated to 𝜃.

To describe the groupoid structure of (𝑆 n𝑋)(2), we define the
set of composable pairs as

(𝑆 n𝑋)(2) = {([𝑠, 𝑥], [𝑡, 𝑦]) | 𝑥 = 𝜃𝑡(𝑦)} ,

(note that 𝜃𝑡(𝑦) depends only on the class [𝑡, 𝑦], by Lemma 4.1.4 (a)).
Given ([𝑠, 𝑥], [𝑡, 𝑦]) ∈ (𝑆 n𝑋)(2), define their product as

[𝑠, 𝑥][𝑡, 𝑦] = [𝑠𝑡, 𝑦],
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which is well defined by Lemma 4.1.4 (b). The inverse of [𝑠, 𝑥] ∈ 𝑆n𝑋
is defined by

[𝑠, 𝑥]−1 = [𝑠*, 𝜃𝑠(𝑥)],

which is also well defined by Lemma 4.1.4 (c).
It is routine to check that these operations define a groupoid

structure on 𝑆 n𝑋 with unit space

(𝑆 n𝑋)(0) = {[𝑒, 𝑥] | 𝑒 ∈ 𝐸(𝑆) and 𝑥 ∈ 𝑋𝑒}.

The range e source maps are defined by

r[𝑠, 𝑥] = [𝑠𝑠*, 𝜃𝑠(𝑥)] and s[𝑠, 𝑥] = [𝑠*𝑠, 𝑥],

respectively.
We would now like to endow 𝑆n𝑋 with an appropriate topology.

Lemma 4.1.6. Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) be a partial action of an
inverse semigroup 𝑆 on a topological space 𝑋. For every 𝑠 ∈ 𝑆 and
𝑈 ⊆ 𝑋𝑠* , let

[𝑠, 𝑈 ] = {[𝑠, 𝑥] ∈ 𝑆 n𝑋 | 𝑥 ∈ 𝑈} .

The collection of all sets of the form [𝑠, 𝑈 ], where 𝑠 ∈ 𝑆 and 𝑈 is a
open subset of 𝑋𝑠* , is basis for a topology on 𝑆 n𝑋.

Proof. Let 𝑠, 𝑡 ∈ 𝑆 and let 𝑈 ⊆ 𝑋𝑠* and 𝑉 ⊆ 𝑋𝑡* be open subsets. Our
task is to prove that if

[𝑟, 𝑧] ∈ [𝑠, 𝑈 ] ∩ [𝑡, 𝑉 ]

then there is an element 𝑢 ∈ 𝑆 and an open set 𝑊 ⊆ 𝑋𝑢* such that

[𝑟, 𝑧] ∈ [𝑢,𝑊 ] ⊆ [𝑠, 𝑈 ] ∩ [𝑡, 𝑉 ].

However, by definition of germs in (4.1), we obtain

[𝑠, 𝑈 ] ∩ [𝑡, 𝑉 ] =
⋃︁

𝑢≤𝑠,𝑡

[𝑢, 𝑈 ∩ 𝑉 ∩𝑋𝑢* ],

and so it is sufficient to take 𝑢 ≤ 𝑟, 𝑠, 𝑡 and 𝑊 = 𝑈 ∩ 𝑉 ∩𝑋𝑢* .
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Proposition 4.1.7. Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) be a partial action
of an inverse semigroup 𝑆 on a topological space 𝑋. The groupoid of
germs 𝑆 n𝑋 is a topological groupoid with the topology induced by the
basis of Lemma 4.1.6.

Proof. Let 𝑚 : (𝑆 n𝑋)(2) → 𝑆 n𝑋 be the product map, and suppose
[𝑟, 𝑉 ] a basic open set in 𝑆 n𝑋. We claim that

𝑚−1([𝑟, 𝑉 ]) =
⋃︁

𝑠, 𝑡 ∈ 𝑆

𝑠𝑡 ≤ 𝑟

([𝑠,𝑋𝑠* ] × [𝑡, 𝑉 ∩𝑋𝑡* ∩𝑋𝑢* ]) ∩ (𝑆 n𝑋)(2)
.

(4.2)
Indeed the inclusion ‘⊇’ is immediate from the definition of the product.
For the converse inclusion, if ([𝑠, 𝑦], [𝑡, 𝑥]) ∈ 𝑚−1([𝑟, 𝑉 ]) then [𝑠𝑡, 𝑥] ∈
[𝑟, 𝑉 ]. This means that there is 𝑢 ∈ 𝑆 such that 𝑢 ≤ 𝑠𝑡, 𝑟 and 𝑥 ∈
𝑋𝑢* ∩ 𝑉 ∩𝑋𝑡* . Thus [𝑠𝑡, 𝑥] = [𝑢, 𝑥] = [𝑟, 𝑥] and

([𝑠, 𝑦], [𝑡, 𝑥]) = ([𝑠, 𝑦], [𝑡𝑢*𝑢, 𝑥])

which belongs to the set on the right-hand side of (4.2), since 𝑠𝑡𝑢*𝑢 =
𝑢 ≤ 𝑟, 𝑠𝑡.

Now, notice that if [𝑠, 𝑈 ] is a basic open set in 𝑆 n𝑋 then

[𝑠, 𝑈 ]−1 = [𝑠*, 𝜃𝑠(𝑈)],

and so continuity of the inversion follows immediately.

From now on, we always consider 𝑆 n 𝑋 with the topology in-
duced by the basis consisting of all sets of the form [𝑠, 𝑈 ], where 𝑠 ∈ 𝑆

and 𝑈 ⊆ 𝑋𝑠* open, as in the Lemma 4.1.6.
The unit space (𝑆 n𝑋)(0) of 𝑆 n𝑋 can be naturally identified

with 𝑋 under the homeomorphism

𝜑 : (𝑆 n𝑋)(0) → 𝑋 [𝑒, 𝑥] ↦→ 𝑥, (4.3)

where 𝑒 ∈ 𝐸(𝑆). To check that this map is injective, just note that if

[𝑒, 𝑥], [𝑓, 𝑦] ∈ (𝑆 n𝑋)(0) such that 𝜑([𝑒, 𝑥]) = 𝜑[𝑓, 𝑦],
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then 𝑥 = 𝑦 ∈ 𝑋𝑒 ∩𝑋𝑓 ⊆ 𝑋𝑒𝑓 and [𝑒, 𝑥] = [𝑒𝑓, 𝑥] = [𝑒𝑓, 𝑦] = [𝑓, 𝑦]. The
surjectivity immediately follows from the fact that we only consider
non-degenerate actions.

A basic open set of (𝑆 n 𝑋)(0) has the form [𝑒, 𝑈 ] for some
𝑒 ∈ 𝐸(𝑆) and 𝑈 ⊆ 𝑋𝑒 open, and 𝜑([𝑒, 𝑈 ]) = 𝑈 . So 𝜑 takes basic
open sets of (𝑆 n 𝑋)(0) to basic open sets of 𝑋, and is therefore a
homeomorphism.

Since the source and range maps of 𝑆 n𝑋 are given by s[𝑠, 𝑥] =
[𝑠*𝑠, 𝑥] and r[𝑠, 𝑥] = [𝑠𝑠*, 𝜃𝑠(𝑥)], then enforcing the identification refer-
red to in (4.3), we will write

s[𝑠, 𝑥] = 𝑥 and r[𝑠, 𝑥] = 𝜃𝑠(𝑥).

Proposition 4.1.8. Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) be a partial action
of an inverse semigroup 𝑆 on a locally compact, Hausdorff topological
space 𝑋. The groupoid 𝑆 n𝑋 is étale, and each basic open set [𝑠, 𝑈 ],
where 𝑠 ∈ 𝑆 and 𝑈 ⊆ 𝑋𝑠* is open, is a bisection of 𝑆 n𝑋.

Proof. By the natural identification between the unit space (𝑆 n𝑋)(0)

and 𝑋 given by the homeomorphism in (4.3), we already obtain that
the unit space of 𝑆 n𝑋 is locally compact and Hausdorff.

Given 𝑠 ∈ 𝑆 and 𝑈 ⊂ 𝑋𝑠* an open set, the source map on [𝑠, 𝑈 ]
is given by (under the identification (𝑆 n𝑋)(0))

s : [𝑠, 𝑈 ] → 𝑈 [𝑠, 𝑥] ↦→ 𝑥,

and the injectivity of s follows immediately from the definition of germs
in (4.1). In particular, s([𝑠, 𝑈 ]) = 𝑈 is an open subset of 𝑋 = (𝑆n𝑋)(0).
Since the basic open subsets of [𝑠, 𝑈 ]) and 𝑈 are (respectively) of the
form [𝑠, 𝑉 ] and 𝑉 , where 𝑉 ⊆ 𝑈 , we can conclude that the source
map is a local homeomorphism from [𝑠, 𝑈 ] to 𝑈 . Therefore, 𝑆 n 𝑋 is
étale.

Notice that, if ℬ is a basis for the topology of 𝑋, then a basis for
𝑆 n𝑋 consists of those sets of the form [𝑠, 𝑈 ] with 𝑈 ∈ ℬ. Hence, if 𝑋
is zero-dimensional then the collection of sets of the form [𝑠, 𝑈 ] with 𝑈
compact-open subset of 𝑋, is a basis for 𝑆 n𝑋.
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Corollary 4.1.9. Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) be a partial action of
an inverse semigroup 𝑆 on a locally compact, Hausdorff and zero-
dimensional topological space 𝑋. Then 𝑆 n𝑋 is an ample groupoid.

Proof. This immediately follows from Propositions 4.1.8 and 1.2.9.

Example 4.1.10. Following Paterson [60], a localization consists of
an action 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) of an inverse semigroup 𝑆 on a to-
pological space 𝑋 such that {𝑋𝑠}𝑠∈𝑆 is a basis for the topology of 𝑆.
The groupoid of germs in the sense of Paterson [60] coincides with the
definition above of groupoids of germs.

Example 4.1.11. Let 𝑋 be a locally compact Hausdorff space. The
canonical action of ℐ(𝑋) on 𝑋 is the action 𝜏 given by 𝜏𝜑 = 𝜑, for all
𝜑 ∈ ℐ(𝑋). A pseudogroup on 𝑋 is an inverse subsemigroup of ℐ(𝑋)
whose elements are homeomorphisms between open subsets of 𝑋.

Let ℬ be a basis for the topology of 𝑋, and for each 𝐵 ∈ ℬ
consider its identity function id𝐵 : 𝐵 → 𝐵.

Given a pseudogroup 𝒢 on 𝑋, let 𝒢ℬ be the inverse subsemigroup
of ℐ(𝑋) generated by 𝒢 ∪ {id𝐵 : 𝐵 ∈ ℬ}, which is again a pseudogroup
on 𝑋, and in fact the canonical action of 𝒢ℬ on 𝑋 is a localization.

The groupoid of germs in the sense of Renault [66] coincides with
the groupoid of germs 𝒢ℬ n𝑋 defined above.

The following are natural and well-known examples of construc-
tions which are possible with groupoids of germs (and already appear
in some form in [73]).

Example 4.1.12. (Transformation groupoids) In the case that 𝑆 is
a discrete group, the equivalence relation on 𝑆 * 𝑋 is trivial and the
topology is the product topology, that is, 𝑆 n 𝑋 is the transforma-
tion groupoid (already seen in the Section 2.1). In particular 𝑆 n𝑋 is
Hausdorff if, and only if, 𝑋 is Hausdorff.

Example 4.1.13. (Maximal group image) An easy example is the case
when 𝑋 is a one-point set on which 𝑆 acts trivially, that is, 𝜃𝑠 is simply
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the identity on 𝑋, for all 𝑠 ∈ 𝑆. It is then straightforward to see that
𝑆n𝑋 is the maximal group image G(𝑆) of 𝑆 (see Section 1.5.2 for the
definition of G(𝑆)). Indeed, two elements of 𝑆 ∼= 𝑆 n𝑋 have the same
germ if, and only if, they have a common lower bound.

Example 4.1.14. (Restricted product groupoid) Another example is
the case when 𝑆 is an arbitrary inverse semigroup, 𝑋 = 𝐸(𝑆) with
the discrete topology, and 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) is the Munn repre-
sentation of 𝑆: 𝑋𝑠 = {𝑒 ∈ 𝐸(𝑆) : 𝑒 ≤ 𝑠𝑠*} and 𝜃𝑠(𝑒) = 𝑠𝑒𝑠*, for all
𝑒 ∈ 𝑋𝑠* .

Now from 𝑆 we can construct the restricted product groupoid
(𝑆, ·), which is the same as 𝑆 but the product 𝑠 · 𝑡 = 𝑠𝑡 is defined only
when 𝑠*𝑠 = 𝑡𝑡* (see Example 1.2.5).

Then 𝑆 n 𝐸(𝑆) is a discrete groupoid, and the map

𝑆 n 𝐸(𝑆) → (𝑆, ·), [𝑠, 𝑒] ↦→ 𝑠𝑒

is an isomorphism of discrete groupoid with inverse 𝑠 ↦→ [𝑠, 𝑠*𝑠].

Example 4.1.15. Let 𝑆 = N ∪ {∞, 𝑧} as in Example 1.1.5. Let 𝑋 =
𝐸(𝑆) = N∪ {∞}, seen as the one-point compactification of the natural
numbers, and let 𝜃 be the Munn representation of 𝑆, so that 𝑆 n𝑋 =
(𝑆, ·), however with the topology whose open sets are either cofinite or
contained in N. In particular, 𝑆 n𝑋 is not Hausdorff.

Example 4.1.16. [28, Proposition 5.4] Every étale groupoid is iso-
morphic to a groupoid of germs. Indeed, let 𝒢 be an étale groupoid,
𝜃 be the canonical action of the inverse semigroup of open bisections
𝒢𝑜𝑝 on the unit space 𝒢(0) (see Example 1.5.9), and 𝑆 be any inverse
subsemigroup of 𝒢𝑜𝑝 which covers 𝒢 (that is, 𝒢 =

⋃︀
𝐴∈𝑆 𝐴), and which

is closed under intersections. Then the map

𝑆 n 𝒢(0) → 𝒢, [𝐴, 𝑥] ↦→ s|−1
𝐴 (𝑥),

is an isomorphism of topological groupoids.
In particular, if 𝒢 is an ample Hausdorff groupoid, then the grou-

poid of germs 𝒢𝑎 n 𝒢(0), of the restriction of the canonical action on
𝒢𝑎, is isomorphic to the groupoid 𝒢.
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We will be mostly interested in Hausdorff groupoids, and in par-
ticular conditions on inverse semigroups which garantee that groupoids
of germs are Hausdorff.

Definition 4.1.17. A poset (𝑃,≤) is a ∧-weak semilattice if for all
𝑠, 𝑡 ∈ 𝑃 there exists a finite subset 𝐹 ⊆ 𝐿 (possibly empty) such that

{𝑥 ∈ 𝑃 | 𝑥 ≤ 𝑠 and 𝑥 ≤ 𝑡} =
⋃︁

𝑓∈𝐹

{𝑥 ∈ 𝑃 | 𝑥 ≤ 𝑓} .

Example 4.1.18. If 𝒢 is a Hausdorff ample groupoid, then 𝒢𝑜𝑝 and
𝒢𝑎 are meet semilattices, and 𝑈 ∧ 𝑉 = 𝑈 ∩ 𝑉 .

Proposition 4.1.19. [73, Theorem 5.17] Let 𝑆 be an inverse semi-
group which is ∧-weak semilattice and let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) be a
partial action of 𝑆 on a locally compact Hausdorff 𝑋 such that 𝑋𝑠 is
clopen, for all 𝑠 ∈ 𝑆. Then the groupoid of germs 𝑆 n𝑋 is Hausdorff.

In particular, if 𝑆 is a weak semilattice and 𝑋 is zero-dimensional,
then the groupoid of germs 𝑆 n𝑋 is an ample Hausdorff groupoid.

Proof. Suppose [𝑠, 𝑥] ̸= [𝑡, 𝑦] are elements of 𝑆n𝑋. If 𝑥 ̸= 𝑦, then cho-
ose disjoint neighborhoods 𝑈, 𝑉 of 𝑥 and 𝑦 in 𝑋, respectively. Clearly,
[𝑠, 𝑈 ∩ 𝑋𝑠* ] and [𝑡, 𝑉 ∩ 𝑋𝑡* ] are disjoint neighborhoods of [𝑠, 𝑥] and
[𝑡, 𝑦], respectively.

Next assume 𝑥 = 𝑦. If {𝑠′ ∈ 𝑆 | 𝑠′ ≤ 𝑠} ∩ {𝑡′ ∈ 𝑆 | 𝑡′ ≤ 𝑡} = ∅,
then [𝑠,𝑋𝑠* ] and [𝑡,𝑋𝑡* ] are disjoint neighborhoods of [𝑠, 𝑥] and [𝑡, 𝑥].
So we are left with the case {𝑠′ ∈ 𝑆 : 𝑠′ ≤ 𝑠} ∩ {𝑡′ ∈ 𝑆 : 𝑡′ ≤ 𝑡} ≠ ∅.
Since 𝑆 is a weak semilattice, we can find elements 𝑢1, · · · , 𝑢𝑛 ∈ 𝑆 so
that 𝑢 ≤ 𝑠, 𝑡 if, and only if, 𝑢 ≤ 𝑢𝑖, for 𝑖 ∈ {1, · · · , 𝑛}. Let

𝑉 = 𝑋 ∖
𝑛⋃︁

𝑖=1
𝑋𝑢*

𝑖
=

𝑛⋂︁
𝑖=1

(𝑋 ∖𝑋𝑢*
𝑖
),

which is an open set by hypothesis. If 𝑥 ∈ 𝑋𝑢*
𝑖

for some 𝑖, then as 𝑢𝑖 ≤
𝑠, 𝑡, it follows [𝑠, 𝑥] = [𝑡, 𝑥], a contradiction. Thus 𝑥 ∈ 𝑉. Define 𝑊 =
𝑉 ∩ 𝑋𝑠* ∩ 𝑋𝑡* . We claim [𝑠,𝑊 ] and [𝑡,𝑊 ] are disjoint neighborhoods
of [𝑠, 𝑥] and [𝑡, 𝑥], respectively. Indeed, if

[𝑟, 𝑧] ∈ [𝑠,𝑊 ] ∩ [𝑡,𝑊 ],
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then

[𝑠, 𝑧] = [𝑟, 𝑧] = [𝑡, 𝑧],

and hence, there exists 𝑢 ≤ 𝑠, 𝑡 with 𝑧 ∈ 𝑋𝑢* . But then 𝑢 ≤ 𝑢𝑖 for some
𝑖 ∈ {1, · · · , 𝑛} and so 𝑧 ∈ 𝑋𝑢*

𝑖
, contradicting that 𝑧 ∈ 𝑊 ⊆ 𝑉.

Remark 4.1.20. Steinberg proved in [73] that an inverse semigroup
𝑆 is a weak semilattice if, and only if, for any partial action 𝜃 =
({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) such that 𝑋𝑠 is clopen for all 𝑠 ∈ 𝑆, the groupoid
of germs 𝑆 n𝑋 is Hausdorff.

Remark 4.1.21. The hypothesis that the domains of the partial action
are clopen is necessary. For example, even if 𝒢 is a non-Hausdorff ample
groupoid then 𝒢𝑜𝑝 is still a semilattice, however, as in Example 4.1.16,
the groupoid of germs 𝒢𝑜𝑝 n 𝒢(0) ∼= 𝒢 is not Hausdorff.

Next we present two examples of isomorphic groupoid germs.

Example 4.1.22. If 𝑆 is 𝐸*-unitary then it is a ∧-semilattice: Indeed,
given 𝑠, 𝑡 ∈ 𝑆, if {𝑠, 𝑡} does not admit any nonzero lower bound then
𝑠 ∧ 𝑡 = 0. If {𝑠, 𝑡} admits a nonzero lower bound, then 𝑠 and 𝑡 are
compatible, so 𝑠 ∧ 𝑡 = 𝑡𝑠*𝑠.

As a consequence, every 𝐸-unitary inverse semigroup 𝑆 is a weak
semilattice: We can embed 𝑆 into an 𝐸*-unitary semigroup 𝑆0 by ad-
joining a 0. Given 𝑠, 𝑡 ∈ 𝑆, let 𝐹 = {𝑠 ∧ 𝑡} ∖ {0}, which is either
empty or equal to {𝑠 ∧ 𝑡}, but in any case a finite subset of 𝑆, so
that {𝑥 ∈ 𝑆 | 𝑥 ≤ 𝑠, 𝑡} =

⋃︀
𝑓∈𝐹 {𝑥 ∈ 𝑆 | 𝑥 ≤ 𝑓}.

A version of the next example has been proven in [57], when
considering the canonical action of 𝑆 on the spectrum of its idempotent
set 𝐸(𝑆). We prove the result for general partial actions of inverse
semigroups on arbitrary topological spaces.

Example 4.1.23. Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) be a partial action of
an 𝐸-unitary semigroup 𝑆 on a space 𝑋 and ̃︀𝜃 be the induced action
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of the maximal group homomorphic image G(𝑆) on 𝑋 (see Proposi-
tion 1.5.23). Then

𝑆 n𝜃 𝑋 ≃ G(𝑆) ñ︀𝜃 𝑋.
Indeed, consider the map [𝑠, 𝑥] ↦→ ([𝑠], 𝑥), which is well-defined by the
definitions of the relations involved (see Equations (4.1) and (1.15)).
It is clearly a homomorphism. The surjectivity follows from the fact
that given (𝛾, 𝑥) ∈ G(𝑆) ñ︀𝜃 𝑋 there is 𝑠 ∈ 𝑆 such that [𝑠] = 𝛾 and
𝑥 ∈ 𝑋𝑠* , and so, [𝑠, 𝑥] ↦→ ([𝛾], 𝑥). As for injectivity, suppose ([𝑠], 𝑥) =
([𝑡], 𝑦), where [𝑠, 𝑥], [𝑡, 𝑦] ∈ 𝑆 n𝜃 𝑋. Then 𝑥 = 𝑦 and [𝑠] = [𝑡], so
𝑥 ∈ 𝑋𝑠* ∩𝑋𝑡* . By Lemma 1.5.22, 𝑠 and 𝑡 are compatible, which implies
𝑠(𝑠*𝑠𝑡*𝑡) = 𝑡(𝑠*𝑠𝑡*𝑡) (as both products describe the meet 𝑠 ∧ 𝑡). Since
𝑥 ∈ 𝑋𝑠* ∩𝑋𝑡* ⊆ 𝑋𝑠*𝑠 ∩𝑋𝑡*𝑡 ⊆ 𝑋𝑠*𝑠𝑡*𝑡 we conclude that [𝑠, 𝑥] = [𝑡, 𝑦].

Example 4.1.24. Suppose 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) be a partial action
of an group 𝐺 on a topological space 𝑋, 𝜃 is the corresponding global
action of S(𝐺) on 𝑋 (see Proposition 1.5.25). Then

𝐺n𝜃 𝑋 ∼= S(𝐺) ñ︀𝜃 𝑋.
Indeed, let 𝛾 = ̃︀𝜃, the partial action of G(S(𝐺)) induced by ̃︀𝜃 as in
Proposition 1.5.23. Let us prove that for all 𝑔 ∈ 𝐺, 𝜃𝑔 = 𝛾[[𝑔]]. From
this fact and Proposition 1.5.26, it follows easily that

𝐺n𝜃 𝑋 → G(S(𝐺)) n𝛾 𝑋, (𝑔, 𝑥) ↦→ ([[𝑔]], 𝑥)

is a topological groupoid isomorphism. Example 4.1.23 provides the
isomorphism G(S(𝐺)) n𝛾 𝑋 ∼= S(𝐺) ñ︀𝜃 𝑋, so we are done.

Let 𝑔 ∈ 𝐺 be fixed. By definition, 𝛾[[𝑔]] is the supremum of{︁̃︀𝜃𝑠 : 𝑠 ∼ [𝑔]
}︁

. From the uniqueness of the standard form of each 𝑠 ∈
S(𝐺), it follows that 𝑠 ∼ [𝑔] if and only if 𝑠 ≤ [𝑔], and thus we conclude
that 𝛾[[𝑔]] = ̃︀𝜃[𝑔].

4.2 Topologically principal and effective partial actions

In this section we will work again with the notions of topolo-
gically principal and effective (or topologically free) partial actions of
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inverse semigroups (see Definition 3.2.7 and 3.2.5). These concepts will
be used later in our study of continuous orbit equivalence.

Let 𝒢 be a topological groupoid. Recall that 𝒢 is effective if, and
only if, the interior of the isotropy subgroupoid Iso(𝒢) is just the unit
space 𝒢(0).

Proposition 4.2.1. [32, Theorem 4.7] Given a partial action 𝜃 =
({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) of an inverse semigroup 𝑆 on a locally compact
Hausdorff space 𝑋, the corresponding groupoid of germs 𝑆 n 𝑋 is ef-
fective if, and only if, 𝜃 is effective.

Proof. Suppose that 𝑆 n𝑋 is an effective groupoid. By Remark 3.2.6,
for every 𝑠 ∈ 𝑆

{𝑥 ∈ 𝑋𝑠* | ∃ 𝑒 ∈ 𝐸(𝑆), 𝑒 ≤ 𝑠 and 𝑥 ∈ 𝑋𝑒} ⊆ int {𝑥 ∈ 𝑋𝑠* | 𝜃𝑠(𝑥) = 𝑥} .

Given 𝑠 ∈ 𝑆 take 𝑧 ∈ int {𝑥 ∈ 𝑋𝑠* | 𝜃𝑠(𝑥) = 𝑥}. Then there is an
open subset 𝑈 of 𝑋𝑠* such that 𝑧 ∈ 𝑈 and 𝜃𝑠(𝑥) = 𝑥, for all 𝑥 ∈ 𝑈 .
Hence

r([𝑠, 𝑥]) = 𝜃𝑠(𝑥) = 𝑥 = s([𝑠, 𝑥]),

and so [𝑠, 𝑥] ∈ Iso(𝑆 n 𝑋). This implies that the basic open subset
[𝑠, 𝑈 ] is contained in the interior of Iso(𝑆 n𝑋). From the hypothesis,
[𝑠, 𝑈 ] ⊆ (𝑆 n 𝑋)(0), and so, there is 𝑒 ∈ 𝐸(𝑠) such that 𝑧 ∈ 𝑋𝑒 and
[𝑠, 𝑧] = [𝑒, 𝑧]. By the definition of germs in (4.1), there is 𝑓 ∈ 𝐸(𝑆),
𝑓 ≤ 𝑠, 𝑒 such that 𝑥 ∈ 𝑋𝑓 and

[𝑠, 𝑧] = [𝑒, 𝑧] = [𝑓, 𝑧].

Applying the range map on the right and left side of this equality, we
can conclude that 𝑧 is a trivial fixed point for 𝑠.

Conversely, assume that 𝜃 is an effective partial action. Taking
[𝑠, 𝑥] ∈ int (Iso(𝑆 n𝑋)) there is a basic open subset [𝑠, 𝑈 ] in 𝑆 n 𝑋

such that
[𝑠, 𝑥] ∈ [𝑠, 𝑈 ] ⊆ Iso(𝑆 n𝑋).
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For any 𝑦 ∈ 𝑈 , we have that [𝑠, 𝑦] ∈ Iso(𝑆 n𝑋), so

𝜃𝑠(𝑦) = r([𝑠, 𝑦]) = s([𝑠, 𝑦]) = 𝑦,

and we see that 𝑦 is a fixed point for 𝑠. It follows that 𝑈 is contained
in the set of fixed points for 𝑠. In particular 𝑥 is an interior fixed
point, and hence, by hypothesis, 𝑥 is a trivial fixed point. Then there
is 𝑒 ∈ 𝐸(𝑆) such that 𝑒 ≤ 𝑥 and 𝑥 ∈ 𝑋𝑒, and consequently [𝑠, 𝑥] =
[𝑒, 𝑥] ∈ (𝑆 n𝑋)(0). This shows that 𝑆 n𝑋 is effective.

Recall that a topological groupoid 𝒢 is topologically principal if,
and only if, the set of points in 𝒢(0) with trivial isotropy group (this
means 𝒢𝑢

𝑢 = {𝑢}) is dense in 𝒢(0).
We will now reword topological principality of a partial action

in terms of the groupoid of germs 𝑆 n𝑋.

Proposition 4.2.2. Suppose that 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) is a partial
action of an inverse semigroup 𝑆 on a locally compact Hausdorff space
𝑋. Then the groupoid of germs 𝑆 n𝑋 is topologically principal if, and
only if, the partial action 𝜃 is topologically principal.

Proof. It is enough to prove that, under the identification of 𝑋 with
(𝑆 n𝑋)(0),

Λ(𝜃) = {𝑥 ∈ 𝑋 : (𝑆 n𝑋)𝑥
𝑥 = {𝑥}} .

Let 𝑥 ∈ 𝑋 be given. First suppose 𝑥 ∈ Λ(𝜃) and [𝑠, 𝑥] ∈ (𝑆 n 𝑋)𝑥
𝑥.

This means that 𝑥 = r([𝑠, 𝑥]) = 𝜃𝑠(𝑥), so there is 𝑒 ∈ 𝐸(𝑆) ∩ 𝑆𝑥, 𝑒 ≤ 𝑠,
which implies [𝑠, 𝑥] = [𝑒, 𝑥] = 𝑥.

Conversely suppose (𝑆n𝑋)𝑥
𝑥 = {𝑥} and let 𝑠 ∈ 𝑆𝑥 with 𝜃𝑠(𝑥) =

𝑥. This means that [𝑠, 𝑥] ∈ (𝑆 n 𝑋)𝑥
𝑥, and so [𝑠, 𝑥] = [𝑒, 𝑥] for some

idempotent 𝑒 ∈ 𝑆𝑥. By the definition of the groupoid of germs, we can
find another idempotent 𝑓 ∈ 𝑆𝑥 with 𝑠𝑒 = 𝑒𝑓 , so in particular 𝑒𝑓 is an
idempotent, 𝑒𝑓 ≤ 𝑠, and 𝑥 ∈ 𝑋𝑒𝑓 . This proves 𝑥 ∈ Λ(𝜃).

This way, topologically principal partial actions will correspond
to topologically principal groupoids of germs, whereas effective partial
actions will correspond to effective groupoids of germs.
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By a principal (or free) partial action we mean a topologically
principal partial action on a discrete space (that is, a set). Similarly to
Proposition 4.2.2, one proves that 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) is a principal
partial action if, and only if, the groupoid of germs 𝑆 n𝑋 is principal.

Proposition 4.2.3. If 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) is a principal partial
action of an inverse semigroup 𝑆 on a locally compact Hausdorff space
𝑋 then 𝑆 n𝑋 is Hausdorff.

Proof. Suppose [𝑠, 𝑥] ̸= [𝑡, 𝑦] are elements of 𝑆n𝑋. If 𝑥 ̸= 𝑦, then cho-
ose disjoint neighborhoods 𝑈, 𝑉 of 𝑥 and 𝑦 in 𝑋, respectively. Clearly,
[𝑠, 𝑈 ∩ 𝑋𝑠* ] and [𝑡, 𝑉 ∩ 𝑋𝑡* ] are disjoint neighborhoods of [𝑠, 𝑥] and
[𝑡, 𝑦], respectively. Next assume 𝑥 = 𝑦. By principality of 𝜃, we have
that 𝜃𝑠(𝑥) = 𝜃𝑡(𝑥) if, and only if, there is 𝑢 ∈ 𝑆, such that 𝑢 ≤ 𝑠, 𝑡

and 𝑥 ∈ 𝑋𝑢* if, and only if, [𝑠, 𝑥] = [𝑡, 𝑥]. Hence, if [𝑠, 𝑥] ̸= [𝑡, 𝑥] then
𝜃𝑠(𝑥) ̸= 𝜃𝑡(𝑥). Since 𝑋 is Hausdorff, there are disjoint neighborhoods
𝑈 and 𝑉 of 𝜃𝑠(𝑥) and 𝜃𝑡(𝑥), respectively. It is easy see that [𝑠, 𝜃𝑠*(𝑈)]
and [𝑡, 𝜃𝑡*(𝑉 )] are disjoint neighborhoods of [𝑠, 𝑥] and [𝑡, 𝑥], respecti-
vely.

Remark 4.2.4. The proof above is a combination of the facts that
free partial actions on (discrete) sets correspond to (discrete) principal
groupoids of germs, and that every principal topological groupoid with
Hausdorff unit space is itself Hausdorff.

It is interesting to note that principality of a partial action im-
plies that the associated groupoid of germs is Hausdorff, however this
is not true for topologically principal partial actions, as shown in the
example below.

Example 4.2.5. As in Example 4.1.15, let 𝑆 = N ∪ {∞, 𝑧} and 𝜃 be
the Munn representation of 𝑆 on 𝑋 = 𝐸(𝑆) = N∪ {∞}, endowed with
the same topology as the one-point compactification of N. This is a
topologically principal partial action, since Λ(𝜃) = N is dense in 𝑋,
however the associated groupoid of germs 𝑆 n𝑋 is not Hausdorff.
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In the case that 𝐺 is a group, a partial action of 𝐺 is principal
(or free) if for all 𝑥 ∈ 𝑋 (and for all 𝑔 ∈ 𝐺𝑥), one has that 𝜃𝑔(𝑥) = 𝑥

implies 𝑔 = 1, where 1 is the identity of 𝐺, which is the usual notion of
freeness for partial group actions.

4.3 Steinberg algebra of groupoid of germs

Historical notes: In [5], Beuter and Gonçalves showed that any
Steinberg algebra, 𝐴𝑅(𝐺 n𝜃 𝑋), of a transformation groupoid 𝐺 n 𝑋

given by a partial action 𝜃 = ({𝑋𝑔}𝑔∈𝐺, {𝜃𝑔}𝑔∈𝐺) of a group 𝐺 on a lo-
cally compact, Hausdorff, and zero-dimensional space 𝑋, is isomorphic
to the partial skew group algebra ℒc(X)o𝐺 (see Theorem 2.1.1). In the
same paper, they proved that every Steinberg algebra, 𝐴𝑅(𝒢), associ-
ated with an ample Hausdorff groupoid 𝒢, is isomorphic to the skew
inverse semigroup algebra ℒ𝑐(𝒢(0)) o 𝒢𝑎 (see Theorem 2.3.1). Soon af-
ter, Hazrat and Li proved a similar results for graded algebras. More
precisely, given a graded ample Hausdorff groupoid, its graded Stein-
berg algebra can be realized as a partial skew inverse semigroup algebra
(see [44, Theorem 2.3]). In sequence, Demeneghi showed that the Stein-
berg algebra of a Hausdorff groupoid of germs 𝑆n𝜃 𝑋 associated to an
ample action1 of an inverse semigroup 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) is iso-
morphic to the skew inverse semigroup algebra ℒ𝑐(𝒢(0)) o 𝑆 (see [21,
Theorem 2.3.6] version arXiv v1), and as a consequence obtained the
latter result presented by the first authors (see [21, Proposition 2.4.3]
version arXiv v1). In [2], Beuter and Cordeiro studied orbit equivalence
of topologically principal partial actions of inverse semigroups in terms
of isomorphisms of the corresponding groupoid of germs, and had the
need to generalize [21, Theorem 2.3.6] for partial actions of inverse se-
migroups. Moreover, they weakened the conditions on each 𝑋𝑠 (see [2,
Theorem 5.4]). Later, Demeneghi managed to perfect his theorem to
groupoid of germs which are not necessarily Hausdorff, however still
1 An ample action is an action 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) of an inverse semigroup 𝑆

on a locally compact, Hausdorff and zero-dimensional space 𝑋, where each 𝑋𝑠

is both open and compact.
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under the condition that each 𝑋𝑠 is clopen (see [22, Theorem 5.2.4.]
version arXiv v3).

Note that the results in [2] and [21] are non-comparable, since [2]
deals with partial actions whose corresponding groupoids of germs are
Hausdorff, whereas [21] considers actions whose corresponding grou-
poids of germs are not necessarily Hausdorff. Furthermore, the proof
of either of these results does not seem to be easily adaptable to cover
the other.

In this section we present the theorem of Beuter and Cordeiro.
We will assume that 𝑅 is a unital commutative ring, and that 𝜃 =
({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) is a partial action of an inverse semigroup 𝑆 on a
locally compact, Hausdorff and zero-dimensional space𝑋. Moreover, we
will consider that 𝛼 = ({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆) is the partial action of 𝑆 on
the 𝑅-algebra ℒc(X) induced by 𝜃, as in Example 1.5.28. Therefore, we
will prove that, as long as the groupoid of germs 𝑆n𝑋 is Hausdorff, the
Steinberg algebra 𝐴𝑅(𝑆 n𝑋) is isomorphic to the partial skew inverse
semigroup algebra ℒc(X)n𝑆. In order to obtain such an isomorphism,
we need some preliminary lemmas.

Lemma 4.3.1. Given 𝑠 ∈ 𝑆, any subset 𝐵 of [𝑠,𝑋𝑠* ] is of the form
𝐵 = [𝑠, s(𝐵)].

Proof. The inclusion “⊆” follows trivially, since if 𝑏 ∈ 𝐵 ⊆ [𝑠,𝑋𝑠* ],
then 𝑏 = [𝑠, s(𝑏)] ∈ [𝑠, s(𝐵)]. On the other hand, if 𝑏 ∈ [𝑠,𝑋𝑠* ]∖𝐵, then

𝑏 ∈ [𝑠, s([𝑠,𝑋𝑠* ] ∖𝐵)] = [𝑠,𝑋𝑠* ∖ s(𝐵)].

This implies that s(𝑏) ∈ 𝑋𝑠* ∖ s(𝐵), that is, 𝑏 /∈ [𝑠, s(𝐵)]. Therefore, if
𝑏 ∈ [𝑠, s(𝐵)] then 𝑏 ∈ 𝐵, proving the reverse inclusion.

Remark 4.3.2. If 𝐵 is a compact-open bisection of an ample groupoid
of germs 𝑆 n𝑋 (not necessarily Hausdorff), then 𝐵 has a finite cover
{[𝑠𝑖,𝑊𝑖] | 𝑖 = 1 · · · , 𝑛} of basic compact-open subsets of 𝑆n𝑋. Setting
𝑈1 = 𝑊1 and 𝑈𝑖 = 𝑊𝑖 ∖

(︁⋃︀𝑖−1
𝑗=1 𝑊𝑗

)︁
, for all 𝑖 ∈ {1, · · · , 𝑛}, then

{𝑈𝑖 ⊆ 𝑋𝑠*
𝑖

| 𝑖 = 1 · · · , 𝑛} is a collection of pairwise disjoint compact-
open subsets. By Lemma 4.3.1 and by injectivity of the source map on
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𝐵, we obtain

𝐵 =
𝑛⋃︁

𝑖=1
[𝑠𝑖, 𝑈𝑖],

where {[𝑠𝑖, 𝑈𝑖] | 𝑖 = 1 · · · , 𝑛} is a collection of pairwise disjoint basic
compact-open subsets of 𝑆 n𝑋.

Lemma 4.3.3. Let 𝑆n𝑋 be a Hausdorff groupoid of germs, and consi-
der two finite collections {[𝑠𝑖, 𝑈𝑖] | 𝑖 = 1 · · ·𝑛} and {[𝑡𝑗 , 𝑉𝑗 ] | 𝑗 = 1 · · ·𝑚}
of pairwise disjoint basic compact-open subsets of 𝑆 n𝑋 such that

𝑛⋃︁
𝑖=1

[𝑠𝑖, 𝑈𝑖] =
𝑚⋃︁

𝑗=1
[𝑡𝑗 , 𝑉𝑗 ] .

Then, for each pair 𝑖, 𝑗, there is a finite collection{︁[︁
𝑢𝑖𝑗

𝑘 ,𝑊
𝑖𝑗
𝑘

]︁
| 𝑘 = 1, · · · , 𝑙𝑖𝑗

}︁
of pairwise disjoint basic compact-open subsets of 𝑆 n𝑋 such that

[𝑠𝑖, 𝑈𝑖] ∩ [𝑡𝑗 , 𝑉𝑗 ] =
𝑙𝑖𝑗⋃︁

𝑘=1

[︁
𝑢𝑖𝑗

𝑘 ,𝑊
𝑖𝑗
𝑘

]︁
,

and 𝑢𝑖𝑗
𝑘 ≤ 𝑠𝑖, 𝑡𝑗.

Proof. Given a pair 𝑖, 𝑗, let 𝑏 be an arbitrary element of [𝑠𝑖, 𝑈𝑖]∩[𝑡𝑗 , 𝑉𝑗 ].
Then [𝑠𝑖, s(𝑏)] = 𝑏 = [𝑡𝑗 , s(𝑏)], and there is 𝑢𝑏 ∈ 𝑆 such that s(𝑏) ∈ 𝑋𝑢*

𝑏

and 𝑢𝑏 ≤ 𝑠𝑖, 𝑡𝑗 , so

𝑏 ∈
[︁
𝑢𝑏, 𝑋𝑢*

𝑏
∩ 𝑈𝑖 ∩ 𝑉𝑗

]︁
⊆ [𝑠𝑖, 𝑈𝑖] ∩ [𝑡𝑗 , 𝑉𝑗 ] .

By compactness of [𝑠𝑖, 𝑈𝑖]∩[𝑡𝑗 , 𝑉𝑗 ], we find a finite cover for this set with
elements of the form [𝑢𝑖𝑗

𝑘 ,𝑊
𝑖𝑗
𝑘 ] for certain 𝑢𝑖𝑗

𝑘 ≤ 𝑠𝑖, 𝑡𝑗 and 𝑊𝑖𝑗 ⊆ 𝑈𝑖∩𝑉𝑗 ,
that is,

[𝑠𝑖, 𝑈𝑖] ∩ [𝑡𝑗 , 𝑉𝑗 ] =
𝑙𝑖𝑗⋃︁

𝑘=1

[︁
𝑢𝑖𝑗

𝑘 ,𝑊
𝑖𝑗
𝑘

]︁
.

Since 𝑆n𝑋 is Hausdorff, for 𝑘 ≥ 2, we can substitute
[︁
𝑢𝑖𝑗

𝑘 ,𝑊
𝑖𝑗
𝑘

]︁
by
[︁
𝑢𝑖𝑗

𝑘 ,𝑊
𝑖𝑗
𝑘

]︁
∖
⋃︀𝑘−1

𝑝=1 [𝑢𝑝,𝑊𝑝]. By Lemma 4.3.1, we can to rewrite this
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set as [𝑢𝑖𝑗
𝑘 ,
̃︂
𝑊 𝑖𝑗

𝑘 ] for appropriate ̃︂𝑊 𝑖𝑗
𝑘 , and to obtain the desired partition

of [𝑠𝑖, 𝑈𝑖] ∩ [𝑡𝑗 , 𝑉𝑗 ].

Theorem 4.3.4. Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) be a partial action of
an inverse semigroup 𝑆 on a locally compact, Hausdorff and totally
disconnected topological space 𝑋, and let 𝛼 = ({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆) be
the partial action of 𝑆 on ℒc(X) induced by 𝜃.

If the groupoid of germs 𝑆 n𝑋 is Hausdorff, then the Steinberg
algebra of 𝑆 n𝜃 𝑋 is isomorphic to the partial skew inverse semigroup
algebra ℒc(X)o𝛼𝑆.

Proof. Given a generating element 𝑓𝑠𝛿𝑠 of L (𝛼), we define 𝜑(𝑓𝑠𝛿𝑠) :
𝑆 n𝑋 → 𝑅 by

𝜑(𝑓𝑠𝛿𝑠)(𝑎) =

⎧⎨⎩𝑓𝑠(r(𝑎)), if 𝑎 ∈ [𝑠,𝑋𝑠* ]

0, otherwise.

We first need to check that 𝜑(𝑓𝑠𝛿𝑠) is well-defined, that is, 𝜑(𝑓𝑠𝛿𝑠) is
locally constant and has compact support. Notice that the definition of
𝜑(𝑓𝑠𝛿𝑠) implies

supp(𝜑(𝑓𝑠𝛿𝑠)) = [𝑠, 𝜃−1
𝑠 (supp 𝑓)],

which is compact-open, and in particular is clopen because 𝑆 n 𝑋 is
Hausdorff.

Of course, 𝜑(𝑓𝑠𝛿𝑠) is constant equal to 0 on the complement

(𝑆 n𝑋) ∖ supp(𝜑(𝑓𝑠𝛿𝑠)),

and since 𝜑(𝑓𝑠𝛿𝑠) coincides with the composition 𝑓𝑠 ∘r on supp(𝜑(𝑓𝑠𝛿𝑠))
and 𝑓𝑠 is locally constant, then 𝜑(𝑓𝑠𝛿𝑠) is also locally constant on
supp(𝜑(𝑓𝑠𝛿𝑠)). We conclude that 𝜑(𝑓𝑠𝛿𝑠) is locally constant on com-
plementary clopen subsets of 𝑆 n𝑋, so 𝜑(𝑓𝑠𝛿𝑠) is locally constant.

Using the presentation of L (𝛼) in Definition 1.6.1, we extend 𝜑
linearly to an 𝑅-module homomorphism 𝜑 : L (𝛼) → 𝐴𝑅(𝑆 n𝑋).
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We will show that 𝜑 is multiplicative. By linearity of 𝜑 it is
enough to verify this map is multiplicative on the generators. Let 𝑓𝑠𝛿𝑠, 𝑓𝑡𝛿𝑡 ∈
L (𝛼) and 𝑎 ∈ 𝑆 n𝑋. There are two possibilities:
Case 1: 𝑎 ̸∈ [𝑠,𝑋𝑠* ][𝑡,𝑋𝑡* ] = [𝑠𝑡, 𝜃𝑡*(𝑋𝑡 ∩𝑋𝑠*)].

Since supp(𝜑(𝑓𝑠𝛿𝑠) * 𝜑(𝑓𝑡𝛿𝑡)) ⊆ [𝑠,𝑋𝑠* ][𝑡,𝑋𝑡* ], then

[𝜑(𝑓𝑠𝛿𝑠) * 𝜑(𝑓𝑡𝛿𝑡)](𝑎) = 0.

On the other hand, (𝑓𝑠𝛿𝑠)(𝑓𝑡𝛿𝑡) = 𝛼𝑠(𝛼𝑠*(𝑓𝑠)𝑓𝑡)𝛿𝑠𝑡. Since

supp(𝛼𝑠*(𝑓𝑠)𝑓𝑡) = 𝜃𝑠*(supp 𝑓𝑠) ∩ supp(𝑓𝑡)

then

supp(𝛼𝑠(𝛼𝑠*(𝑓𝑠)𝑓𝑡)) = 𝜃𝑠(𝜃𝑠*(supp(𝑓𝑠)) ∩ (supp(𝑓𝑡)),

and this set is contained in 𝜃𝑠(𝑋𝑠* ∩𝑋𝑡) = 𝑋𝑠 ∩𝑋𝑠𝑡, which is precisely
the set on which 𝜃𝑡*𝜃𝑠* = 𝜃(𝑠𝑡)* . Thus

𝜃(𝑠𝑡)* [supp(𝛼𝑠(𝛼𝑠*(𝑓𝑠)𝑓𝑡))] = 𝜃𝑡*((supp 𝑓𝑠) ∩ supp 𝑓𝑡)

and so

supp[𝜑((𝑓𝑠𝛿𝑠) * (𝑓𝑡𝛿𝑡))] = [𝑠𝑡, 𝜃𝑡*(𝜃𝑠*(supp 𝑓𝑠) ∩ supp 𝑓𝑡)],

which is contained in [𝑠𝑡, 𝜃𝑡*(𝑋𝑠* ∩𝑋𝑡)] = [𝑠,𝑋𝑠* ][𝑡,𝑋𝑡* ], and therefore

𝜑((𝑓𝑠𝛿𝑠)(𝑓𝑡𝛿𝑡))(𝑎) = 0 = (𝜑(𝑓𝑠𝛿𝑠) * 𝜑(𝑓𝑡𝛿𝑡))(𝑎),

as we expected.
Case 2: 𝑎 ∈ [𝑠,𝑋𝑠* ][𝑡,𝑋𝑡* ].

In this case, we can write 𝑎 = [𝑠, 𝑥][𝑡, 𝑦] for unique 𝑥 ∈ 𝑋𝑠* and
𝑦 ∈ 𝑋𝑡* with 𝜃𝑡(𝑦) = 𝑥. Since supp(𝜑(𝑓𝑠𝛿𝑠)) ⊆ [𝑠,𝑋𝑠* ] then

(𝜑(𝑓𝑠𝛿𝑠) * 𝜑(𝑓𝑡𝛿𝑡))(𝑎) =
∑︁

𝑏∈r−1r(𝑎)

𝜑(𝑓𝑠𝛿𝑠)(𝑏)𝜑(𝑓𝑡𝛿𝑡)(𝑏−1𝑎)

= 𝜑(𝑓𝑠𝛿𝑠)[𝑠, 𝑥]𝜑(𝑓𝑡𝛿𝑡)[𝑡, 𝑦]

= 𝑓𝑠(𝜃𝑠(𝑥))𝑓𝑡(𝜃𝑡(𝑦))
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On the other hand, 𝑎 ∈ [𝑠,𝑋𝑠* ][𝑡,𝑋𝑡* ] ⊆ [𝑠𝑡,𝑋(𝑠𝑡)* ], so

𝜑((𝑓𝑠𝛿𝑠) * (𝑓𝑡𝛿𝑡))(𝑎) = 𝜑(𝛼𝑠(𝛼𝑠*(𝑓𝑠)𝑓𝑡)𝛿𝑠𝑡)(𝑎)

= 𝛼𝑠(𝛼𝑠*(𝑓𝑠)𝑓𝑡)(r(𝑎)) = 𝛼𝑠(𝛼𝑠*(𝑓𝑠)𝑓𝑡)(𝜃𝑠(𝑥))

= (𝛼𝑠*(𝑓𝑠)𝑓𝑡)(𝑥) = 𝑓𝑠(𝜃𝑠(𝑥))𝑓𝑡(𝑥)

= 𝑓𝑠(𝜃𝑠(𝑥))𝑓𝑡(𝜃𝑡(𝑦))

= (𝜑(𝑓𝑠𝛿𝑠) * 𝜑(𝑓𝑡𝛿𝑡))(𝑎),

as we desired.
Now let us prove that 𝜑 vanishes on the ideal 𝒩 (𝛼) generated

by all elements of form 𝑓𝛿𝑠 − 𝑓𝛿𝑡, where 𝑠 ≤ 𝑡 and 𝑓 ∈ 𝐷𝑠. Since 𝜑 is
a homomorphism it is enough to show that 𝜑 is zero on the generators
of 𝒩 (𝛼), so let 𝑎 ∈ 𝑆 n𝑋. We have that

∙ if 𝑎 ∈ [𝑠,𝑋𝑠* ] then 𝑎 ∈ [𝑡,𝑋𝑡* ], and

𝜑(𝑓𝛿𝑠 − 𝑓𝛿𝑡)(𝑎) = 𝑓(r(𝑎)) − 𝑓(r(𝑎)) = 0;

∙ if 𝑎 ∈ [𝑡,𝑋𝑡* ] ∖ [𝑠,𝑋𝑠* ] then r(𝑎) /∈ 𝑋𝑠, because r is injective on
[𝑡,𝑋𝑡* ], and 𝑓(r(𝑎)) = 0 because 𝑓 ∈ 𝐷𝑠. Thus

𝜑(𝑓𝛿𝑠 − 𝑓𝛿𝑡)(𝑎) = 0 − 𝑓(r(𝑎)) = 0.

∙ if 𝑎 /∈ [𝑡,𝑋𝑡* ] then 𝑎 /∈ [𝑠,𝑋𝑠* ] as well, so

𝜑(𝑓𝛿𝑠 − 𝑓𝛿𝑡)(𝑎) = 0 − 0 = 0;

Therefore, 𝜑 vanishes on the ideal N (𝛼) and hence factors th-
rough the quotient L (𝛼)/N (𝛼) = ℒc(X)o𝛼𝑆 to an 𝑅-homomorphism
Φ : ℒc(X)o𝛼𝑆 → 𝐴𝑅(𝑆 n𝑋).

In order to prove that Φ is bijective, we will show the existence
of a map Ψ : 𝐴𝑅(𝑆n𝑋) → ℒc(X)o𝛼𝑆 which is in fact the inverse map
of Φ.

By Remark 4.3.2, any compact-open bisection of 𝑆 n𝑋 is a dis-
joint union of basic compact-open subsets of 𝑆n𝑋. Hence, any function
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in 𝐴𝑅(𝑆 n𝑋) can be written as a linear combination of characteristic
functions of disjoint basic compact-open subsets.

Given 𝑓 =
∑︀𝑛

𝑖=1 𝑐𝑖1[𝑠𝑖,𝑈𝑖] ∈ 𝐴𝑅(𝑆 n 𝑋), where 𝑐1, · · · , 𝑐𝑛 ∈
𝑅 ∖ {0} and [𝑠1, 𝑈1], · · · , [𝑠𝑛, 𝑈𝑛] are pairwise disjoints basic compact-
open subsets of 𝑆 n𝑋, define

Ψ(𝑓) = Ψ
(︃

𝑛∑︁
𝑖=1

𝑐𝑖1[𝑠𝑖,𝑈𝑖]

)︃
=

𝑛∑︁
𝑖=1

𝑐𝑖1r[𝑠𝑖,𝑈𝑖]𝛿𝑠𝑖 .

We need to check that Ψ is well-defined. Suppose that also there
are other pairwise disjoints basic compact-open subsets [𝑡1, 𝑉1], · · · ,
[𝑡𝑚, 𝑉𝑚] of 𝑆n𝑋 and 𝑏1, · · · , 𝑏𝑚 ∈ 𝑅∖{0} such that 𝑓 =

∑︀𝑚
𝑗=1 𝑏𝑗1[𝑡𝑗 ,𝑉𝑗 ].

Notice that
𝑛⋃︁

𝑖=1
[𝑠𝑖, 𝑈𝑖] = supp(𝑓) =

𝑚⋃︁
𝑗=1

[𝑡𝑗 , 𝑉𝑗 ],

and these unions are disjoint. We can then conclude that
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

𝑐𝑖1[𝑠𝑖,𝑈𝑖]∩[𝑡𝑗 ,𝑉𝑗 ] = 𝑓 =
𝑚∑︁

𝑗=1

𝑛∑︁
𝑖=1

𝑏𝑗1[𝑠𝑖,𝑈𝑖]∩[𝑡𝑗 ,𝑉𝑗 ],

and the family {[𝑠𝑖, 𝑈𝑖] ∩ [𝑡𝑗 , 𝑉𝑗 ]}𝑖,𝑗 is pairwise disjoint, which implies
that

𝑐𝑖1[𝑠𝑖,𝑈𝑖]∩[𝑡𝑗 ,𝑉𝑗 ] = 𝑏𝑗1[𝑠𝑖,𝑈𝑖]∩[𝑡𝑗 ,𝑉𝑗 ], (4.4)

for every pair 𝑖, 𝑗.
Let 𝑖 and 𝑗 be temporarily fixed. By Lemma 4.3.3, there is a

finite collection
{︁[︁
𝑢𝑖𝑗

𝑘 ,𝑊
𝑖𝑗
𝑘

]︁ ⃒⃒
𝑘 = 1, · · · , 𝑙𝑖𝑗

}︁
of pairwise disjoint basic

compact-open subsets of 𝑆 n𝑋 such that

[𝑠𝑖, 𝑈𝑖] ∩ [𝑡𝑗 , 𝑉𝑗 ] =
𝑙𝑖𝑗⋃︁

𝑘=1

[︁
𝑢𝑖𝑗

𝑘 ,𝑊
𝑖𝑗
𝑘

]︁
,

and 𝑢𝑖𝑗
𝑘 ≤ 𝑠𝑖, 𝑡𝑗 . Hence, for every 𝑘 ∈

{︀
1, . . . , 𝑙𝑖𝑗

}︀
, we have that

𝑐𝑖1[𝑢𝑖𝑗
𝑘

,𝑊 𝑖𝑗
𝑘

] = 𝑏𝑗1[𝑢𝑖𝑗
𝑘

,𝑊 𝑖𝑗
𝑘

],

and composing both maps on the right with r|−1
[𝑠𝑖,𝑈𝑖], we obtain

𝑐𝑖1r[𝑢𝑖𝑗
𝑘

,𝑊 𝑖𝑗
𝑘 ] = 𝑏𝑗1r[𝑢𝑖𝑗

𝑘
,𝑊 𝑖𝑗

𝑘 ], (4.5)
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on r[𝑠𝑖, 𝑈𝑖]. Of course, 1r[𝑠𝑖,𝑈𝑖] is identically zero on 𝑋 ∖ r[𝑠𝑖, 𝑈𝑖], so in
fact equation (4.5) holds everywhere on 𝑋. Then

𝑛∑︁
𝑖=1

𝑐𝑖1r[𝑠𝑖,𝑈𝑖]𝛿𝑠𝑖
=

𝑛∑︁
𝑖=1

𝑐𝑖1⋃︀𝑚

𝑗=1

⋃︀𝑙𝑖𝑗

𝑘=1
r([𝑢𝑖𝑗

𝑘
,𝑊 𝑖𝑗

𝑘
])𝛿𝑠𝑖

=
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

𝑙𝑖𝑗∑︁
𝑘=1

𝑐𝑖1𝑟[𝑢𝑖𝑗
𝑘

,𝑊 𝑖𝑗
𝑘

]𝛿𝑠𝑖

𝑢𝑖𝑗
𝑘

≤𝑠𝑖=
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

𝑙𝑖𝑗∑︁
𝑘=1

𝑐𝑖1𝑟[𝑢𝑖𝑗
𝑘

,𝑊 𝑖𝑗
𝑘

]𝛿𝑢𝑖𝑗
𝑘

(4.5)=
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

𝑙𝑖𝑗∑︁
𝑘=1

𝑏𝑗1r[𝑢𝑖𝑗
𝑘

,𝑊 𝑖𝑗
𝑘

]𝛿𝑢𝑖𝑗
𝑘

𝑢𝑖𝑗
𝑘

≤𝑡𝑗=
𝑚∑︁

𝑗=1

𝑛∑︁
𝑖=1

𝑙𝑖𝑗∑︁
𝑘=1

𝑏𝑗1r[𝑢𝑖𝑗
𝑘

,𝑊 𝑖𝑗
𝑘

]𝛿𝑡𝑗

=
𝑚∑︁

𝑗=1
𝑏𝑗1⋃︀𝑛

𝑖=1

⋃︀𝑙𝑖𝑗

𝑘=1
r([𝑢𝑖𝑗

𝑘
,𝑊 𝑖𝑗

𝑘
])𝛿𝑡𝑗

=
𝑚∑︁

𝑗=1
𝑏𝑗1r[𝑡𝑗 ,𝑉𝑗 ]𝛿𝑡𝑗

.

This proves that Ψ is well-defined. Moreover, it should be clear that
whenever we represent an element 𝑓 ∈ 𝐴𝑅(𝑆n𝑋) as 𝑓 =

∑︀𝑛
𝑖=1 𝑐𝑖1[𝑠𝑖,𝑈𝑖],

where {[𝑠𝑖, 𝑈𝑖] | 𝑖 = 1 · · ·𝑛} is a collection of pairwise disjoint basic
compact-open subsets of 𝑆n𝑋, then the condition 𝑐𝑖 ̸= 0 in the original
definition of Ψ is not necessary, so that we still have

Ψ(𝑓) =
𝑛∑︁

𝑖=1
𝑐𝑖1r[𝑠𝑖,𝑈𝑖]𝛿𝑠𝑖

To prove that Ψ is the inverse of Φ, we must first prove that Ψ
is additive. Suppose that 𝑓 =

∑︀𝑛
𝑖=1 𝑐𝑖1[𝑠𝑖,𝑈𝑖] and 𝑔 =

∑︀𝑚
𝑗=1 𝑏𝑗1[𝑡𝑗 ,𝑉𝑗 ],

where the collections {[𝑠𝑖, 𝑈𝑖] | 𝑖 = 1 · · ·𝑛} and {[𝑡𝑗 , 𝑉𝑗 ] | 𝑗 = 1 · · ·𝑚}
consist of pairwise disjoint basic compact-open subsets of 𝑆 n𝑋, and
𝑐𝑖, 𝑏𝑗 ∈ 𝑅.
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We can assume that

𝑛⋃︁
𝑖=1

[𝑠𝑖, 𝑈𝑖] =
𝑚⋃︁

𝑗=1
[𝑡𝑗 , 𝑉𝑗 ]

taking some 𝑐𝑖 and 𝑏𝑗 equal to zero. Again, take 𝑢𝑖𝑗
𝑘 satisfying the

conditions of Lemma 4.3.3, so

𝑓 =
𝑚∑︁

𝑗=1

𝑙𝑖𝑗∑︁
𝑘=1

𝑐𝑖1[𝑢𝑖𝑗
𝑘

,𝑊 𝑖𝑗
𝑘

] and 𝑔 =
𝑚∑︁

𝑗=1

𝑙𝑖𝑗∑︁
𝑘=1

𝑏𝑗1[𝑢𝑖𝑗
𝑘

,𝑊 𝑖𝑗
𝑘

]

and 𝑓+𝑔 =
∑︀𝑚

𝑗=1
∑︀𝑙𝑖𝑗

𝑘=1(𝑐𝑖+𝑏𝑗)1[𝑢𝑖𝑗
𝑘

,𝑊 𝑖𝑗
𝑘

]. Since the basic compact-open
subsets [𝑢𝑖𝑗

𝑘 ,𝑊
𝑖𝑗
𝑘 ] are pairwise disjoint, the definition of Ψ gives us

Ψ(𝑓 + 𝑔) =
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

𝑙𝑖𝑗∑︁
𝑘=1

(𝑐𝑖 + 𝑏𝑗)1r[𝑢𝑖𝑗
𝑘

,𝑊 𝑖𝑗
𝑘

]𝛿𝑢𝑖𝑗
𝑘

=
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

𝑙𝑖𝑗∑︁
𝑘=1

𝑐𝑖1r[𝑢𝑖𝑗
𝑘

,𝑊 𝑖𝑗
𝑘

]𝛿𝑢𝑖𝑗
𝑘

+
𝑚∑︁

𝑗=1

𝑛∑︁
𝑖=1

𝑙𝑖𝑗∑︁
𝑘=1

𝑏𝑗1r[𝑢𝑖𝑗
𝑘

,𝑊 𝑖𝑗
𝑘

]𝛿𝑢𝑖𝑗
𝑘

= Ψ(𝑓) + Ψ(𝑔).

Finally, it remains to be seen that Ψ is the inverse of Φ. Let
𝑓 =

∑︀𝑛
𝑖=1 𝑐𝑖1[𝑠𝑖,𝑈𝑖] ∈ 𝐴𝑅(𝑆 n 𝑋), where [𝑠𝑖, 𝑈𝑖] are pairwise disjoint.

Then

Φ ∘ Ψ(𝑓) = Φ ∘ Ψ
(︃

𝑛∑︁
𝑖=1

𝑐𝑖1[𝑠𝑖,𝑈𝑖]

)︃
= Φ

(︃
𝑛∑︁

𝑖=1
𝑐𝑖1r[𝑠𝑖,𝑈𝑖]𝛿𝑠𝑖

)︃

=
𝑛∑︁

𝑖=1
𝜑
(︀
𝑐𝑖1r[𝑠𝑖,𝑈𝑖]𝛿𝑠𝑖

)︀
=

𝑛∑︁
𝑖=1

𝑐𝑖1[𝑠𝑖,𝑈𝑖] = 𝑓.

Now, let 𝑓𝑠 =
∑︀𝑚

𝑗=1 𝑐𝑗1𝐿𝑗
∈ 𝐷𝑠, where 𝑐𝑗 ∈ 𝑅 and 𝐿𝑗 are
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pairwise disjoint compact-open subsets of 𝑋𝑠. Thus

Ψ ∘ Φ
(︀
𝑓𝑠𝛿𝑠

)︀
= Ψ ∘ 𝜑 (𝑓𝑠𝛿𝑠) = Ψ ∘ 𝜑

⎛⎝ 𝑚∑︁
𝑗=1

𝑐𝑗1𝐿𝑗𝛿𝑠

⎞⎠
= Ψ

⎛⎝ 𝑚∑︁
𝑗=1

𝜑(𝑐𝑗1𝐿𝑗
𝛿𝑠)

⎞⎠ = Ψ

⎛⎝ 𝑚∑︁
𝑗=1

𝑐𝑗1[𝑠,𝜃𝑠* (𝐿𝑗)]

⎞⎠
=

𝑚∑︁
𝑗=1

𝑐𝑗1𝐿𝑗
𝛿𝑠 = 𝑓𝑠𝛿𝑠.

By additivity of Ψ and Φ, we have that Ψ ∘ Φ(𝑓) = 𝑓 , for all
𝑓 ∈ ℒc(X)o𝛼𝑆. Therefore Φ is an 𝑅-isomorphism.

Remark 4.3.5. If each 𝑋𝑠 is compact, then each 𝐷𝑠 is unital, and
so we can use the universal property of partial skew inverse semigroup
algebras described in Theorem 1.6.19. In this case, one can prove that
the pair (𝜋, 𝑢), where 𝜋 : ℒc(X) → 𝐴𝑅(𝑆 n 𝑋) is the embedding of
ℒc(X) = 𝐴𝑅(𝑋) in 𝐴𝑅(𝑆 n𝑋), and 𝑢 : 𝑆 → 𝐴𝑅(𝑆 n𝑋) is defined by
𝑢(𝑠) = 1[𝑠,𝑋𝑠* ], is a covariant representation of 𝛼. Moreover,

(𝜋 × 𝑢)(𝑓𝑠𝛿𝑠)(𝑏) =
{︃

𝑓𝑠(r(𝑏)), if 𝑏 ∈ [𝑠,𝑋𝑠* ]
0, if otherwise

coincides with the map Φ in the proof of the above theorem.
On the other hand, we can construct the inverse of Φ using the

universal property of Steinberg algebras as follows: Given 𝑈 ∈ (𝑆n𝑋)𝑎,
decompose 𝑈 as a disjoint union 𝑈 =

⋃︀
𝑖[𝑠𝑖, 𝑈𝑖] for certain 𝑠𝑖 ∈ 𝑆 and

𝑈𝑖 ⊆ 𝑋𝑠*
𝑖
, and define

𝑡𝑈 =
∑︁

𝑖

1𝜃𝑠𝑖
(𝑈𝑖)𝛿𝑠𝑖 =

∑︁
𝑖

1r([𝑠𝑖,𝑈𝑖]𝛿𝑠𝑖 .

The collection {𝑡𝑈 | 𝑈 ∈ (𝑆 n 𝑋)𝑎} is a representation of (𝑆 n 𝑋)𝑎

on 𝐴𝑅(𝑆 n𝑋) (see Definition 1.3.6). Then, by the universal property
of 𝑆 n𝑋 (see Theorem 1.3.7), there exists a unique 𝑅-homomorphism
Ψ : 𝐴𝑅(𝑆n𝑋) → ℒc(X)o𝑆 satisfying Ψ(1𝑈 ) = 𝑡𝑈 , for all 𝑈 ∈ (𝑆n𝑋)𝑎

(see the second part of the proof of Theorem 4.4.32 in [19]).
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Remark 4.3.6. Notice that the isomorphism Φ : ℒc(X)o𝑆 → 𝐴𝑅(𝑆n
𝑋) obtained in the proof of Theorem 4.3.4 above maps the diagonal
subalgebra 𝒟 of ℒc(X)o𝑆 (as in Definition 1.3.8) to the diagonal subal-
gebra𝐷𝑅(𝑆n𝑋) of 𝐴𝑅(𝑆n𝑋) (as in Definition 1.6.15). Under the usual
identifications of both of these diagonal subalgebras as ℒc(X) = 𝐴𝑅(𝑋),
the isomorphism Φ restricts to the identity on ℒc(X) = 𝐴𝑅(𝑋).

Corollary 4.3.7. Let 𝒢 be an ample Hausdorff groupoid. Then the
Steinberg Algebra 𝐴𝑅(𝒢) is isomorphic to the skew inverse semigroup
algebras ℒ𝑐(𝒢(0)) o𝜇 𝒢𝑜𝑝 and ℒ𝑐(𝒢(0)) o𝜂 𝒢𝑎, where 𝜇 and 𝜂 are the
induced actions of the natural actions of 𝒢𝑜𝑝 and 𝒢𝑎 on 𝒢(0) (as in
Example 1.5.9).

Proof. By Example 4.1.16, 𝒢 is isomorphic to the groupoids of germs
𝒢𝑜𝑝 n𝒢(0) and 𝒢𝑎 n𝒢(0), given by the respective natural actions of 𝒢𝑜𝑝

and 𝒢𝑎 on 𝒢(0). Then the desired result follows from Theorem 4.3.4.

It is interesting to note that the skew algebras ℒ𝑐(𝒢(0))o𝒢𝑜𝑝 and
ℒ𝑐(𝒢(0))o𝒢𝑎 arise from actions and not simply partial action as in the
previous theorem. Further, using Theorem 4.3.4 and Corollary 4.3.7 for
the groupoid of germs of a partial action, we obtain

ℒc(X)o𝛼𝑆 ≃ 𝐴𝑅(𝑆 n𝑋) ≃ ℒc(X)o𝜂(𝑆 n𝑋)𝑎,

where 𝜂 is the induced action of the natural action of (𝑆 n 𝑋)𝑎 on
(𝑆 n𝑋)(0) ≃ 𝑋.

4.4 Constructing a Steinberg algebra from a partial skew
inverse semigroup algebra

In Section 4.3 we saw that the Steinberg algebra of an ample
Hausdorff groupoid of germs can be seen as a partial skew inverse se-
migroup algebra. In this section we will be interested in the opposite
direction, that is, to characterize partial skew inverse semigroup alge-
bras of the form ℒc(X)o𝛼𝑆 as Steinberg algebras 𝐴𝑅(𝑆n𝜃𝑆) in such a



4.4. Constructing a Steinberg algebra from a partial skew 161

way that 𝛼 is induced by 𝜃. To do this, we will prove that under certain
conditions we can obtain a topological partial action of 𝑆 on 𝑋 from
the action 𝛼.

Some results of this nature are already known. For example,
on the C*-algebras level, if 𝑋 is a locally compact Hausdorff topo-
logical space then every closed ideal of 𝐶0(𝑋) is the form 𝐶0(𝑈) =
{𝑓 ∈ 𝐶0(𝑋) | supp(𝑓) ⊆ 𝑈} for some (unique) open set 𝑈 of 𝑋,
and the Gelfand-Naimark Theorem implies that every C-isomorphism
𝑇 : 𝐶0(𝑈) → 𝐶0(𝑉 ) between two such ideals is of the form 𝑇 (𝑓) = 𝑓 ∘𝜑
for some (unique) homeomorphism 𝜑 : 𝑉 → 𝑈 . This gives a one-to-
one correspondence between algebraic partial actions of a group 𝐺 on
𝐶0(𝑋) and topological partial actions of 𝐺 on 𝑋.

In [4], a similar relation is shown at the purely algebraic level.
More precisely, let K be a field and denote by ℱ0(𝑋) the algebra of all
functions 𝑋 → K with finite support, endowed with pointwise opera-
tions. Then there is a bijection between the non-zero ideals of ℱ0(𝑋)
and the non-empty subsets of 𝑋, and, moreover, there is a one-to-one
correspondence between the partial actions of a group 𝐺 on 𝑋 and the
partial actions of 𝐺 on ℱ0(𝑋).

In order to find a one-to-one correspondence between topological
partial actions 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑋𝑠

) of 𝑆 on 𝑋 and algebraic partial
actions 𝛼 = ({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆) of 𝑆 on ℒc(X), we will need a few
preliminary results.

A unital commutative ring that has only trivial idempotents will
be called an indecomposable ring.

Proposition 4.4.1. Let 𝑅 be an indecomposable ring. Γ : ℒ𝑐(𝑌 ) →
ℒc(X) is an 𝑅-isomorphism if, and only if, there exists a unique home-
omorphism 𝜙 : 𝑋 → 𝑌 such that Γ(𝑓) = 𝑓 ∘ 𝜙, for all 𝑓 ∈ ℒc(X).

Proof. The “if” part is straightforward, and for the converse we will
use [18, Theorem 1.19]. For both ℒc(X) or ℒ(𝑌 ) we consider the “dis-
jointness” relation ⊥, given by

𝑓 ⊥ 𝑔 if, and only if, supp(𝑓) ∩ supp(𝑔) = ∅,
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which in this case coincides with the “strong disjointness” relation of
[18, Definition 1.1(2)] since the supports of all functions that we consi-
der are clopen.

Suppose then that Γ : ℒ𝑐(𝑌 ) → ℒc(X) is an 𝑅-isomorphism. No-
tice that, since𝑅 has only trivial idempotents, the idempotents of ℒc(X)
and ℒ𝑐(𝑌 ) are precisely the characteristic functions of compact-open
subsets of 𝑋, respectively. This implies that if 𝑓 and 𝑔 are idempotent,
then

𝑓 ⊥ 𝑔 if, and only if, 𝑓𝑔 = 0.

Therefore, if 𝑓 and 𝑔 are idempotents of ℒ𝑐(𝑌 ), then

𝑓 ⊥ 𝑔 if, and only if, Γ(𝑓) ⊥ Γ(𝑔).

For general elements 𝑓, 𝑔 ∈ ℒ𝑐(𝑌 ), we have 𝑓 ⊥ 𝑔 if, and only
if, there are idempotent elements 𝑓1, . . . , 𝑓𝑛, 𝑔1, . . . , 𝑔𝑚, and 𝑎1, . . . , 𝑎𝑛,

𝑏1, . . . , 𝑏𝑚 ∈ 𝑅 such that

𝑓 =
𝑛∑︁

𝑖=1
𝑎𝑖𝑓𝑖, 𝑔 =

𝑚∑︁
𝑗=1

𝑏𝑗𝑔𝑗 , and 𝑓𝑖 ⊥ 𝑔𝑗 , for all pair 𝑖, 𝑗. (4.6)

Indeed, if condition (4.6) is satisfied, then

supp(𝑓) ∩ supp(𝑔) ⊆
𝑛⋃︁

𝑖=1

𝑚⋃︁
𝑗=1

supp(𝑓𝑖) ∩ supp(𝑔𝑗) = ∅.

In the converse direction we assume 𝑓 ̸= 0 and 𝑔 ̸= 0, and take an
enumeration {𝑎1, . . . , 𝑎𝑛} = 𝑓(𝑌 )∖{0} and 𝑓𝑖 = 1𝑓−1(𝑎𝑖), and construct
𝑏𝑗 and 𝑔𝑗 similarly, so that the conditions in (4.6) are satisfied.

The same type of condition as in (4.6) describes disjointness of
elements of ℒc(X), and so we can conclude that

𝑓 ⊥ 𝑔 if, and only if, Γ(𝑓) ⊥ Γ(𝑔).

By [18, Theorem 1.19] there is a unique Γ-homeomorphism 𝜙 :
𝑋 → 𝑌 that

𝜙(supp Γ(𝑓)) = supp 𝑓, for all 𝑓 ∈ ℒ(𝑌 ). (4.7)
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Now, if 𝑓, 𝑔 ∈ ℒ(𝑌 ) and 𝑥 ∈ 𝑋 then

𝑓(𝜙(𝑥)) ̸= 0 ⇐⇒ 𝜙(𝑥) ∈ supp(𝑓) = 𝜙(supp(Γ(𝑓)))

⇐⇒ 𝑥 ∈ supp(Γ(𝑓)) ⇐⇒ Γ(𝑓)(𝑥) ̸= 0.

Hence, using additivity of Γ,

𝑓(𝜙(𝑥)) = 𝑔(𝜙(𝑥)) ⇐⇒ Γ(𝑓(𝑥)) = Γ(𝑔(𝑥)).

By [18, Proposition 2.6], Γ is 𝜙-basic and there is a unique (𝜙,Γ)-
transform 𝜒 : 𝑋 ×𝑅 → 𝑅 such that

Γ(𝑓(𝑥)) = 𝜒(𝑥, 𝑓(𝜙(𝑥))), for all 𝑓 ∈ ℒ(𝑌 ) and 𝑥 ∈ 𝑋.

Now note that since Γ is an 𝑅-isomorphism and the opera-
tions are pointwise, then for every fixed element 𝑥 ∈ 𝑋 the map
𝜒(𝑥, ·) : 𝑅 → 𝑅 defined by 𝑎 ↦→ 𝜒(𝑥, 𝑎) is an 𝑅-automorphism (by [18,
Proposition 2.9]). Since the identity map is the unique 𝑅-automorphism
of 𝑅, we can conclude that 𝜒(𝑥, 𝑎) = 𝑎, for any 𝑥 ∈ 𝑋 and any 𝑎 ∈ 𝑅.
Therefore,

Γ(𝑓(𝑥)) = 𝜒(𝑥, 𝑓(𝜙(𝑥))) = 𝑓(𝜙(𝑥)),

for all 𝑥 ∈ 𝑋, which is what we desired. Uniqueness of 𝜙 for which
this formula holds follows from the uniqueness of 𝜙 with the property
described in equation 4.7 (see [18, Theorem 1.19]).

From the above propositions, we conclude that there is a bijective
anti-homorphism between the group of all homeomorphism from 𝑋 to
𝑌, and the group of all 𝑅-isomorphisms from ℒc(X) to ℒ𝑐(𝑌 ), given by

𝑇 : 𝐻𝑜𝑚𝑒𝑜(𝑋,𝑌 ) −→ 𝐼𝑠𝑜(ℒ𝑐(𝑌 ),ℒc(X))

𝜙 ↦−→ 𝑇𝜙

where 𝑇𝜙(𝑓) = 𝑓 ∘ 𝜙.
We will prove that, when𝑅 is indecomposable, there is a bijection

between ideals with local units of ℒc(X) and open subsets of 𝑋. On one
hand, if 𝑈 is an open subset of 𝑋, then

I(𝑈) := {𝑓 ∈ ℒc(X) : supp(𝑓) ⊆ 𝑈} ≃ ℒ𝑐(𝑈) (4.8)
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is an ideal of ℒc(X) with local units. Indeed, if 𝑓1, · · · , 𝑓𝑛 ∈ I(𝑈) then
the characteristic function 1𝐾 , where 𝐾 =

⋃︀𝑛
𝑖=1 supp(𝑓𝑖), is a local unit

for these functions. Moreover, 𝑈 is compact if, and only if, I(𝑈) has
identity, namely, the characteristic function 1𝑈 is its identity.

Proposition 4.4.2. Suppose that 𝑅 is an indecomposable ring and 𝑋 a
locally compact, Hausdorff, and zero-dimensional space. Then the map

𝑈 ↦→ I(𝑈)

is an order isomorphism between the lattices of open subsets of 𝑋 and
of ideals with local units of ℒc(X). The inverse map is given by

𝐼 ↦→ U(𝐼) =
⋃︁
𝑓∈𝐼

supp(𝑓).

Proof. Given an ideal with local units 𝐼 of ℒc(X), let us show that
𝐼 = I(U(𝐼)). The inclusion 𝐼 ⊆ I(U(𝐼)) follows immediately from the
definitions of I and U. For the converse inclusion, suppose 𝑓 ∈ ℒc(X)
and

supp(𝑓) ⊆ U(𝐼) =
⋃︁
𝑔∈𝐼

supp(𝑔).

By compactness of supp(𝑓), there are 𝑔1, . . . , 𝑔𝑛 ∈ 𝐼 with supp(𝑓) ⊆⋃︀𝑛
𝑖=1 supp(𝑔𝑖). Notice that if 𝑒 ∈ 𝐼 is a local unit for 𝑔1, . . . , 𝑔𝑛, then

𝑒 = 1𝐶 , for some open-compact subset 𝐶 of 𝑋 because 𝑒 is idempotent
and 𝑅 only has trivial idempotents. Since 𝑒 is a local unit for 𝑔1, . . . , 𝑔𝑛,
we get that

supp(𝑓) ⊆
𝑛⋃︁

𝑖=1
supp(𝑔𝑖) ⊆ 𝐶,

and so, 𝑓 = 𝑓1𝐶 = 𝑓𝑒 ∈ 𝐼. This proves that I(U(𝐼)) = 𝐼.
For the converse, given an open subset 𝑈 of 𝑋 we need to check

that 𝑈 = U(I(𝑈)). The inclusion U(I(𝑈)) ⊆ 𝑈 is also immediate from
the definitions of I and U. If 𝑥 ∈ 𝑈 , simply take any compact-open
subset 𝑉 with 𝑥 ∈ 𝑉 ⊆ 𝑈 , so 1𝑉 ∈ I(𝑈) and

𝑥 ∈ supp(1𝑉 ) ⊆ U(I(𝑈)),

which proves that 𝑈 = U(I(𝑈)).
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Proposition 4.4.3. Suppose that 𝑅 is an indecomposable ring and 𝑋
is a locally compact, Hausdorff, and zero-dimensional space. If 𝛼 =
({𝐷𝑠}𝑠∈𝐺, {𝛼𝑠}𝑠∈𝑆) is a partial action of 𝑆 on the 𝑅-algebra ℒc(X)
for which each ideal 𝐷𝑠 has local units, then there is a partial action
𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) of 𝑆 on 𝑋 which induces 𝛼.

Proof. Let 𝛼 = ({𝐷𝑠}𝑠∈𝐺, {𝛼𝑠}𝑠∈𝑆) be a partial action of 𝑆 in ℒc(X)
satisfying the hypotheses above. By Proposition 4.4.2, for each 𝑠 ∈ 𝑆

there is an open subset 𝑋𝑠 ⊆ 𝑋 such that

𝐷𝑠 = I(𝑋𝑠) = {𝑓 ∈ ℒc(X) | supp(𝑓) ⊆ 𝑋𝑠} .

By Proposition 4.4.1, for each isomorphism

𝛼𝑠 : ℒ𝑐(𝑋𝑠*) ≃ 𝐷𝑠* → 𝐷𝑠 = ℒ𝑐(𝑋𝑠),

there is a unique homeomorphism 𝜃𝑠* : 𝑋𝑠 → 𝑋𝑠* such that

𝛼𝑠(𝑓) = 𝑓 ∘ 𝜃𝑠* , for all 𝑓 ∈ 𝐷𝑠* ≃ ℒ𝑐(𝑋𝑠*).

So we simply let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆), and it is clear that, as
long as 𝜃 is indeed a partial action, then 𝛼 is induced by 𝜃.

To finish the proof we need to we show that 𝜃 is indeed a partial
action. By its very definition, each 𝑋𝑠 is open in 𝑋 and 𝜃𝑠 : 𝑋𝑠* → 𝑋𝑠

is a homeomorphism. Non-degeneracy of 𝜃 can be proven as follows:
Let 𝑥 ∈ 𝑋 and 𝑓 ∈ ℒc(X) such that 𝑥 ∈ supp(𝑓). Since we can

write 𝑓 as 𝑓 =
∑︀𝑛

𝑖=1 𝑓𝑖 for certain elements 𝑠𝑖 ∈ 𝑆 and 𝑓𝑖 ∈ 𝐷𝑠𝑖
, we

get that

supp(𝑓) ⊆
𝑛⋃︁

𝑖=1
supp(𝑓𝑖) ⊆

𝑛⋃︁
𝑖=1

𝑋𝑠𝑖 ,

and so 𝑥 ∈ 𝑋𝑠𝑖 for some 𝑖. This proves that 𝑋 =
⋃︀

𝑠∈𝑆 𝑋𝑠.
To conclude that 𝜃 is a partial action we will check the conditions

of Proposition 1.5.2.
(a) Given 𝑠 ∈ 𝑆, 𝛼𝑠* ∘ 𝛼𝑠 is the identity on 𝐷𝑠* , however for all

𝑓 ∈ 𝐷𝑠* ≃ ℒ(𝑋𝑠*),

𝑓 ∘ id𝑋𝑠* = 𝑓 = 𝛼𝑠*(𝛼𝑠(𝑓)) = 𝛼𝑠*(𝑓 ∘ 𝜃𝑠*) = 𝑓 ∘ (𝜃𝑠* ∘ 𝜃𝑠),
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so the uniqueness part of Proposition 4.4.1 implies that 𝜃𝑠* ∘𝜃𝑠 = id𝑋𝑠* ,
that is, 𝜃𝑠* = 𝜃−1

𝑠 .
(b) Let 𝑠, 𝑡 ∈ 𝑆. Notice that,

ℒ𝑐(𝜃𝑡*(𝑋𝑡 ∩𝑋𝑠*)) = 𝛼𝑡*(ℒ𝑐(𝑋𝑡 ∩𝑋𝑠*)) = 𝛼𝑡*(ℒ𝑐(𝑋𝑡) ∩ ℒ𝑐(𝑋𝑠*))
(*)= ℒ𝑐(𝑋𝑡*) ∩ ℒ𝑐(𝑋(𝑠𝑡)*) = ℒ𝑐(𝑋𝑡* ∩𝑋(𝑠𝑡)*),

where the equalities marked by (*) follow because 𝛼 is a partial action
(under the usual identification ℒ𝑐(𝑈) ≃ I(𝑈)). Therefore,

𝜃𝑡*(𝑋𝑡 ∩𝑋𝑠*) = 𝑋𝑡* ∩𝑋(𝑠𝑡)* .

(c) Since 𝛼 is a partial action we get that 𝛼𝑠*(𝛼𝑡*(𝑓)) = 𝛼𝑠*𝑡*(𝑓),
for all 𝑓 ∈ ℒ𝑐(𝑋𝑡 ∩𝑋𝑡𝑠). But this implies that

𝑓(𝜃𝑡 ∘ 𝜃𝑠(𝑥)) = (𝛼𝑠* ∘ 𝛼𝑡*(𝑓))(𝑥) = (𝛼(𝑡𝑠)*(𝑓))(𝑥) = 𝑓(𝜃𝑡𝑠(𝑥)),

for all 𝑥 ∈ 𝑋𝑠* ∩𝑋(𝑡𝑠)* . The uniqueness part of Proposition 4.4.1 implies
that 𝜃𝑡 ∘ 𝜃𝑠 = 𝜃𝑠𝑡, for all 𝑥 ∈ 𝑋𝑠* ∩𝑋(𝑡𝑠)* .

So, from an algebraic partial action 𝛼 on ℒc(X) we managed to
obtain an appropriate topological partial action 𝜃 on 𝑋. In order to
identify the skew inverse semigroup algebra of 𝛼 with the Steinberg
algebra of the groupoid of germs of 𝜃, we need to guarantee that the
conditions of Theorem 4.3.4 are satisfied.

First we describe the ideals associated with clopen sets alge-
braically. The following definition is an algebraic version of [8, Defini-
tion 1.5.9].

Definition 4.4.4. A conditional expectation of an 𝑅-algebra 𝐴 onto a
subalgebra 𝐵 is an 𝑅-module map 𝐸 : 𝐴 → 𝐵 such that

(i) 𝐸(𝑏) = 𝑏, for all 𝑏 ∈ 𝐵 (i.e., 𝐸 is a projection onto 𝐵),

(ii) For all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, 𝐸(𝑏𝑎) = 𝑏𝐸(𝑎) and 𝐸(𝑎𝑏) = 𝐸(𝑎)𝑏 (i.e.,
𝐸 is a 𝐵-bimodule morphism).
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Remark 4.4.5. If 𝐵 is 𝑠-unital then condition (ii) above can be subs-
tituted by

(ii’) For all 𝑎 ∈ 𝐴 and 𝑏, 𝑏′ ∈ 𝐵, 𝐸(𝑏𝑎𝑏′) = 𝑏𝐸(𝑎)𝑏′.

Indeed, let 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 and let 𝑢 ∈ 𝐵 such that

𝑢𝐸(𝑎𝑏) = 𝐸(𝑎𝑏) = 𝐸(𝑎𝑏)𝑢, 𝑏𝑢 = 𝑏 = 𝑢𝑏 and 𝑢𝐸(𝑎) = 𝐸(𝑎) = 𝐸(𝑎)𝑢.

Then

𝐸(𝑎𝑏) = 𝑢𝐸(𝑎𝑏)𝑢 (𝑖𝑖′)= 𝐸(𝑢𝑎𝑏𝑢) = 𝐸(𝑢𝑎𝑏) (𝑖𝑖′)= 𝑢𝐸(𝑎)𝑏 = 𝐸(𝑎)𝑏

and similarly 𝐸(𝑏𝑎) = 𝑏𝐸(𝑎), so (ii) is satisfied.

Lemma 4.4.6. Let 𝑅 be an indecomposable ring, 𝑋 a locally compact,
Hausdorff, and zero-dimensional space and 𝑈 an open subset of 𝑋.
Then the following are equivalent:

(i) U is clopen,

(ii) There exists a conditional expectation of ℒc(X) onto 𝐼(𝑈),

(iii) There exists an ideal 𝐽 of ℒc(X) such that ℒc(X) = I(𝑈) ⊕ 𝐽 (as
𝑅-modules).

Proof. (i) ⇒ (ii): If 𝑈 is clopen then 1𝑈 is continuous, and it is easy
to see that the map 𝐸 : ℒc(X) → I(𝑈), defined by 𝐸(𝑓) = 𝑓1𝑈 is a
conditional expectation.

(ii) ⇒ (iii): Suppose 𝐸 : ℒc(X) → I(𝑈) is a conditional ex-
pectation, and define 𝐽 = {𝑓 − 𝐸(𝑓) | 𝑓 ∈ ℒc(X)}. Then 𝐽 is an 𝑅-
submodule of ℒc(X) such that ℒc(X) = I(𝑈)⊕𝐽 , since 𝐸 is a projection
onto I(𝑈). In order to prove that 𝐽 is an ideal, take 𝑓, 𝑔 ∈ ℒc(X). Since
I(𝑈) is an ideal of ℒc(X) with local unit, there is 𝑢 ∈ I(𝑈) such that
𝐸(𝑓𝑔)𝑢 = 𝐸(𝑓𝑔) and 𝐸(𝑓)𝑔 = [𝐸(𝑓)𝑔]𝑢. Then

𝐸(𝑓𝑔) = 𝐸(𝑓𝑔)𝑢 = 𝐸(𝑓𝑔𝑢) = 𝐸(𝑓)𝑔𝑢 = 𝐸(𝑓)𝑔

so
(𝑓 − 𝐸(𝑓))𝑔 = 𝑓𝑔 − 𝐸(𝑓)𝑔 = 𝑓𝑔 − 𝐸(𝑓𝑔) ∈ 𝐽
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and therefore 𝐽 is a right ideal. Similarly it is a left ideal.
(iii) ⇒ (iii): Suppose that ℒc(X) = I(𝑈) ⊕ 𝐽 for some ideal 𝐽 .

Let us show that 𝐽 ⊆ I(𝑋 ∖ 𝑈). Indeed, if 𝑓 ∈ 𝐽 and 𝑥 ∈ 𝑈 , then 𝑓

is constant on a neighbourhood 𝑉 of 𝑥. Choose 𝑦 ∈ 𝑈 ∩ 𝑉 , and 𝑊 a
compact-open neighbourhood satisfying 𝑦 ∈ 𝑊 ⊆ 𝑈 ∩ 𝑉 . Since I(𝑈)
and 𝐽 are complementary ideals, then 𝑓1𝑊 = 0 and in particular

𝑓(𝑥) = 𝑓(𝑦) = (𝑓1𝑊 )(𝑦) = 0.

Therefore 𝐽 ⊆ I(𝑋 ∖ 𝑈).
We can now prove that 𝑈 is clopen. Given 𝑥 ∈ 𝑈 , let 𝑉 be

any compact-open neighbourhood of 𝑥. By hypothesis, we may write
1𝑉 = 𝑓 + 𝑔 for some 𝑓 ∈ I(𝑈) and 𝑔 ∈ 𝐽 ⊆ I(𝑋 ∖ 𝑈), so 1 = 1𝑉 (𝑥) =
𝑓(𝑥) + 𝑔(𝑥) = 𝑓(𝑥). In particular 𝑥 ∈ supp(𝑓) ⊆ 𝑈 . Therefore 𝑈 is
clopen.

By Lemma 4.4.6 and Theorems 4.1.19 and 4.3.4, we conclude the
following:

Theorem 4.4.7. Let 𝑆 be an inverse semigroup which is a weak semi-
lattice, 𝑅 be an indecomposable ring and 𝑋 a zero-dimensional, locally
compact Hausdorff space. Let 𝛼 = ({𝐷𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆) be an algebraic
partial action of 𝑆 on ℒc(X) where each ideal 𝐷𝑠 has local units and
satisfies one of the equivalent conditions of Lemma 4.4.6.

Then ℒc(X)n𝛼𝑋 is isomorphic to a Steinberg algebra 𝐴𝑅(𝑆 n𝜃

𝑋), where 𝜃 is a topological partial action of 𝑆 on 𝑋 which induces 𝛼.

4.5 Continuous orbit equivalence

In [52], Li characterized continuous orbit equivalence of topolo-
gically free partial group actions in terms of diagonal-preserving iso-
morphisms of the associated C*-crossed products. In Section 2.2, we
characterized diagonal-preserving isomorphisms of the associated skew
group algebras. Now, we will extend the notion of continuous orbit
equivalence to partial actions of inverse semigroups and characterize
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orbit equivalence of topologically principal systems in terms of diagonal-
preserving isomorphisms of the associated skew inverse semigroup al-
gebras.

Recall that given a partial action 𝜃 =
(︀
{𝑋𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆

)︀
of an

inverse semigroup 𝑆 on a topological space 𝑋, we denote

𝑆 *𝑋 = {(𝑠, 𝑥) ∈ 𝑆 ×𝑋 | 𝑥 ∈ 𝑋𝑠*} ,

and for 𝑥 ∈ 𝑋 fixed,

𝑆𝑥 = {𝑠 ∈ 𝑆 | 𝑥 ∈ 𝑋𝑠*}.

Definition 4.5.1. Let 𝑋,𝑌 be topological spaces and let 𝑆, 𝑇 be in-
verse semigroups. We say that two partial actions 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆)
and 𝛾 = ({𝑌𝑡}𝑡∈𝑇 , {𝛾𝑡}𝑡∈𝑇 ) on 𝑋 and 𝑌 , respectively, are continuously
orbit equivalent if there are a homeomorphism

𝜙 : 𝑋 −→ 𝑌

and continuous maps

𝑎 : 𝑆 *𝑋 −→ 𝑇 and 𝑏 : 𝑇 * 𝑌 −→ 𝑆

such that for all 𝑥 ∈ 𝑋, 𝑠 ∈ 𝑆𝑥, 𝑦 ∈ 𝑌 and 𝑡 ∈ 𝑇𝑦,

(i) 𝜙(𝜃𝑠(𝑥)) = 𝛾𝑎(𝑠,𝑥)(𝜙(𝑥)),

(ii) 𝜙−1(𝛾𝑡(𝑦)) = 𝜃𝑏(𝑡,𝑦)(𝜙−1(𝑦)).

Implicitly, we require that 𝑎(𝑔, 𝑥) ∈ 𝑇𝜙(𝑥) and 𝑏(𝑡, 𝑦) ∈ 𝑆𝜙−1(𝑦). We will
call the triple (𝜙, 𝑎, 𝑏) a continuous orbit equivalence between 𝜃 and 𝛾.

Our next goal is to prove that continuous orbit equivalence of
topological principal actions is equivalent to isomorphism of the res-
pective groupoids. This is a generalization of the analogous results for
groups ([53, Theorem 1.2] and [52, Theorem 2.7]).

To this end, we need to prove some identities related to how the
functions 𝑎 and 𝑏 above preserve the structure of 𝑆 and 𝑇 .
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Lemma 4.5.2. Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) and 𝛾 = ({𝑌𝑡}𝑡∈𝑇 , {𝛾𝑡}𝑡∈𝑇 )
be topologically principal partial actions, and (𝜙, 𝑎, 𝑏) be a continuous
orbit equivalence from 𝜃 to 𝛾. Assume that 𝑋 and 𝑌 are Hausdorff.
Then the following implications hold:

(a) [𝑠1, 𝑥] = [𝑠2, 𝑥] implies that [𝑎(𝑠1, 𝑥), 𝜙(𝑥)] = [𝑎(𝑠2, 𝑥), 𝜙(𝑥)], for
all 𝑥 ∈ 𝑋 and 𝑠1, 𝑠2 ∈ 𝑆𝑥.

(b) [𝑎(𝑠1𝑠2, 𝑥), 𝜙(𝑥)] = [𝑎(𝑠1, 𝜃𝑠2(𝑥))𝑎(𝑠2, 𝑥), 𝜙(𝑥)], for all 𝑥 ∈ 𝑋 and
𝑠2 ∈ 𝑆𝑥 and 𝑠1 ∈ 𝑆𝜃𝑠2 (𝑥).

(c) [𝑏(𝑎(𝑠, 𝑥), 𝜙(𝑥)), 𝑥] = [𝑠, 𝑥], for all 𝑥 ∈ 𝑋 and 𝑠 ∈ 𝑆𝑥.

Analogous statements hold with (𝜙−1, 𝑎, 𝑏) in place of (𝜙, 𝑏, 𝑎).

Proof. (a) Let 𝑥 ∈ 𝑋 and 𝑠1, 𝑠2 ∈ 𝑆𝑥. Suppose that [𝑠1, 𝑥] = [𝑠2, 𝑥].
First, choose 𝑠 ≤ 𝑠1, 𝑠2 such that 𝑥 ∈ 𝑋𝑠* . Then choose an open
neighbourhood 𝑈 ⊆ 𝑋𝑠* of 𝑥 ∈ 𝑋 such that

𝑎(𝑠1, 𝑥̃) = 𝑎(𝑠1, 𝑥) and 𝑎(𝑠2, 𝑥̃) = 𝑎(𝑠2, 𝑥).

Then for all 𝑥̃ ∈ 𝑈 ∩𝜙−1(Λ(𝛾)) and for 𝑖 = 1, 2, we have [𝑠𝑖, 𝑥̃] =
[𝑠, 𝑥̃], so

𝛾𝑎(𝑠𝑖,𝑥)(𝜙(𝑥̃) = 𝛾
𝑎(𝑠𝑖,̃︀𝑥)(𝜙(𝑥̃)) = 𝜙(𝜃𝑠𝑖

(𝑥̃))

= 𝜙(r[𝑠𝑖, 𝑥̃]) = 𝜙(r[𝑠, 𝑥̃]).

It follows that 𝛾𝑎(𝑠1,𝑥)(𝜙(𝑥̃)) = 𝛾𝑎(𝑠2,𝑥)(𝜙(𝑥̃)). As 𝜙(𝑥̃) ∈ Λ(𝛾),
the description of Λ(𝛾) as in Lemma 3.2.8 implies that

[𝑎(𝑠1, 𝑥), 𝜙(𝑥̃)] = [𝑎(𝑠2, 𝑥), 𝜙(𝑥̃)], for all 𝑥 ∈ 𝑈 ∩ 𝜙−1(Λ(𝛾)).
(4.9)

In particular, [𝑎(𝑠𝑖, 𝑥), 𝜙(𝑥̃)] and [𝑎(𝑠𝑖, 𝑥), 𝜙(𝑥)] belong to the bi-
section [𝑎(𝑠1, 𝑥), 𝜙(𝑈)], which is Hausdorff.

Since 𝛾 is topologically principal, Λ(𝛾) is dense in 𝑌 , so 𝑈 ∩
𝜙−1(Λ(𝛾)) is dense in 𝑈 and therefore we may take the limit̃︀𝑥 → 𝑥 in Equation (4.9) and conclude that [𝑎(𝑠1, 𝑥), 𝜙(𝑥)] =
[𝑎(𝑠2, 𝑥), 𝜙(𝑥)], limits are unique in Hausdorff spaces.
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(b) Choose an open neighbourhood 𝑈 of 𝑥 ∈ 𝑋 such that

𝑎(𝑠1𝑠2, 𝑥̃) = 𝑎(𝑠1𝑠2, 𝑥), 𝑎(𝑠1, 𝜃𝑠2(𝑥̃)) = 𝑎(𝑠1, 𝜃𝑠2(𝑥))

and 𝑎(𝑠2, 𝑥̃) = 𝑎(𝑠2, 𝑥), for all 𝑥̃ ∈ 𝑈.

Then, for every 𝑥̃ ∈ 𝑈 ∩ 𝜙−1(Λ(𝛾)),

𝛾𝑎(𝑠1𝑠2,𝑥̃)(𝜙(𝑥̃)) = 𝜙(𝜃𝑠1𝑠2(𝑥̃)) = 𝜙(𝜃𝑠1(𝜃𝑠2(𝑥̃))

= 𝛾𝑎(𝑠1,𝜃𝑠2 (𝑥̃))(𝜙(𝜃𝑠2(𝑥̃)))

= 𝛾𝑎(𝑠1,𝜃𝑠2 (𝑥̃))(𝛾𝑎(𝑠2,𝑥̃)(𝜙(𝑥̃)))

= 𝛾𝑎(𝑠1,𝜃𝑠2 (𝑥̃))𝑎(𝑠2,𝑥̃)(𝜙(𝑥̃))

so, the same way as in item (a), the given property of 𝑈 and the
definition of Λ(𝛾) imply that

[𝑎(𝑠1𝑠2, 𝑥), 𝜙(𝑥̃)] = [𝑎(𝑠1, 𝜃𝑠2(𝑥))𝑎(𝑠2, 𝑥), 𝜙(𝑥̃)].

Since 𝜙−1(Λ(𝛾)) ∩ 𝑈 is dense in the Hausdorff space 𝑈 , we con-
clude that [𝑎(𝑠1𝑠2, 𝑥), 𝜙(𝑥)] = [𝑎(𝑠1, 𝜃𝑠2(𝑥))𝑎(𝑠2, 𝑥), 𝜙(𝑥)] by ta-
king the limit 𝑥̃ → 𝑥.

(c) Similarly to the previous items, take neighbourhoods 𝑈 of 𝑥 and
𝑉 of 𝜙(𝑥) such that

𝑎(𝑠, 𝑥̃) = 𝑎(𝑠, 𝑥) and 𝑏(𝑎(𝑠, 𝑥), 𝑦) = 𝑏(𝑎(𝑠, 𝑥), 𝜙(𝑥))

whenever 𝑥̃ ∈ 𝑈 and 𝑦 ∈ 𝑉 . Then for all 𝑥̃ ∈ 𝑈 ∩ 𝜙−1(𝑉 ) ∩ Λ(𝜃),

𝜃𝑏(𝑎(𝑠,𝑥̃),𝜙(𝑥̃))(𝑥̃) = 𝜙−1(𝛾𝑎(𝑠,𝑥̃)(𝜙(𝑥̃))) = 𝜙−1(𝜙(𝜃𝑠(𝑥̃))) = 𝜃𝑠(𝑥)

so the properties of 𝑈 , 𝑉 and Λ(𝜃) yield [𝑏(𝑎(𝑠, 𝑥), 𝜙(𝑥)), 𝑥̃] =
[𝑠, 𝑥̃] and again taking 𝑥̃ → 𝑥 gives us the desired result.

Theorem 4.5.3. Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) and 𝛾 = ({𝑌𝑡}𝑡∈𝑇 , {𝛾𝑡}𝑡∈𝑇 )
be topologically principal, continuously orbit equivalent partial actions,
and suppose that 𝑋 and 𝑌 are Hausdorff. Then 𝑆 n𝑋 and 𝑇 n 𝑌 are
isomorphic as topological groupoids.
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Proof. Let (𝜙, 𝑎, 𝑏) be e a continuous orbit equivalence between 𝜃 and
𝛾. By Lemma 4.5.2 (a), the map

Φ: 𝑆 n𝑋 → 𝑇 n 𝑌, Φ[𝑠, 𝑥] = [𝑎(𝑠, 𝑥), 𝜙(𝑥)]

is well-defined, and by Lemma 4.5.2 (a) it is a groupoid homomorphism.
Since 𝑎 and 𝜙 are continuous it follows that Φ is continuous. Similarly,
the map

Ψ: 𝑇 n 𝑌 → 𝑆 n𝑋, Ψ[𝑡, 𝑦] = [𝑏(𝑡, 𝑦), 𝜙−1(𝑦)]

is a continuous groupoid morphism. Φ and Ψ are inverses of each other
due to Lemma 4.5.2 (c).

We will now be interested in constructing an orbit equivalence
for two actions from an isomorphism of the corresponding groupoids
of germs. Note that in general the continuous maps 𝑎 and 𝑏 in the de-
finition of continuous orbit equivalence take values in discrete spaces
(namely, the corresponding semigroups), and so 𝑋 and 𝑌 are requi-
red to have sufficiently many sets for a continuous orbit equivalence
between the corresponding partial actions to exist. Since we will now
be interested in constructing an orbit equivalence for two actions from
an isomorphism of the corresponding groupoids of germs, we will need
to concentrate on spaces which have sufficiently many clopen sets and
partial actions which respect this structure.

Definition 4.5.4 ([73, Definition 5.2]). We say that a partial action
𝜃 =

(︀
{𝑋𝑠}𝑠∈𝑆 , {𝛼𝑠}𝑠∈𝑆

)︀
of an inverse semigroup 𝑆 on a topological

space 𝑋 is ample if

(i) 𝑋 is locally compact, Hausdorff and totally disconnected;

(ii) each 𝑋𝑠 is a compact-open subset of 𝑋.

Lemma 4.5.5. Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) and 𝛾 = ({𝑌𝑡}𝑡∈𝑇 , {𝛾𝑡}𝑡∈𝑇 )
be ample partial actions. Let Φ : 𝑆 n𝑋 → 𝑇 n 𝑌 be a topological iso-
morphism, and consider 𝜙 = Φ|𝑋 : 𝑋 → 𝑌 . Then, for every 𝑠 in 𝑆,
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there are elements 𝑡1, . . . , 𝑡𝑛 in 𝑇 and there are disjoint compact-open
subsets 𝐾1, . . .𝐾𝑛 of 𝑌 such that:

(a) 𝐾𝑖 ⊆ 𝑌𝑡𝑖
* ,

(b) 𝜙(𝑋𝑠*) =
⋃︀𝑛

𝑖=1 𝐾𝑖,

(c) {𝜙−1(𝐾𝑖) | 𝑖 = 1, · · · , 𝑛} is a partition to 𝑋,

(d) for every 𝑖 and for every 𝑥 ∈ 𝜙−1(𝐾𝑖), one has that Φ([𝑠, 𝑥]) =
[𝑡𝑖, 𝜙(𝑥)].

Proof. Since [𝑠,𝑋𝑠* ] is a compact-open bisection, then Φ([𝑠,𝑋𝑠* ]) is a
compact-open bisection in 𝑇 n 𝑌 , so there are elements 𝑡1, . . . , 𝑡𝑛 of 𝑇
and disjoint compact-open subsets 𝐾1, . . . ,𝐾𝑛 of 𝑌 with 𝐾𝑖 ∈ 𝑌𝑡*

𝑖
such

that

Φ([𝑠,𝑋𝑠* ]) =
𝑛⋃︁

𝑖=1
[𝑡𝑖,𝐾𝑖]. (4.10)

Then item (a) is trivially satisfied. Taking sources on both sides of
(4.10) yields

𝜙(𝑋𝑠*) = Φ(s([𝑠,𝑋𝑠* ])) = s(Φ([𝑠,𝑋𝑠* ])) = s

(︃⋃︁
𝑖

[𝑡𝑖,𝐾𝑖]
)︃

=
⋃︁

𝑖

𝐾𝑖,

and item (b) is proved. Item (c) follows by (b) and the fact that 𝜙 is
injective.

In order to prove (d), consider 𝑖 ∈ {1, · · · , 𝑛} and 𝑥 ∈ 𝜙−1(𝐾𝑖).
From Equation 4.10, Φ([𝑠, 𝑥]) ∈ [𝑡𝑗 ,𝐾𝑗 ], for some 𝑗 ∈ {1, · · · , 𝑛}, and
in particular, s([𝑠, 𝑥]) ∈ 𝐾𝑗 . As 𝐾1, · · · ,𝐾𝑛 are pairwise disjoint, we
have

s(Φ([𝑠, 𝑥])) = Φ(s([𝑠, 𝑥])) = 𝜙(𝑥) ∈ 𝐾𝑖,

and hence 𝐾𝑖 = 𝐾𝑗 . Therefore, Φ([𝑠, 𝑥]) = [𝑡𝑖, 𝜙(𝑥)].

We are now ready to prove that topological isomorphisms between
Hausdorff groupoids of germs yield a continuous orbit equivalence between
the respective partial actions.
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Theorem 4.5.6. Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) and 𝛾 = ({𝑌𝑡}𝑡∈𝑇 , {𝛾𝑡}𝑡∈𝑇 )
be ample partial actions. Then 𝜃 and 𝛾 are continuously orbit equiva-
lent.

Proof. Let Φ : 𝑆 n 𝑋 → 𝑇 n 𝑌 be an isomorphism of topological
groupoids. Then

𝜙 := Φ|𝑋 : 𝑋 → 𝑌

is a homeomorphism.
Given 𝑠 ∈ 𝑆, choose 𝑡1, . . . , 𝑡𝑛 ∈ 𝑇 and compact-open subsets

𝐾1, . . . ,𝐾𝑛 ⊆ 𝑌 satisfying properties (a) - (d) of Lemma 4.5.5. Define
𝑎(𝑠, 𝑥) = 𝑡𝑖 whenever 𝑥 ∈ 𝐾𝑖, so that 𝑎 is a continuous map on {𝑠} ×
𝑋𝑠* . This way, we define a continuous function 𝑎 on all of 𝑆 * 𝑋 =⋃︀

𝑠∈𝑆 {𝑠} × 𝑋𝑠* . Let’s show that 𝑎 satisfies the desired property for a
continuous orbit equivalence between 𝜃 and 𝛾: Given (𝑠, 𝑥) ∈ 𝑆 *𝑋, let
𝑡 = 𝑎(𝑠, 𝑥). Then the definition of 𝑎(𝑠, 𝑥) implies

𝛾𝑎(𝑠,𝑥)(𝜙(𝑥)) = r[𝑎(𝑠, 𝑥), 𝜙(𝑥)] = r[𝑡, 𝜙(𝑥)] = r(Φ[𝑠, 𝑥]) = Φ(r[𝑠, 𝑥])

= 𝜙(𝜃𝑠(𝑥))

as desired.
Proceeding similarly with Φ−1 in place of Φ, we construct a

function 𝑏 : 𝑇 * 𝑌 → 𝑆 with analogous properties, so that 𝑎 and 𝑏

describe a continuous orbit equivalence between 𝜃 and 𝛾.

By Proposition 4.1.19, Example 4.1.16 and Theorem 4.5.6 we
conclude the following:

Corollary 4.5.7. Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) be an ample partial ac-
tion of 𝑆 on 𝑋. Let 𝜏 = ({r(𝐵)}𝐵∈(𝑆n𝑋)𝑎 , {𝜏𝐵}𝐵∈(𝑆n𝑋)𝑎) be the ca-
nonical action of (𝑆 n𝜃 𝑋)𝑎 on 𝑋 (see Example 1.5.9). Then 𝜃 and 𝜏
are continuously orbit equivalent.

We want to connect the equivalence between continuously or-
bit equivalent partial actions, isomorphisms of groupoids of germs and
diagonal-preserving isomorphisms of certain algebras. However, first,
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let us consider another semigroup associated to a groupoid, which we
will call topological full pseudogroup.

Topological full groups, which were introduced in [35, 36], are
defined as follows: If 𝐺 is a group acting by homeomorphisms on the
Cantor set 𝑋, then the full group of this action consists of all self-
homeomorphisms of 𝑋 which locally act as some element of 𝐺. To-
pological full groups can then be generalized to the setting of étale
groupoids 𝒢 on Cantor sets [55], on which the following isomorphism
theorem holds: two étale groupoids over the Cantor set are isomorphic
if, and only if, they have isomorphic topological full groups ([56, The-
orem 5.1].

We will use a similar nomenclature to that of [55]. For each
compact-open bisection 𝑈 of an ample groupoid 𝒢, we denote by 𝜏𝑈

the homeomorphism given by the canonical action of 𝒢𝑎 on 𝒢(0), namely

𝜏𝑈 = r ∘ (s|−1
𝑈 ) : s(𝑈) → r(𝑈).

In particular, we have that 𝑈 ↦→ 𝜏𝑈 is an inverse semigroup homo-
morphism from 𝒢𝑎 to ℐ(𝒢(0)).

Definition 4.5.8. The topological full pseudogroup of an étale groupoid
is the semigroup

[[𝒢]] = {𝜏𝑈 | 𝑈 compact-open bisection of 𝒢} .

Example 4.5.9. Let 𝜃 = ({𝑋𝑠}𝑠∈𝑆 , {𝜃𝑠}𝑠∈𝑆) be a partial action of
an inverse semigroup 𝑆 on a locally compact, Hausdorff, and zero-
dimensional space 𝑋. The topological full pseudogroup [[𝑆 n𝜃 𝑋]] is
the set of all partial homeomorphisms 𝜙 : 𝑈 → 𝑉 (𝑈, 𝑉 ⊆ 𝑋) for
which there are 𝑠1, . . . , 𝑠𝑛 ∈ 𝑆 and compact-open 𝑈1, . . . , 𝑈𝑛 such that

(i) 𝑈 =
⋃︀𝑛

𝑖=1 𝑈𝑖,

(ii) 𝑈𝑖 ⊆ 𝑋𝑠*
𝑖
, for all 𝑖 ∈ {1, · · · , 𝑛},

(iii) 𝜙|𝑈𝑖 = 𝜃𝑠𝑖 |𝑈𝑖 , for all 𝑖 ∈ {1, · · · , 𝑛}.
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The theorem below was proven in [66, Corollary 3.3] when one
considers open bisections instead of compact-open ones. In any case,
we provide a short and direct proof of it.

Proposition 4.5.10. Suppose 𝒢 is an ample (possibly non-Hausdorff)
groupoid. Then the homomorphism 𝜏 : 𝒢𝑎 → [[𝒢]] is an isomorphism
if, and only if, 𝒢 is effective.

Proof. First assume that 𝒢 is effective, that is, 𝒢(0) = int(Iso(𝒢)). Let
𝑈, 𝑉 ∈ 𝒢𝑎 such that 𝜏𝑈 = 𝜏𝑉 . Then

𝜏𝑉 *𝑈 = 𝜏𝑉 * ∘ 𝜏𝑈 = 𝜏𝑉 * ∘ 𝜏𝑉 = ids(𝑉 ),

which means that 𝑉 *𝑈 ⊆ Iso(𝒢). Since 𝑉 *𝑈 is open, we obtain 𝑉 *𝑈 ⊆
𝒢(0). Thus the domain of 𝜏𝑉 *𝑈 is s(𝑉 ) = s(𝑉 *𝑈) = 𝑉 *𝑈 , which im-
plies 𝑉 = 𝑉 𝑉 *𝑈 ⊆ 𝑈 , and symetrically we obtain 𝑈 ⊆ 𝑉 . Thus 𝜏 is
injective.

Conversely, suppose that 𝒢 is not effective. Take any nonempty
compact-open bisection 𝑈 ⊆ int(Iso(𝒢)) which is not contained in 𝒢(0).
Then 𝑈 ̸= s(𝑈), but 𝜏𝑈 = 𝜏s(𝑈), and so, 𝜏 is not injective.

Let us now summarize the connections between continuous or-
bit equivalence of partial actions, isomorphisms of groupoids of germs,
isomorphisms of topological full pseudogroups, diagonal-preserving iso-
morphisms of Steinberg algebras, and consequently diagonal-preserving
isomorphisms of the associated crossed products. To do so, we will use
[70, Corollary 5.8], which is an improvement of [12, Theorem 3.1].

Note that each individual implication in the next theorem is valid
under weaker hypotheses.

Theorem 4.5.11. Let 𝑅 be an indecomposable ring and let 𝜃 and 𝛾 be
ample, topologically principal partial actions of inverse semigroups 𝑆
and 𝑇 on spaces 𝑋 and 𝑌 , respectively, and suppose that the groupoids
of germs 𝑆 n 𝑋 and 𝑇 n 𝑌 are Hausdorff. Then the following are
equivalent:

(i) the partial actions 𝜃 and 𝛾 are continuously orbit equivalent;
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(ii) the groupoids of germs 𝑆 n𝑋 and 𝑇 n 𝑌 are isomorphic;

(iii) the inverse semigroups (𝑆 n𝑋)𝑎 and (𝑇 n 𝑌 )𝑎 are isomorphic;

(iv) the inverse semigroups [[𝑆 n𝑋]] and [[𝑇 n 𝑌 ]] are isomorphic;

(v) there exists a diagonal-preserving isomorphism between the Stein-
berg algebras 𝐴𝑅(𝑆 n𝑋) and 𝐴𝑅(𝑇 n 𝑌 );

(vi) there exists a diagonal-preserving isomorphism between the partial
skew inverse semigroup rings ℒc(X)o𝑆 and ℒ(𝑌 ) o 𝑇 .

Proof. (𝑖) ⇐⇒ (𝑖𝑖) follows from Theorems 4.5.3 and 4.5.6,
(𝑖𝑖) ⇐⇒ (𝑖𝑖𝑖) follows from non-commutative Stone duality2

(see [50, Theorem 3.23]),
(𝑖𝑖𝑖) ⇐⇒ (𝑖𝑣) follows from Proposition 4.5.10,
(𝑖) ⇐⇒ (𝑣) follows from [70, Corollary 5.8.],
(𝑣) ⇐⇒ (𝑣𝑖) follows from Theorem 4.3.4.

4.6 Aplication to Leavitt path algebras

In [9], the notion of continuous orbit equivalence for directed
graphs was introduced, following Matsumoto’s notion of continuous or-
bit equivalence for topological Markov shifts (see [54]). We will compare
this notion with continuous orbit equivalence of the canonical actions
of the inverse semigroups associated to graphs (see Example 1.5.13). A
similar study was made by Li in [52], who considered the case of par-
tial actions of free groups generated by edges of a graph. We reiterate
that we do not make any assumptions on the second-countability of
topological spaces, or countability of graphs.

In this section we will make constant use of the properties of the
Examples 1.2.16, 1.3.10 and 1.5.13, as well as their notation.

2 Note that Hausdorff Boolean groupoids of [50] correspond to ample Hausdorff
groupoids.
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First, we will show that the boundary path groupoid (see Exam-
ple 1.2.16) of a directed graph is isomorphic to the groupoid of germs
given by the action of Example 1.5.13.

Lemma 4.6.1. Let 𝐸 = (𝐸0, 𝐸1, 𝑟, 𝑠) be a directed graph. Then the
groupoid of germs 𝒮𝐸 n 𝜕𝐸, associated the action of the inverse se-
migroup 𝒮𝐸 on the boundary path space 𝜕𝐸, and the boundary path
groupoid 𝒢𝐸 are isomorphic as topological groupoids.

Proof. Consider the map 𝜑 : 𝒢𝐸 → 𝒮𝐸 n 𝜕𝐸 , defined by

𝜑(𝜇𝑥, 𝑛, 𝜈𝑥) = [(𝜇, 𝜈), 𝜈𝑥].

We need to check that 𝜑 is well-defined. Suppose that

(𝜇𝑥, 𝑛, 𝜈𝑥) = (𝜁𝑦, 𝑛, 𝜂𝑦).

It follows that 𝜇 and 𝜁 are comparable, as are 𝜈 and 𝜂. Moreover, either
both 𝜇 and 𝜈 are subpaths of 𝜁 and 𝜂, respectively, or the reverse is
true.

By symmetry, let us assume that either both 𝜇 and 𝜈 are sub-
paths of 𝜁 and 𝜂, respectively, say 𝜁 = 𝜇𝑝 and 𝜂 = 𝜈𝑞. Since 𝜇𝑥 = 𝜁𝑦

and 𝜈𝑥 = 𝜂𝑦 we obtain 𝑥 = 𝑝𝑦 and hence 𝜇𝑝𝑦 = 𝜇𝑞𝑦, and therefore
𝑝 = 𝑞. In other words

(𝜇, 𝜈) ≤ (𝜁, 𝜂) or (𝜁, 𝜂) ≤ (𝜇, 𝜈),

and then 𝜑 is well-defined.
It is straightforward to check that 𝜑 is a homomorphism between

groupoids. Notice that

𝜑−1 ([(𝜇, 𝜈), 𝑍(𝜇, 𝐹 )])

= 𝜑−1 ({[(𝜇, 𝜈), 𝜈𝑥] | 𝑥 ∈ 𝜕𝐸, 𝑠(𝑥) = 𝑟(𝜇) and 𝑥1 /∈ 𝐹})

= {(𝜇𝑥, 𝑛, 𝜈𝑥) | 𝑥 ∈ 𝜕𝐸, 𝑠(𝑥) = 𝑟(𝜇) and 𝑥1 /∈ 𝐹}

= 𝑍(𝜇, 𝜈, 𝐹 ),

that is, every preimage of a basic open subset of 𝒮𝐸 n 𝜕𝐸 is a basic
open subset of 𝒢𝐸 . Similarly, the image of a basic open 𝑍(𝜇, 𝜈, 𝐹 ) of
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𝒢𝐸 by 𝜑 is [(𝜇, 𝜈), 𝑍(𝜇, 𝐹 )], which is also a basic open subset of 𝒮𝐸n𝜕𝐸 .
Therefore, 𝜑 is a continuous and open map.

In order to prove that 𝜑 is bijective, consider 𝜓 : 𝒮𝐸 n 𝜕𝐸 → 𝒢𝐸

defined by
𝜓([(𝜇, 𝜈), 𝜈𝑥]) = (𝜇𝑥, |𝜇| − |𝜈|, 𝜈𝑥).

We need to check that 𝜓 is well-defined. Suppose that

[(𝜇, 𝜈), 𝜈𝑥] = [(𝜁, 𝜂), 𝜂𝑦] ∈ 𝒮𝐸 n 𝜕𝐸.

Then 𝜈𝑥 = 𝜂𝑦 and there is (𝛼, 𝛽) ∈ 𝒮𝐸 such that (𝛼, 𝛽) ≤ (𝜇, 𝜈), (𝜁, 𝜂)
with 𝜈𝑥 ∈ 𝑍(𝛽). From (𝛼, 𝛽) ≤ (𝜇, 𝜈), (𝜁, 𝜂) there are 𝑏, 𝑐 ∈ 𝐸⋆ such
that 𝛼 = 𝜇𝑏 = 𝜁𝑐 and 𝛽 = 𝜈𝑏 = 𝜂𝑐. Thus

|𝜇| − |𝜈| = |𝜇𝑏| − |𝜈𝑏| = |𝛼| − |𝛽| = |𝜁𝑐| − |𝜂𝑐| = |𝜁| − |𝜂|.

It remains to show that 𝜇𝑥 = 𝜁𝑦. From of 𝜈𝑥 = 𝜂𝑦, there is 𝑎 ∈ 𝐸⋆

such that 𝜈 = 𝜂𝑎 or 𝜂 = 𝜈𝑎. In the case that 𝜈 = 𝜂𝑎, we have that
𝜂𝑐 = 𝜈𝑏 = 𝜂𝑎𝑏 implies that 𝑐 = 𝑎𝑏, and so, 𝜂𝑎𝑥 = 𝜈𝑥 = 𝜂𝑦 implies that
𝑎𝑥 = 𝑦. Hence

𝜇𝑏 = 𝜂𝑐 = 𝜁𝑎𝑏 ⇒ 𝜇 = 𝜁𝑎 ⇒ 𝜇𝑥 = 𝜁𝑎𝑥 = 𝜁𝑦.

The case 𝜂 = 𝜈𝑎 is similar. Therefore

(𝜇𝑥, |𝜇| − |𝜈|, 𝜈𝑥) = (𝜁𝑦, |𝜁| − |𝜂|, 𝜂𝑦),

and 𝜓 is well-defined as required. Clearly 𝜑 is the inverse map of 𝜓.

Recall that given a directed graph 𝐸 = (𝐸0, 𝐸1, 𝑟, 𝑠) we denote
by 𝜎𝐸 : 𝜕𝐸≥1 → 𝜕𝐸 the one-sided shift map (see Equation 1.1).

Definition 4.6.2. [9, Definition 3.1] Two countable directed graphs
𝐸 = (𝐸0, 𝐸1, 𝑟, 𝑠) and 𝐹 = (𝐹 0, 𝐹 1, 𝑟, 𝑠) are continuously orbit equi-
valent if there exists a homeomorphism 𝜙 : 𝜕𝐸 → 𝜕𝐹 together with
continuous maps 𝑘, 𝑙 : 𝜕𝐸≥1 → N and 𝑘′, 𝑙′ : 𝜕𝐹≥1 → N such that

𝜎
𝑘(𝑥)
𝐹 (𝜙(𝜎𝐸(𝑥))) = 𝜎

𝑙(𝑥)
𝐹 (𝜙(𝑥)), for all 𝑥 ∈ 𝜕𝐸≥1, (4.11)

and

𝜎
𝑘′(𝑦)
𝐸 (𝜙−1(𝜎𝐹 (𝑥))) = 𝜎

𝑙′(𝑦)
𝐸 (𝜙−1(𝑦)), for all 𝑦 ∈ 𝜕𝐹≥1. (4.12)
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Recall that a loop or cycle in a graph 𝐸 is a path 𝜇 ∈ 𝐸⋆ such
that |𝜇| ≥ 1 and 𝑠(𝜇) = 𝑟(𝜇). An edge 𝑒 is an exit to the cycle 𝜇 if there
exists 𝑖 such that 𝑠(𝑒) = 𝑠(𝜇𝑖) and 𝑒 ̸= 𝜇𝑖. A graph is said to satisfy
condition (L) if every loop has an exit.

The following is an analogue of [9, Proposition 2.3]. We provide
a simple proof for completeness.

Proposition 4.6.3. Let 𝐸 = (𝐸0, 𝐸1, 𝑟, 𝑠) be a directed graph. Then 𝐸
satisfies Condition (L) if and only if the canonical action 𝜃 of 𝒮𝐸 on 𝜕𝐸
is topologically principal (or equivalently, 𝒢𝐸 is topologically principal).

Proof. Let us say that an element 𝑥 ∈ 𝜕𝐸 is cyclic if there exists
𝑥′ ∈ 𝐸⋆ with |𝑥′| ≥ 1 such that 𝑥 = 𝑥′𝑥, or equivalently 𝑥 = 𝑥′𝑥′𝑥′ · · · ,
and that 𝑥 is periodic if 𝑥 = 𝜈𝑦 for some 𝜈 ∈ 𝐸⋆ and some cyclic 𝑦.

First suppose that 𝐸 satisfies Condition (L). Consider the set
𝑋 = (𝐸⋆ ∩ 𝜕𝐸) ∪ {𝑥 ∈ 𝐸∞ : 𝑥 is not periodic}. Condition (L) implies
that 𝑋 is dense in 𝜕𝐸. We are done by proving that 𝑋 ⊆ Λ(𝜃). Suppose
(𝜇, 𝜈) ∈ 𝒮𝐸 and 𝑥 = 𝜈𝑦 ∈ 𝑍(𝜈) is such that 𝜃(𝜇,𝜈)(𝑥) = 𝑥. Let us prove
that 𝜇 = 𝜈. We have

𝜇𝑦 = 𝜃(𝜇,𝜈)(𝑥) = 𝑥 = 𝜈𝑦. (4.13)

It follows that 𝜇 and 𝜈 are comparable, so to prove that 𝜇 = 𝜈 it suffices
to prove that |𝜇| = |𝜈|. Without loss of generality, let us assume that
𝜇 = 𝜈𝜇′ for some 𝜇′. From (4.13) we obtain 𝑦 = 𝜇′𝑦. However, 𝑦 is not
cyclic, since 𝑥 is not periodic, so |𝜇′| = 0, and |𝜇| = |𝜈𝜇′| = |𝜈|. We
conclude that 𝜃 is topologically principal.

Conversely, suppose 𝐸 does not satisfy Condition (L), and let
𝑦 be any loop in 𝐸 without exit. The element 𝑥 = 𝑦𝑦𝑦 · · · is isolated
in 𝜕𝐸, because 𝑍(𝑦) = {𝑥}, and 𝜃(𝑦,𝑦𝑦)(𝑥) = 𝑥. However, the only
idempotent in 𝒮𝐸 which is smaller than (𝑦, 𝑦𝑦) is the zero, and 𝜃0 is
the empty function, thus 𝑍(𝑦)∩Λ(𝜃) = ∅. This proves that Λ(𝜃) is not
dense in 𝜕𝐸, therefore 𝜃 is not topologically principal.

Remark 4.6.4. Let 𝐸 = (𝐸0, 𝐸1, 𝑠, 𝑟) and 𝐹 = (𝐹 0, 𝐹 1, 𝑠, 𝑟) be di-
rected graphs, and let 𝜙 : 𝜕𝐸 → 𝜕𝐹 be a continuous function. Suppose
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that for every (𝜇, 𝜈) ∈ 𝑆𝐸 and every 𝑥 ∈ 𝑍(𝜈), there exists a neigh-
bourhood 𝑈 ⊆ 𝑍(𝜈) of 𝑥 and (𝛼, 𝛽) ∈ 𝑆𝐹 such that for all 𝑥̃ ∈ 𝑈

𝜙(𝜃(𝜈,𝜇)(𝑥̃)) = 𝜃𝐹
(𝛼,𝛽)(𝜙(𝑥̃)).

Thus we can find a clopen partition U𝑠 of 𝑍(𝜇), and a family

{(𝛼, 𝛽)𝑈 : 𝑈 ∈ U𝑠} ⊆ 𝑆𝐹

such that for all 𝑈 ∈ U𝑠 and all 𝑥 ∈ 𝑈 ,

𝜙(𝜃𝐸
(𝜇,𝜈)(𝑥)) = 𝜃𝐹

(𝛼,𝛽)𝑈
(𝜙(𝑥)).

We define 𝑎 : 𝑆𝐸 *𝑋 → 𝑆𝐹 , by setting 𝑎((𝜇, 𝜈), 𝑥) = (𝛼, 𝛽)𝑈 , where 𝑈 is
chosen as the unique element of U𝑠 such that 𝑥 ∈ 𝑈 . Then 𝑎 continuous
function such that for every (𝜇, 𝜈) ∈ 𝑆𝐸 and 𝑥 ∈ 𝑍(𝜈),

𝜙(𝜃𝐸
(𝜇,𝜈)(𝑥)) = 𝜃𝐹

𝑎((𝜇,𝜈),𝑥)(𝜙(𝑥)).

We will now compare continuous orbit equivalence of graphs and
continuous orbit equivalence of the canonical action of the associated
semigroups. The following is analogue to [52, Lemma 3.8], but we do
not require that the graphs satisfy Condition (L).

Proposition 4.6.5. Let 𝐸 = (𝐸0, 𝐸1, 𝑠, 𝑟) and 𝐹 = (𝐹 0, 𝐹 1, 𝑠, 𝑟) be
directed graphs. Then 𝐸 and 𝐹 are continuously orbit equivalent if and
only if the canonical actions 𝜃𝐸 and 𝜃𝐹 associated to 𝐸 and 𝐹 are
continuously orbit equivalent.

Proof. Assume that (𝜙, 𝑎, 𝑏) is a continuous orbit equivalence between
𝜃𝐸 and 𝜃𝐹 . Given 𝑥 ∈ 𝜕𝐸≥1, let us denote by 𝑥1 ∈ 𝐸1 the first edge of
𝑥 (i.e., 𝑥 = 𝑥1𝑦 for some 𝑦 ∈ 𝜕𝐸). The map 𝑥 ↦→ 𝑥1 is locally constant
on 𝜕𝐸≥1 – namely, it is the constant map 𝑥 ↦→ 𝑒 on 𝑍(𝑒) for each
𝑒 ∈ 𝐸1, and

{︀
𝑍(𝑒) : 𝑒 ∈ 𝐸1}︀ is a partition of 𝜕𝐸≥1.

Let 𝛼, 𝛽 : 𝜕𝐸≥1 → 𝒮𝐸 be functions such that 𝑎((𝑟(𝑥1), 𝑥1), 𝑥) =
(𝛼(𝑥), 𝛽(𝑥)) for all 𝑥 ∈ 𝜕𝐸≥1, and define 𝑘(𝑥) = |𝛼(𝑥)| and 𝑙(𝑥) =
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|𝛽(𝑥)|. As 𝑎 is continuous, then 𝑘 and 𝑙 are continuous. Moreover, we
have

𝜙(𝜎𝐸(𝑥)) = 𝜙(𝜃𝐸
(𝑟(𝑥1),𝑥1)(𝑥)) = 𝜃𝐹

(𝛼(𝑥),𝛽(𝑥))(𝜙(𝑥)),

which means that 𝜙(𝜎𝐸(𝑥)) = 𝛼(𝑥)𝑦 and 𝜙(𝑥) = 𝛽(𝑥)𝑦, for some 𝑦 ∈
𝜕𝐹 . Thus

𝜎
𝑘(𝑥)
𝐹 (𝜙(𝜎𝐸(𝑥))) = 𝜎

|𝛼(𝑥)|
𝐹 (𝛼(𝑥)𝑦) = 𝑦 = 𝜎

|𝛽(𝑥)|
𝐹 (𝛽(𝑥)𝑦) = 𝜎

𝑙(𝑥)
𝐹 (𝜙(𝑥))

and so (4.11) holds. To prove (4.12), 𝑘′ and 𝑙′ are defined in a similar
way, using 𝑏.

Conversely, suppose 𝜙 : 𝜕𝐸 → 𝜕𝐹 is a homeomorphism and that
there are maps 𝑘, 𝑙 : 𝜕𝐸≥1 → N satisfying, for all 𝑥 ∈ 𝜕𝐸≥1,

𝜎
𝑘(𝑥)
𝐹 (𝜙(𝜎𝐸(𝑥))) = 𝜎

𝑙(𝑥)
𝐹 (𝜙(𝑥)). (4.14)

We must show that there is a continuous function 𝑎 : 𝒮𝐸 * 𝜕𝐸 → 𝒮𝐹

such that
𝜙(𝜃𝐸

(𝜇,𝜈)(𝑥)) = 𝜃𝐹
𝑎(𝜇,𝜈,𝑥)(𝜙(𝑥)), (4.15)

for all (𝜇, 𝜈) ∈ 𝒮𝐸 and 𝑥 ∈ 𝑍𝐸(𝜈).
By Remark 4.6.4, it is sufficient to prove that for all (𝜇, 𝜈) ∈ 𝒮𝐸

and for all 𝑥 ∈ 𝑍(𝜈), there exists an open set 𝑈 containing 𝑥 and
(𝛼, 𝛽) ∈ 𝒮𝐹 such that for all ̃︀𝑥 ∈ 𝑈 ,

𝜙(𝜃𝐸
(𝜇,𝜈)(̃︀𝑥)) = 𝜃𝐹

(𝛼,𝛽)(𝜙(̃︀𝑥)).

Let us separate the proof in cases:

1. Assume that |𝜇| = |𝜈| = 0 (which implies that 𝜇 = 𝜈).

In this case, we simply take 𝑈 = 𝑍𝐸(𝜈) ∩ 𝜙−1(𝑍𝐹 (𝑠(𝜙(𝑥)))).
Then for all ̃︀𝑥 ∈ 𝑈 ,

𝜙(𝜃𝐸
(𝜇,𝜈)(̃︀𝑥)) = 𝜙(̃︀𝑥) = 𝜃𝐹

(𝑠(𝜙(𝑥)),𝑠(𝜙(𝑥)))(𝜙(̃︀𝑥)),

so we are done.
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2. Assume that |𝜇| = 0 and |𝜈| = 1.

Let 𝐾 = 𝑘(𝑥) and 𝐿 = 𝑙(𝑥). For all ̃︀𝑥 ∈ 𝑍𝐸(𝜈) ⊆ 𝜕𝐸≥1, we have

𝜃𝐸
(𝜇,𝜈)(̃︀𝑥) = 𝜎𝐸(̃︀𝑥)

Let 𝑈1 = 𝑍𝐸(𝜈)∩𝑘−1(𝐾)∩ 𝑙−1(𝐿). Then for all ̃︀𝑥 ∈ 𝑈1, Equation
(4.14) implies that

𝜎𝐾
𝐹 (𝜙(𝜃𝐸

(𝜇,𝜈)(̃︀𝑥)) = 𝜎𝐿
𝐹 (𝜙(̃︀𝑥)). (4.16)

Equation (4.16) with ̃︀𝑥 = 𝑥 implies that there exist (𝛼, 𝛽) ∈ 𝒮𝐹 ,
with |𝛼| = 𝐾 and |𝛽| = 𝐿, such that

𝜙(𝜃𝐸
(𝜇,𝜈)(𝑥)) = 𝜃𝐹

(𝛼,𝛽)(𝜙(𝑥)).

Thus setting 𝑈 = 𝑈1 ∩ 𝜙−1(𝑍𝐹 (𝜈)) ∩ (𝜙 ∘ 𝜃𝐸
(𝜇,𝜈))−1(𝑍𝐹 (𝜇)), we

obtain that Equation (4.15) holds on 𝑈 .

3. Assume that |𝜇| = 0 and |𝜈| ≥ 1.

Write 𝜈 = 𝜈1 · · · 𝜈|𝜈|, where 𝜈𝑖 ∈ 𝐸1. Notice that

(𝜇, 𝜈) = (𝜇, 𝜈|𝜈|)(𝑠(𝜈|𝜈|), 𝜈|𝜈|−1) · · · (𝑠(𝜈3), 𝜈2)(𝑠(𝜈2), 𝜈1)

In other words, there are elements 𝑒1, . . . , 𝑒|𝜈| of the form consi-
dered in the previous case, such that (𝜇, 𝜈) = 𝑒|𝜈| · · · 𝑒1. Applying
the previous case, for each 𝑘 ≥ 1 we may find a neighbourhood
𝑈𝑘 of 𝜃𝑒𝑘−1···𝑒1(𝑥) (or simply 𝑥 in the case 𝑘 = 1) and an element
𝑓𝑘 ∈ 𝒮𝐹 such that

𝜙 ∘ 𝜃𝐸
𝑒𝑘

= 𝜃𝐹
𝑓𝑘

∘ 𝜙

on 𝑈𝑘. Then 𝑈 = 𝑈1 ∩
⋂︀|𝜈|

𝑘=2 𝜃
−1
𝑒𝑘−1···𝑒1

(𝑈𝑘) is a neighbourhood of
𝑥 such that

𝜙 ∘ 𝜃𝐸
(𝜇,𝜈) = 𝜙 ∘ 𝜃𝐸

𝑒|𝜈|
∘ · · · ∘ 𝜃𝐸

𝑒1
= 𝜃𝐹

𝑓|𝜈|
∘ · · · ∘ 𝜃𝐹

𝑓1
∘ 𝜙 = 𝜃𝐹

𝑓|𝜈|···𝑓1
∘ 𝜙,

since 𝜃𝐸 and 𝜃𝐹 are actions.



184 Chapter 4. The dynamics of partial inverse semigroup actions

4. Assume that |𝜇| ≥ 1 and |𝜈| = 0.

Applying the case 3 to (𝜈, 𝜇), there exists a neighbourhood 𝑉

of 𝜃𝐸
(𝜇,𝜈)(𝑥) and (𝛽, 𝛼) ∈ 𝒮𝐹 such that 𝜙 ∘ 𝜃𝐸

(𝜈,𝜇) = 𝜃𝐹
(𝛽,𝛼) ∘ 𝜙 on

𝑉 . In other words, 𝜙 ∘ 𝜃𝐸
(𝜇,𝜈) = 𝜃𝐹

(𝛼,𝛽) ∘ 𝜙 on the neighbourhood
𝑈 = 𝜃𝐸

(𝜈,𝜇)(𝑉 ) of 𝑥, as we wanted.

5. Assume that |𝜇|, |𝜈| ≥ 1. In this case, (𝜇, 𝜈) = (𝜇, 𝑟(𝜇))(𝑟(𝜇), 𝜈),
so we may apply cases 3 and 4, and proceed in a manner similar
to that of case 3.

Since we have exhausted all possibilities for (𝜇, 𝜈), the theorem is pro-
ved.

We have seen that the Steinberg algebra 𝐴𝑅(𝒢𝐸) of the boun-
dary path groupoid 𝒢𝐸 is isomorphic to the Leavitt path algebra 𝐿𝑅(𝐸)
of graph 𝐸 (see Example 1.3.10). By Example 4.6.1 the groupoids 𝒢𝐸

and 𝒮𝐸 n 𝜕𝐸 are isomorphic. Thus, there is an isomorphism between
the Steinberg algebras 𝐴𝑅(𝒢𝐸) and 𝐴𝑅(𝒮𝐸 n 𝜕𝐸). Moreover, by The-
orem 4.3.4, the Steinberg algebra 𝐴𝑅(𝒮𝐸 n 𝜕𝐸) is isomorphic to the
skew inverse semigroup algebra ℒ(𝜕𝐸)o𝒮𝐸 . Then we can conclude the
following:

Proposition 4.6.6. Let 𝐸 = (𝐸0, 𝐸1, 𝑟, 𝑠) be a directed graph. Then

𝐿𝑅(𝐸) ≃ 𝐴𝑅(𝒢𝐸) ≃ 𝐴𝑅(𝒮𝐸 n 𝜕𝐸) ≃ ℒ𝑐(𝜕𝐸) o 𝒮𝐸 .

Finally, from Lemma 4.6.5, Example 4.6.1, Theorem 4.5.11 and
4.5.10 and Proposition 4.6.6, we obtain the following Theorem:

Theorem 4.6.7. Let 𝐸 and 𝐹 be directed graphs that satisfy Condi-
tion (L) and let 𝑅 be an indecomposable ring. Then the following are
equivalent:

(i) the graphs 𝐸 and 𝐹 are continuously orbit equivalent,

(ii) 𝜃𝐸 and 𝜃𝐹 are continuously orbit equivalent,

(iii) 𝒮𝐸 n𝑋𝐸 and 𝑆𝐹 n𝑋𝐹 are isomorphic as topological groupoids,
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(iv) 𝒢𝐸 and 𝒢𝐹 are isomorphic as topological groupoids,

(v) the topological full pseudogroups [[𝒢𝐸 ]] and [[𝒢𝐹 ]] are isomorphic

(vi) there exists a diagonal-preserving isomorphism between the Stein-
berg algebras 𝐴𝑅(𝒢𝐸) and 𝐴𝑅(𝒢𝐹 ),

(vii) there exists a diagonal-preserving isomorphism between the partial
skew inverse semigroup rings ℒ(𝑋𝐸) o 𝒮𝐸 and ℒ(𝑋𝐹 ) o 𝑆𝐹 ,

(viii) there exists a diagonal-preserving isomorphism between the Lea-
vitt path algebras 𝐿𝑅(𝐸) and 𝐿𝑅(𝐹 ).
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